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Abstract. Resonant diffusion curves for electron cyclotron resonance with 
field-aligned electromagnetic R mode and L mode electromagnetic ion cy- 
clotron (EMIC) waves are constructed using a fully relativistic treatment. 
Analytical solutions are derived for the case of a single-ion plasma, and 
a numerical scheme is developed for the more realistic case of a multi-ion 
plasma. Diffusion curves are presented, for plasma parameters representa- 
tive of the Earth's magnetosphere at locations both inside and outside the 
plasmapause. The results obtained indicate minimal electron energy change 
along the diffusion curves for resonant interaction with L mode waves. In- 
tense storm time EMIC waves are therefore ineffective for electron stochastic 

acceleration, although these waves could induce rapid pitch angle scattering 
for > 1 MeV electrons near the duskside plasmapause. In contrast significant 
energy change can occur along the diffusion curves for interaction between 
resonant electrons and whistler (R mode) waves. The energy change is most 
pronounced in regions of low plasma density. This suggests that whistler 
mode waves could provide a viable mechanism for electron acceleration from 
energies near 100 keV to above 1 MeV in the region outside the plasmapause 
during the recovery phase of geomagnetic storms. A model is proposed to 
account for the observed variations in the flux and pitch angle distribution 
of relativistic electrons during geomagnetic storms by combining pitch angle 
scattering by intense EMIC waves and energy diffusion during cyclotron 
resonant interaction with whistler mode chorus outside the plasmasphere. 

1. Introduction 

The flux of outer radiation zone relativistic ( > 1 
MeV) electrons exhibits considerable variability dur- 
ing geomagnetic storms [e.g., Baker et al., 1986; 1994]. 
Characteristically, there is a sharp depletion during the 
onset of the storm, and this is often followed by a 
gradual increase (over days) to flux levels well above 
prestotin values during the recovery phase [Baker et 
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al., 1986; Liet al., !997a]. The increase in relativistic 
electron flux during a storm is strongly correlated with 
fast solar wind streams and prolonged periods of south- 
ward directed interplanetary magnetic field [Paulikas 
and Blake, 1979; Blake et al., 1997]. This suggests that 
enhanced magnetospheric convection is a necessary con- 
dition for subsequent electron acceleration to relativistic 
(> 1 MeV) energies. 

While enhanced convective activity can lead to a pro- 
nounced increase in the flux of 10-100-keV electrons 

during storms, it is unlikely that this process can yield 
electron energies in excess of the typical potential drop 
across the magnetosphere (m a few 100 keV). Enhanced 
fluxes of > 1 MeV electrons during the storm recov- 
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ery must therefore be attributed to additional acceler- 
ation processes. Betatron acceleration, associated with 
inward radial diffusion [Schulz and Lanzerotti, 1974], 
could contribute to electron energization during storms 
[e.g., Liet al., 1997a]. However, the acceleration to 
highly relativistic energies (•_ 300 MeV/G) appears to 
be located deep within the magnetosphere, since the 
phase space density of such electrons has a peak near 
L = 5 during storms (R. S. Selesnick and J. B. Blake, 
Observational constraints on the location of radiation 

belt electron acceleration, submitted to Journal of Geo- 
physical Research, 1998). Furthermore, the phase space 
density in the solar wind is insufficient to account for 
the observed outer zone fluxes during a storm [Liet al., 
1997b]. This would appear to rule out the simple con- 
cept of inward radial diffusion from a source region in 
the geomagnetic tail or near the magnetopause bound- 
ary as a viable mechanism to account for the gradual 
increase in relativistic flux during the storm recovery. 

Multi dimension diffusion, which leads to a recycling 
of energetic electrons [e.g., Nishida 1976], could still be 
important, but this process has yet to be quantified. 
The present investigation will therefore explore the po- 
tential for local stochastic acceleration by plasma waves. 
The basic concept of energy diffusion of relativistic elec- 
trons resulting from resonant interaction with whistler 
mode waves in the magnetosphere has previously been 
discussed by Ternerin et al. [1994] and Liet al. [1997a]. 
Such processes will be quantified here and the analysis 
will be applied to both right and left polarized waves. 
The gradual acceleration process (occurring over days) 
addressed in this paper is distinct from the rapid in- 
crease in energetic electron flux associated with induc- 
tive electric fields, which has been previously discussed, 
for example, by Liet al. [1993]. 

Horne and Thorne [1998] have identified potential 
wave modes that are capable of resonating with elec- 
trons over the important energy range from 100 keV 
to a few MeV in different regions of the Earth's mag- 
netosphere. The principal waves are L mode electro- 
magnetic ion cyclotron (EMIC) waves, oblique magne- 
tosonic waves and R mode whistlers. In this paper the 
resonant diffusion curves, along which the electrons are 
forced to move during cyclotron resonant interaction 
with both R and L mode electromagnetic waves, will 
be determined for fully relativistic energies. The en- 
ergy change along the diffusion curves provides a mea- 
sure of the potential for stochastic electron acceleration 
by each wave mode. The results are parameterized in 
terms of the wave frequency, wave polarization (R mode 
or L mode) and local Alfv6n speed. A brief account of 
the concept of a resonant diffusion curve for a relativis- 
tic plasma is given in section 2. The general resonant 
condition for relativistic electron interaction with field- 

aligned R mode and L mode electromagnetic waves is 
given in section 3. Simple dispersion relations for such 
waves in a cold plasma are presented in section 4. A 
detailed analysis of the curves in velocity space along 

which relativistic electrons are constrained to move dur- 

ing resonant interaction with each wave mode is pro- 
vided in section 5. An exact analytical solution is ob- 
tained for the case of a single-ion cold plasma, and a 
numerical scheme is used to determine the diffusion 

curves for the more general case of a multi-ion plasma. 
For completeness, solutions obtained under the nonrela- 
tivistic approximation are given in section 6. Numerical 
solutions for the electron diffusion curves, for each wave 
mode and under a variety of different magnetospheric 
conditions are presented in section 7. In section 8 a 
model is presented to account for the acceleration of 
relativistic electrons during storms, based on numerical 
solutions for the diffusion curves and available infor- 
mation on storm time wave characteristics. The main 

conclusions of this study are summarized in section 9. 

2. Resonant Diffusion Curves 

Gendrin [1968, 1981] and Gendrin and Roux [1980] 
have provided a detailed analysis of resonant charged- 
particle diffusion and its relationship with wave growth 
and damping, although the theory was developed only 
for a nonrelativistic plasma. More recently, Walker 
[1993] has considered resonant diffusion including rel- 
ativistic effects, but his analysis was restricted to the 
case of a single-wave characteristic associated with a 
wave of a particular frequency. In this section we de- 
velop the differential equation for the curves in (Vll , vñ) 
space along which the resonant particles diffuse under 
the influence of a broad spectrum of electromagnetic 
waves. The parallel and perpendicular suffixes denote 
directions parallel and perpendicular to a given ambi- 
ent magnetic field. Following Walker [1993], we note 

! 

that in a frame (vii , vñ) moving with the phase velocity 
of the wave (the "wave frame"), the relativistic kinetic 
energy of the resonant particle is conserved, that is, 

! ! ! 

VlldVll + vñdvñ - O. (1) 
For frames moving with a relative velocity Upn, the 
wave phase velocity along the magnetic field, the Lorenz 
transformation is 

vii - Uph 
__ 

vii - [1 -- VllUph/C2 ] ' 

2 /C211/2 , [1 - vñ 
: (2) 

[1 - VllUph/C2 ] ' 

where c is the speed of light. Substitution of (2) into 
(1) leads, after some manipulation, to the result, 

[1 VllUph c2 ]vñdvñ + [vii- Upn + Up'V2[ ]dv I - 0 (3) 
Equation (3) is the differential equation for the res- 

onant diffusion curves in the (vii,vñ) plane, taking 
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full account of relativistic effects. By formally setting 
c -4 oo, the well-known nonrelativistic result is recov- 
ered, namely, 

+ [11- = 0. 
In the derivation of (3), it has been implicitly assumed 
that uph/c < l, and this restriction will be retained 
for the remainder of this paper. However, it should 
be noted that the result for a single-wave character- 
istic was shown by Walker [1993] to be valid for ar- 
bitrary values of the phase velocity Uph. It is conve- 
nient to measure all velocities in units of c, so we write 

Vll/C -4 Vll,Vñ/C -• vñ, and Upn/C -• u; equation (3) 
then assumes the dimensionless form, 

- + + - 0. (,) 
In general, u is a function of wave fi'equency and so 

integration of (5) is nontrivial. In the special case that 
u = const: u0, (5) can be integrated to recover the 
form of the single-wave characteristic given by Walker 
[1993], namely, 

where v0 is a constant of integration. For given values 
of u0 and v0 (with u0 < 1 and v0 < 1), (6) in general 

lnps with (11- 
u•v'•), vñ -- 0); the major axis is parallel to the vñ axis 
and the minor axis is coincident with the vii axis. More 
precisely, the required diffusion curve is the semiellipse 
portion of (6) in the upper half-plane (vñ _> 0). Thus 
(5) may be interpreted geometrically as requiring a res- 
onant particle to move in the (vii , vñ) plane along a 
diffusion curve, every point of which is tangential to 
some single-wave characteristic ellipse of the form (6). 

3. Resonance Conditions 

In the kinetic theory of wave-particle interaction in a 
relativistic plasma, the general resonance condition is 

where v -- (v• + v•_)i/2 is the particle velocity, w is the 
wave frequency, k is the wave number in the direction of 
propagation, n (= 0, +l, +2, ...) is an integer denoting 
the cyclotron harmonic, and f• = %Bo/(m•c) is the 
particle gyrofrequency with q• the particle charge (in- 
cluding sign), m• is the particle rest mass, and B0 is the 
magnetic field strength. For electron interaction with 
electromagnetic R mode and L mode waves propagat- 
ing parallel to the magnetic field, only the first-order 
(n: +1) cyclotron resonance can occur, and (7) be- 
comes 

where the plus and minus signs refer to the R and L 
modes, respectively, and li2el = eBo/(meC), where e 
is the electron charge and me the electron rest mass. 
For resonance with R mode waves, it is convenient to 
normalize the wave frequency in units of li2el, so we set 
•/l•el-• • and write (8) as 

For resonance with L mode waves, we similarly set 
•/f•i -• w, where f•i = eBo/(rapC), with rap the proton 
rest mass; (8) may then be written as 

_ i (i - - + i] (io) 

where 
For fixed values of w and u the dimensionless forms of 

the resonance conditions (9) or (10) are represented by 
semiellipses in the upper half-plane (vñ >_ 0). For the R 
nlode resonance the center is (vii -- uw2/(u 2 q-W2), Vñ -- 
0); and for the L mode the center is (vii - •20•2/(•2 
•2W2), V_l_ : 0). In both cases, the major axis is parallel 
to the vñ axis and the minor axis is coincident with the 
vii axis. Also, in both cases, the semiellipses meet the 
light semi-circle (v 2 = 1,vñ > 0) tangentially at the 
point (vii - u,vñ - (1 - u2)i/2). 

4. Wave Dispersion Relations 

The standard cold plasma dispersion relations in an 
electron-proton plasma for parallel-propagating electro- 
magnetic waves are given by [e.g., Stix, 1962; Swanson, 
1989], 

C2}d 2 2 2 = 1 - •pe OJPi (11) 

where the upper sign combination refers to the R mode 
and the lower one to the L mode, Wp• - (47rNoe2/rae) •/2 
is the electron plasma frequency, Wpi - (4•Noe2/mp) •/2 
is the proton plasma frequency, and N0 is the elec- 
tron/proton number density. By using the aforemen- 
tioned dimensionless variables, the R mode dispersion 
relation can be written 

u2: c•(1 - •)(• + •) (12) 
c•(1 - •)(• + •) + 1 + • 

and the L mode dispersion relation is 

•2 = oz•(1 + •)(1 - w) (13) 
oz•(1 + •)(1 - •) + I + • 

where the nondimensional parameter 

•p2 e rae C2 
has been introduced; V3 is the Alfv•n speed given by 
V• - Bo2/(47rNorap). Throughout the remainder of this 
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paper w is used to denote w/f•e for the R mode and 
w/f•i for the L mode. 

Useful approximate forms of (12) and (13) are 

u 2 -- o•w(1 - w) (15) 

respectively. Equation (15) is the standard whistler 
mode dispersion relation, valid for R mode waves in the 
frequency range e << w < l, obtained by omitting the 
first term (the one) and the last term (due to ions) on 
the right-hand side of (11). Equation (16) is the Alfv6n 
wave dispersion relation, which is approximately valid 
for L mode waves with frequencies below the proton 
gyrofrequency f•i in a single-ion plasma. 

The case of electromagnetic L mode waves in a multi- 
ion plasma, specifically a plasma containing both he- 
lium and oxygen ions in addition to hydrogen ions, is of 
more general interest. The relevant dispersion relation 
is 

where the suffix œ denotes the ion species; the values 
œ - 1,2, 3 refer to hydrogen (H+), helium (He+), and 
oxygen (O+), respectively. Here Wpl- (4•rNeq•/vte) 1/2 
is the ion plasma frequency and • = qeB0/(mec) 
is the ion gyrofrequency, with ql = q2 = q3 = e, 
ml : top, ?•2 : 4top, and ??%3 = 16top. Charge neu- 
trality requires that N1 + N• + N3 = No, where No 
is the electron number density. Equation (17) can be 
expressed in the dimensionless form 

1 1 1 T]i /']2 /']3 
u2 =1--- (• q- q t ) o•ew l+ew w-1 4w-1 16w-1 

(18) 
where the fractional composition of the ion species in 
the plasma, •1 - N1/No, r•= - N=/No, and •3 = 
Na/No, is such that r/• + r/= + r/3 - 1. It is convenient 
to rewrite (18) in the form 

u2 _ aeP - aeP + pxw • + p2w q- P3 ' (19) 
where 

P- (1 + ew)(1- w)(4o:- 1)(160:- l) (20) 

Pl: 64 + e(64r]1 + 16r]2 q- 4r]3), 

p•. = --84 + (64- 20e)Vl + (16 -- 17e)Vx + (4- 5e)V3, 
P3 = 21 q- e -- (20•]1 q- 17•]2 q- 5U3). (21) 

In the special case that •1: 1 and V2 = V3 = O, the dis- 
persion relation (19) reduces to the single-ion relation 
(13). 

5. Analysis 

A principal objective of this study is to determine 
the curves in the plasma frame (vii , vñ) along which the 
electrons diffuse under the influence of resonant scatter- 

ing by electromagnetic R mode and L mode waves. This 
requires a solution of the diffusion equation (5) together 
•vith a resonance condition (equation (9) or (10)), sub- 
ject to a specified dispersion relation u(w). A solution 
vii = Vll(C•), vñ: vñ (w) of such a system will be sought 
in parametric form with the (dimensionless) frequency 
c• as the parameter. By rewriting the diffusion equation 

d dVll 
(1 - ) - + , 

where u - u(w), the resonance condition (9) (or (10)) 
can be solved for v•_ and used in (22) to obtain the 
following equation that involves vii only: 

dvl[ = (1- UVl-- I )[vii du _ (vii-u)}. (23) 5(2 1--U 2 U did w 

Since u is a specified function of w, given by a dispersion 
equation from section 4, (23) determines vii - vii(u9 ) 
completely, subject to appropriate boundary/initial con- 
ditions. Equation (23) is itself valid for both R and L 
mode resonance scattering. The corresponding solution 
for vñ - vñ (co) is given by 

co 2 

Vñ -- [1 -- V• -- •-•' (VII- Tt)2] 1/2 
for R nlode waves, using (9), and by 

(24) 

½2C•2 
Vñ -- [1 -- V• (VII- T/,)2] 1/2 (25) ,//,2 

for L mode waves, using (10). 
It is useful to express (23) in the form 

: + q()11 + 
where 

(26) 

p(o:) -- (1 u 2) (-- ) ' -- 03 dO3 

q(w) - 1 (1 du u 2 1) , 
(1 - u 2) u do: w w 

r(•) •(1 - u 2) ' (27) 

Equation (26) can be recognized as a well-known non- 
linear differential equation, the Riccati equation, which 
may be solved "completely" if a particular solution is 
known. By inspection, it can be seen that vii = u is a 
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particular solution of (26). Proceeding with the stan- 
dard method of solution [e.g., Ince, 1944], we substitute 

1 

"1 - + V 
into (26) to obtain a linear equation for the function 
Y(•), namely, 

d 

d-• (g(•)V)--g(•)p(•), (29) 
where 

g(co) - ef (2p•'+q)d•. (30) 
By using the expressions for p and q from (27), the 
function g can be evaluated explicitly as 

g(w) - u(1 - u2)•/2/•. (31) 
Equation (29) can be easily solved for W - (vii- u) -1 
in the form 

g(co)V - K- f (co), 

where K is a constant of integration and 

(32) 

. f u2{1 • •u u d• (33) f(co) - g(co)p(co)dco -- •2(1 _ it2)1/2 
Finally, from (32) the solution for vii can be written 

- + _ ß (34) 
Solution (34) is valid for an arbitrarily specified phase- 

speed function u(•); g is given by (31) and f by the in- 
tegral (33). As noted above, the corresponding solution 
for vi is then obtained from (24) for the R mode, and 
from (25) for the L mode. We determine the constant 
K by applying the boundary condition vii = Vile, vz = 0 
at the frequency • = •, where • is a chosen value in 
the range 0 < • < 1. Hence, from (34), we obtain 

= , 
Vile - Uc 

where u• = u(•). From the R mode resonance condi- 
tion (24), it follows that 

to one involving a single quadrature. In cases where 
the integral (33) can be evaluated in closed form, the 
diffusion curve can be calculated explicitly in analytical 
form. When the integral (33) is difficult or impossible 
to evaluate in closed form, this integral can always be 
evaluated by a technique of numerical quadrature. Al- 
ternatively, the differential equation (23) for vii can in 
all cases be directly integrated numerically, subject, say, 
to the initial condition vii =V[]c at • = •c. 

Corresponding to both the simplified R mode disper- 
sion relation (15) and the simplified L mode dispersion 
relation (16), the integral (33) and hence the function 
f(•:) is readily evaluated; the functions f and g for the 
R mode (equation (15)) are given by 

c• log•. ({2 -c• 4- 211 - c•(1 -•)]•/•}/(2•)), f(•) - -• 
(38) 

g(cv) - {c•(1 - co)J1 - c•cv(1 - co)I/co} •/•, 

while for the L mode (equation (16)) they are 

(39) 

f(•) -(c•e)•/• ([(1 + a2)/(2a3)] 
log•{[(• + a2) •/2 -]- a]•/•v) - (•v + a2)•/2/(a2ca)), (40) 

g(cv) - {ae(1 - co)[1 - ae(1 - (4•) 

where a = 1/(c•e) - 1. The R mode solution correspond- 
ing to (38)-(39) is valid for c• < 4, while the L mode 
solution corresponding to (40)-(41) is valid for •e < 1. 
These restrictions relate directly to the condition u < 1. 

Evaluation of f(•) for both the "full" (single-ion) R 
mode and L mode dispersion relations (12) and (13) 
is also straightforward, though tedious. Explicit forms 
for the functions f and g corresponding to each of the 
"full" dispersion equations (12) and (13) are presented 
in Appendix A. For the more general multi-ion disper- 
sion relation (19), evaluation of the integral (33) is im, 
prudent. In this case, we solve the differential equation 
(23) numerically for vll(•); the explicit form of (23) 
corresponding to the dispersion relation (19) is given in 
Appendix B. 

2 2 1/2) u•{cv• -[u• 4 + (cv• + u•)(1 - u•)] (36) = + 
(and it can be shown here that vii c < 0 always), while 
from the L mode resonance condition (25) it follows that 

+ + + - 
vii c = (e2COc 2 + Uc2) (37) 

(and clearly vii c > 0 in this case). 
The problem of finding the resonant diffusion curve 

for an arbitrary function u(•o) has thus been reduced 

6. Nonrelativistic Theory 

For completeness, and also for comparison with the 
foregoing relativistic theory, we include a brief account 
of the determination of nonrelativistic resonant diffu- 

sion curves. In dimensionless form, the nonrelativistic 
diffusion equation (4) is 

vñdvñ + (vii - u)dVll - O . (42) 
If the wave phase velocity is a constant, u - u0, (42) 
has the integral 

v•_ + (vii- u0) 2 - const. (43) 
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Thus the single-wave characteristics are circles, centered 
at (vii ---- u0, vñ ---- 0) [e.g., see Kennel and Engelmann, 
1966; Cendrin, 19681. However, in general, the phase 
velocity u is dependent on frequency, and so (42) must 
be integrated in conjunction with an attendant disper- 
sion equation and a resonance condition. The R mode 
and L mode resonance conditions, corresponding to the 
non-relativistic versions of (9) and (10), are, 

vii--u( 1 - 1) (44) 

(53) 

while for the simplified L mode dispersion relation (16), 
we find 

F(•) - •[(• - •)/(•) - •og• •], (55) 

(56) 

vll u( 1 - -- + •). (4•) 

respectively. Accordingly, (42) must be solved simulta- 
neously with either condition (44) or (45) and an ap- 
propriate dispersion relation (such as given in section 
4). The nonrelativistic case is much simpler to analyze 
than the relativistic case. Following Genclrin [1968], we 
express (42) in the form 

••ñ + (•- •)•(•- •,) + (•- •)• - o. (46) 

Eliminating (v•- u) in the last term of (46) by use of 
(44) or (45) yields 

for the R lnode interaction and 

(47) 

(48) 

for the L mode interaction. Finally, (47) and (48) can 
be integrated to obtain the results 

tt 2 1/2 'UI -- (constant + 9, tt dtt- ) (49) 

u 2 1/2 V_L --(constant 2 ',,_z du ) (50) •. oy f20y2 ' 

respectively. Thus, for any specified function u(co), the 
desired solution for vii and vñ in parametric form is 
given by (44)and (49) fbr the R mode, and by (45) 
and (50) fbr the L mode. By applying the boundary 
condition vñ (c•) = 0, where c•. is a chosen fi'equency, 
both R mode and L mode solutions can be written in 

the form 

V_L --[F(C•c)- F(c•)] 1/2, (51) 

where the functions F and G are defined from (44), 
(45), (49), and (50). Corresponding to the simplified R 
mode dispersion relation (15), we find that 

The forms of the functions F and G corresponding to 
the "full" single-ion dispersion relations (12) and (13) 
are given in Appendix C. For cases in which the func- 
tion u is such that the integral in (49) o1' (50) is very 
tedious to evaluate analytically, this integral can also 
be evaluated by numerical quadrature. Alternatively, 
the substitution of (44) or (45) in (42) yields equations 
for vñ for the R mode and L mode, 

• ' 2• (x-•) •(•a) (,7) •(v2•)- •s - •2 • ' 

• (•[) 2• -(•+•) •(•) do9 •2093 •2092 doJ ' 

respectively. Equations (57) and (58) can be readily in- 
tegrated numerically, subject to appropriate boundary 
conditions and chosen dispersion relations. 

It is pertinent to note here that in a recent paper 
by Thorne and Horne [1996] an error was made in the 
calculation of the resonant diffusion curves in the non- 

relativistic case (see their section 3). By an oversight, 
the equation of diffusion in the integral form (our (43)) 
was used by Thorne and Horne [1996] rather than the 
appropriate differential form (our equation (42)). Thus 
the analytical solution (5) given by Thorne and Horne 
[1996], as well as the diffusion curves shown in their 
Figure 2, are incorrect. Since the case considered by 
Thorne and Horne [1996] involves the whistler disper- 
•iol• •q•tio. (their (3) •.d o•r (X•)), th• •or•'•a •o•u- 
tion is given by our (51)--(54). Correct solution curves 
for the nom'elativistic case are presented below. 

7. Numerical Solutions 

The resonant diffusion curves in a relativistic plasma 
(as well as in a nonrelativistic plasma) are uniquely 

2 2 
characterized by the parameter a - ft•/c•p• and the 
ion composition. Representative values of a have been 
adopted to illustrate the range of diffusion curves pos- 
sible for the case of resonant scattering by R mode and 
L mode waves. Typically, near the equatorial plane in- 
side the Earth's high-density plasmasphere, 10 -2 _< a _< 
10 -• while outside the plasmapause a > 0.25 In the 
low-density auroral cavity at high altitudes, a > 10. 
The results presented here are therefore restricted to 
the range 10-2 _< a <_ 10. 
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7.1. R Mode Waves 

Examples of the resonance ellipse (9) for the domi- 
nant first-order (n- -1) cyclotron resonance between 
relativistic electrons and R mode waves, described by 
the cold plasma dispersion relation (12), are shown in 
Figure 1. In each panel the resonance condition is shown 
for five distinct frequencies, 0.1 _• ca/f•. _• 0.9. The 
parameter c•, which determines the wave phase speed, 
leads to a significant change in resonant energy in the 
progression from a higher-density region (Figure la) to 
a lower density region (Figure lc). All curves meet the 
light curve (v 2 - 1) when vii -u(ca). In contrast to 
the nonrelativistic approximation (44), where vii < 0, 
relativistic mass corrections to the resonance condition 

allow cyclotron resonant scattering over a sizable do- 
main in velocity space with vii > 0, especially for the 
case with c• > 1. 

The corresponding diffusion curves, along which elec- 
trons are constrained to move during resonant scat- 

,, ,." ß '• /o o..[- o/'"'• .... " ," / .... 
_...'"" .,' '", 

o.•L .//.'- / ,' /o' '"• 
I- //•' •"" ._,' /4/ •- , "x 

?: /$-' \ 0,4 : : ' 
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Fi/ / / / 
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Figure 1. Resonant ellipses for first-order cyclotron 
resonant interaction between relativistic electrons and 

whistler mode waves as given by (9). Results are shown 
for five distinct wave frequencies and for three different 
locations characterized by the ratio •/1•1: (•) 0.01, 
(b) 1, and (c) 10. 
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Figure 2. (leii) Relativistic resonant diffusion curves 
for electron cyclotron resonant interaction with whistler 
mode waves in a moderately high density plasma. 
(right) Profiles of the resonant energy (in MeV) along 
each diffusion curve. 

tering by R mode waves, are illustrated in Figure 2 
for the case of a relatively high plasma density with 
c• < 1. These curves are constructed using the ex- 
act analytical solution given in Appendix A for the 
case of R mode waves in a cold single-ion plasma us- 
ing the dispersion relation (12). The panels on the 
left show the diffusion curves in velocity space, while 
those on the right show the change in kinetic energy, 
E/• = ("7 1)mec 2, measured in MeV, as a function of 
the normalized resonant wave frequency ca/[f•e[ along 
each curve. This pair of plots is constructed for three 
distinct values of c•. For the highest plasma density 
shown (a = 0.01, cap• = 10[f•l) , there is relatively little 
change in the value of E• along each diffusion curve for 
resonant energies E• > 100 keV. Modest energy diffu- 
sion could occur at lower energy during scattering to- 
ward pitch angles (arctan(vñ/Vll)) near 90 ø because of 
cyclotron resonance with whistler mode waves for fre- 
quencies ca/[f•e[ > 0.1. As the thermal plasma density 
is decreased, the potential for substantial energy diffu- 
sion increases. For c• = 0.1, there is modest change in 
energy along each diffusion curve; this change is more 
pronounced for electron energies near 100 keV which 
resonate with whistler mode waves near a few tenths 

of the electron gyrofrequency. When c• = 0.3, the ef- 
fects of significant energy diffusion extends to relativis- 
tic energies (E• • 1 MeV). This allows whistler mode 
waves with frequencies ca/[f•[ >_ 0.1 to contribute to the 
stochastic acceleration of electrons in the high-energy 
tail of the plasma population. 

As noted by Gendrin [1968], the diffusion curves in 
velocity space (left panels) demarcate the contours of 
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constant phase space density for marginal stability with 
respect to whistler mode waves. For any prescribed 
value of c•, there is a natural tendency for the marginally 
stable distribution to become more anisotropic at lower 
energy. The injection of anisotropic medium energy 
electrons (10-100 keV) into the outer radiation zone 
during storm time conditions can lead to the excita- 
tion of intense whistler mode emissions [Tsurutani and 
Smith, 19771 . Because of propagation effects in the non- 
uniform magnetospheric plane, these waves can subse- 
quently interact with higher-energy electrons under dif- 
ferent magnetospheric conditions. If the high-energy 
population is initially isotropic, resonant diffusion will 
proceed toward 90 ø pitch-angle, thereby resulting in 
stochastic electron acceleration and concomitant wave 

attenuation. This mechanism provides a natural pro- 
tess ibr channeling energy from the storm time ring 
current population (10-100 keV), which originates from 
enhanced convective activity, into the high-energy tail 
of the electron distribution. 

The region exterior to the plasmapause is character- 
ized by low plasma density (• _> 1), particularly at night 
and at higher geomagnetic latitudes. When wve < [f•e, 
electromagnetic R mode waves occur in three distinct 
branches, each with different propagation characteris- 
tics [e.g., Horne and Thorne, 1998]. These branches 
are the guided whistler mode with w < wpe, the un- 
guided Z mode with wv•. _< w _< {f•e[, and the free- 
space RX mode with w > f•l. The RX mode, which 
is subject to cyclotron maser instability in the auro- 
ral cavity [e.g., Wu and Lee, 1979], has a phase speed 
uvh > c and consequently will not be considered here. 
For strictly parallel propagation, the dispersive proper- 
ties of the R mode whistler and Z mode branches merge 
smoothly at the plasma frequency. The distinct nature 
of these two modes is only apparent for oblique prop- 
agation. Solutions for the resonant diffusion curves for 
these two modes are shown in Figure 3. As a result of 
the larger Alfv6n speed, cyclotron resonant energies are 
much larger than for the case when • < 1. Resonant ve- 
locity curves tend to be close to the light semicircle, and 
it is therefore more useful to show solutions for the diffu- 

sion curves in momentum space (left panels). For • - 1 
(Figure 3c) the results continue the trend shown in Fig- 
ure 2. The lower densities lead to a larger change in 
energy along each diffusion curve, particularly over the 
range between 100 keV and 1 MeV. When c• - 3 (Figure 
3b) the potential for stochastic acceleration extends well 
into the highly relativistic regime (Ek > 1 MeV). There 
is a smooth transition between the whistler mode and Z 

mode at w/f•l • 0.58. The whistler mode < 
0.58) should be particularly effective in the stochastic 
acceleration of electrons over the energy range between 
100 keV and a few MeV. The resonant diffusion curves 

exhibit a sharp cusp, which leads to a maximum energy 
along each diffusion curve (right panels); this severely 
limits the potential for further acceleration by the Z 
mode branch. It is also doubtful whether this branch 
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Figure 3. (left) Relativistic resonant diffusion curves 
in momentum space for electron cyclotron resonance 
with R mode waves in a low-density plasma. (right) 
Profiles of the resonant energy (in MeV) along each dif- 
fission curve. In this case, the change in energy along 
each diffusion curve can be considerable. 

could be excited in the outer magnetosphere during a 
storm. At even lower plasma density (a = 10), res- 
onance with the whistler mode branch is restricted to 

energies above 400 keV. The Z mode, which occurs for 
fi'equencies w,/If• [ > 0.aa, og•rs the possibility of dec- 
tron acceleration over the important energy range be- 
tween 100 keV and a few MeV. However, the source for 
the excitation of such waves needs to be identified. 

7.2. L Mode Waves 

The dispersive properties of electromagnetic ion cy- 
clotron (EMIC) waves are strongly influenced by the 
composition of the plasma. In the present study, we 
adopt the ion composition given by •n+ - 0.77, •1•+ = 
0.20, •o+ - 0.03 in the dispersion relation (19) [e.g., 
Kozyra et al., 1984]. Equation (23) is then solved 
numerically to obtain the resonant electron diffusion 
curves. The results for the case of a high-density 
plasma, characteristic of the outer plasmasphere (c• - 
0.01), are shown in Figure 4. In order to resonate with L 
mode waves, electrons must overtake the wave (vii > u) 
with sufficient velocity to Doppler-shift the wave fre- 
quency (w < f•n+) up to f•/7. The large Doppler- 
shift requires resonant velocities close to the speed of 
light. EMIC waves, as given by the dispersion rela- 
tion (19) could, in principle, occur in three distinct fi'e- 
quency bands, but the waves observed in the Earth's 
high density plasmasphere preferentially occur in the 

band f•o+ -< co _< f•H•+ [Anderson et al., 1992]. Reso- 
nant electron energies associated with such waves (Fig- 
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Figure 4. (left) Relativistic resonant diffusion curves 
for electron cyclotron resonant interaction with L mode 
EMIC waves in a high-density plasma. (right) Profiles 
of the resonant energy (in MeV) along each diffusion 
curve. Here changes in resonant energy are insignificant 
along each diffusion curve. 

ure 4, right) are typically above 1 MeV, and there is very 
little energy change along the diffusion curves. Conse- 
quently, there will be little energy diffusion to accom- 
pany the rapid pitch angle scattering [Thorne and Ken- 
nel, 1971; Lyons and Thorne, 1972] associated with the 
large power spectral density of EMIC waves. The reso- 
nant diffusion curves in momentum space and the asso- 
ciated changes in electron energy for the case of a lower- 
density plasma (outside the plasmasphere) with a = 1.0 
are shown in Figure 5. Apart from an overall increase in 
the resonant energies for each EMIC wave branch, the 
results are similar to those in Figure 4. There is virtu- 
ally no energy change along the diffusion curves. Such 
waves therefore appear to be ineffective as a mechanism 
for stochastic acceleration anywhere within the Earth's 
magnetosphere. 

7.3. Nonrelativistic Case 

Diffusion curves for nonrelativistic electrons interact- 

ing with R mode waves in an electron-proton plasma 
are shown in Figure 6. These curves are constructed 
f'on alyticl solutions 
results of Appendix C and the cold plasma R mode 
dispersion relation (12). The results are shown for 
a relatively high-density plasma (c• : 0.01) to en- 

sure that the scaling energy for resonant interaction, 
E•4 - B•/(8•rNo) - aE0/2, is well below the electron 
rest-mass energy E0 = mec 2. For this choice of a, the 
nonrelativistic solutions obtained are essentially identi- 
cal to the exact relativistic results presented above. Ve- 
locities along each diffusion curve (Figure 6a) have been 
normalized to the scaling velocity v• = (2E•/me) 1/2 
The change in energy (normalized to E• • 2.5 keV) 
along each curve is shown in Figure 6b. Significant 
energy change occurs only for E < E• during reso- 
nant interaction with relatively high-fi'equency whistler 
.ode wves > 0.4). The absorption of such 
high frequency whistlers can cause significant energiza- 
tion, leading to an anisotropic distribution of suprather- 
mal ( < 1 keV) electrons (with peak flux near 90 ø pitch 
angle), as discussed by Thorne and Horne [1996]. 

The diffusion curves shown in Figure 6a also repre- 
sent the marginally stable contours of electron phase 
space density [e.g., Gendrin, 1981]. These curves show 
slightly less anisotropy than the solutions presented by 
Thorne and Horne [1996] because of the erroneous as- 
sumption made in their analysis, as discussed in section 
6. For larger values of a(>_ 0.1), the nonrelativistic ap- 
proximation becomes invalid, and the solutions given by 
(51) and (52) are significantly different from the exact 
relativistic solutions discussed in section 7.1. 
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Figure 5. (left) Diffusion curves as in Figure 4, but for 
a lower-density plasma. (right) Profiles of the resonant 
energy along each diffusion curve. Resonant energies 
(in MeV) are higher than in Figure 4, and there is little 
energy change along each diffusion curve. 
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8. A Model for Stochastic Acceleration 

of Relativistic Electrons During 
Geomagnetic Storms 

Enhanced convection electric fields provide the prin- 
cipal mechanism for the intensification of ring current 
(10-100 keV) flux during geomagnetic storms [Lyons 
and Williams, 1980; Chen et al., 1994]. Inward con- 
vection also leads to an anisotropic distribution of the 
ring current ions and electrons which provides a source 
of flee energy for the excitation of both EMIC waves 
[Kozyra et al., 1997] and whistler mode waves respec- 
tively. The power spectral density of such waves is 
therefore enhanced considerably during a storm. Figure 
7 provides a schematic description of the spatial region 
where enhanced levels of both EMIC waves and whistler 

mode chorus occur during a storm. EMIC waves are 
preferentially excited along the duskside plasmapause 
[Jordanova et al, 1997; Kozyra et al., 1997] by the con- 
vective injection of ring current H + The zone of most 
intense wave activity is spatially localized because of 
the decrease in resonant energy [Cornwall et al., 1970; 
Perraut et al., 1976] and wave guiding by strong den- 
sity gradients [Thorne and Horne, 1996] associated with 
the plasmapause. Typical storm time EMIC wave am- 
plitudes are in the range 1-10 nT lB. J. Anderson, 
private communication, 1998]. Whistler mode chorus 
emissions with frequencies c0/[•2e[ = 0.1 - 0.7 can be 

excited by cyclotron resonance with anisotropic 10-100- 
keV electrons over a broad range of local times (2200- 
0900 magnetic local time (MLT)) in the region exterior 
to the storm time plasmapause [Tsurutani and Smith, 
1974, 1977; Koons and Roeder, 1990; Parrot and Gaye, 
1994]. Typical "chorus" wave amplitudes are in the 
range 10-100 pT, but occasionally the wave amplitude 
approaches Bw = 1 nT [Parrot and Gaye, 1994]. Rel- 
ativistic electrons (Ek > 1 MeV) have approximately 
circular drift paths which, for L m 4 to L m 5, tra- 
verse the zone of chorus emission from 2200 to 0900 

MLT and also pass briefly through the duskside region 
of intense EMIC waves. The drift time for I MeV elec- 

trons near L - 4.5 is approximately 14 min. Such 
electrons have the potential to interact with whistler 
]node chorus for over 50% of their orbit, but only a 
few percent of the orbit lies within the zone of intense 
EMIC waves. The timescale for strong diffusion scat- 
tering loss, T. SD m TS/3a• (where rs is the bounce 
time and aœ is the loss cone size), is approximately 1 
rain for I MeV electrons at L - 4.5. Wave amplitudes 
required for strong diffusion scattering of 1 MeV dec- 
trons at this location are approximately BSD = 750 pT 
[Thorne, 1983]. The average amplitudes of outer zone 
chorus emissions are usually well below this, resulting 
in weak diffusion scattering. In contrast, EMIC waves 
normally have amplitudes B•, > BSD, but such waves 
are only present in a limited region near dusk. Conse- 
quently, the electron loss should occur gradually over 
many drift orbits. 

On the basis of the diffusion curves presented in sec- 
tion 7 and observational information on wave activity 
(Figure 7), we propose the following model for the vari- 
ation of relativistic electron flux during storms. 

8.1. Main Phase Flux Depletion 

During the main phase of a storm, intense EMIC 
waves are excited along the duskside plasmapause as 
a result of cyclotron resonance with anisotropic ring 
current H + ions [Kozyra et al., 1997]. These waves 
(',an cause rapid pitch angle scattering of trapped ( > 1 
MeV) electrons [Thorne and Kennel, 1971; Lyons and 
Thorne, 19721; this scattering should contribute to the 
main phase depletion of relativistic electrons through- 
out the outer zone. Even though the intensity of storm 
time EMIC waves is above the level required •br strong 
diffusion scattering, the limited spatial region of scatter- 
ing should result in a loss time in excess of one hour. Li 
et al. [1997a] have shown that although the main phase 
depletion can partially be explained as an adiabatic re- 
sponse to ambient magnetic field change, additional loss 
is required to account for observed changes. 

8.2. Recovery Phase Electron Acceleration 

Substorm activity during the storm recovery can ex- 
cite chorus emissions in the outer magnetosphere and 
also can maintain modest levels of EMIC waves inside 
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Figure 7. Schematic diagram showing spatial distribution of whistler mode chorus and EMIC 
waves during magnetic storms in relation to the position of the plasmapause and the drift paths 
of ring current (10-100 keV) electrons ancl ions and relativistic (> 1 MeV) electrons. 

the plasmapause. Relativistic outel' zone electrons can 
interact with both classes of waves leading to cliffu- 
sion in pitch angle and energy. The diffusion curves 
presented in section 7 are given for a prescribed set 
of plasma parameters corresponding to particular spa- 
tial locations. However, electromagnetic waves in the 
magnetosphere readily propagate from their source of 
origin to other locations where plasma conditions can 
be quite different [e.g., Horne and Thorne, 1993, 1994; 
Thor•e and Hor•e, 1996]. This allows the waves to 
interact resonantly with electrons over a broad energy 
range along the ray trajectory. A complete treatment 
of the consequences of resonant scattering requires a 
bounce-averaged analysis of diffusion over the motion 
of geomagnetically trapped electrons [e.g., Lyons et al., 
1972; Abel and Thorne, 1998]. Such a treatment is be- 
yond the scope of the present study, which is directed 
toward the identification of the wave modes (and their 
location in the magnetosphere) that have the potential 
for producing substantial stochastic electron accelera- 
tion. 

The most significant electron energy diffusion occurs 
during resonant interactions with whistler mode waves 
in regions of relatively low plasma density (c• > 1.0) 
(Figure 3). Resonant .electrons diffuse in velocity space 
until the contours of phase space density lie along the 
diffusion surfaces [Gendrin, 1968]. Wave-particle scat- 
tering produces a relativistic electron population with 
a "pancake" distribution (namely a distribution peaked 
at pitch angles near 90 ø ) as the flux recovers following 
a storm; this anisotropic distribution is consistent with 

observations [e.g., Ingraham et al., 1996]. Pitch angle 
scattering by EMIC waves tends to reduce the resonant 
electron anisotropy while conserving the electron energy 
(Figure 4). The scattering by EMIC waves near the 
duskside plasmapause (Figure 7) could be important 
since it would maintain an electron distribution which is 

more isotropic than that associated with resonant diffu- 
sion during electron-whistler interactions (Figures 2 and 
3). Subsequent interaction with whistler mode chorus 
in the region outside the plasmapause would therefbre 
cause further diffusion of relativistic electrons toward 

pitch angles near 90 ø and lead to additional electron 
acceleration. We suggest that a combination of energy 
diffusion by cyclotron-resonant absorption of whistlers 
together with pitch angle scattering by EMIC waves 
could provide a viable mechanism to account for the 
stochastic acceleration of electrons from energies near 
a few 100 keV to relativistic energies > 1 MeV over a 
period of a. few days during the storm recovery. The 
rate of electron acceleration is primarily controlled by 
the average power spectral density of available whistler 
mode waves. Detailed bounce-averaged calculations of 
the rate of scattering are required in order to determine 
whether the suggested model could account for the ob- 
served electron acceleration during the recovery phase 
of a storm. 

9. Conclusions 

Diffusion curves for resonant electron interactions 

with field-aligned electromagnetic waves have been con- 
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structed for a range of plasma parameters representa- 
tive of the storm time magnetosphere. Analytical so- 
lutions for the diffusion curves have been obtained for 

the idealized case of a single-ion cold plasma. A numer- 
ical method has been used for the more general case 
of a multi-ion plasma, and the numerical results are 
found to be identical to the analytical solution for the 
case of a single-ion plasma. This provides an impor- 
tant test of the accuracy of the numerical method, and 
gives reassurance that the method can be extended to 
treat situations where the wave dispersion relation is 
more complex (e.g., where the plasma is treated as hot, 
or where oblique wave propagation and other harmonic 
resonances need to be considered). 

Our principal conclusions are as follows: 
1. Significant electron energy diffusion can occur, 

leading to a "pancake" pitch angle distribution during 
resonant interactions with whistler mode waves. The 

potential for energization is most pronounced in regions 
of relatively low plasma density (c• > 1.0). 

2. EMIC (L mode) waves are also able to resonate 
with electrons in the energy range above 1 MeV, but the 
electron energies remain approximately constant along 
the resonant diffusion curves. Such waves could provide 
an important source of scattering loss for relativistic 
electrons during the main phase of a storm [Thorne and 
Kennel, 1971]. 

3. A combination of energy diffusion by whistler 
mode chorus and pitch angle scattering by EMIC waves 
could provide a viable mechanism to account for the 
gradual local stochastic acceleration of electrons from 
a few 100 keV to above 1 MeV in the outer magneto- 
sphere (L • 4 to L • 5) during the recovery phase of a 
storm. Detailed calculations including bounce-averaged 
rates of diffusion are required to establish the timescale 
for this process. 

Appendix A: Explicit Forms for f(w) and 
g(w) Appearing in Solution (34) 
A1. R Mode (Dispersion Relation (12)) 

f(w) - cI{A1 sin-•( w - b•) 
al 

loge 

(B1 - C1)al + (B1 -+- C1)(O2 -- bl) 
[al 2 -- (a] -- bl)211/2 

[Dl(a21 -- b21) -- J•lbl] 

bl (co - bl) + [al - (a• - b•)l/2]F1 
b 1(02 -- b 1) •-[a 1 -• (a• -- b21)l/2]F1 

J•l [a• - (02 - bl)2] 1/2 (A1) 

g(w) -- [o•(1 + e)(1 -w)(w + e)] •/•' 
w[o•(1 - w)(w + e) + I + e] 

(A2) 

al -- [(1 + o•e + e)/o• + (1 - e)2/4] •/2 
b I ---• (1 - 8')/2 

C1- (2a•)-1o•-1/2(1 + e) -1/2 
A1 = -2c•a•l 

B1 -- o•(al -]- bl) 2 - 2o•(1 - 8)(al -+- bl) 
+c•(1 - 4• + •2) + (1 - •)(1 + 4c• + •) 
(al -+- bl)-i/2 + e(1 + o• + e)(al q- bl)-2 

C1 = o•(al - bl) 2 + 2oz(1 -- e)(al -- bl) + oz(1 -- 4e + e 2) 
--(1 -- e)(1 + 4oze + e)(al -- bl)-1/2 
+•(1 + oz• + •)(al - bl) -2 

•1 : 2c•Ea21 

F1 -- (al -+-[a• --(W- bl)2] 1/2) 

A2. œ Mode (Dispersion Relation (la)) 

f(w) - 

1Oge 

c2{A2 sin-l( a] + b2 ) 
•2 

(/32 - C2)a2 + (/32 + (72)(0.; + b2) 

[D2(a2 2 - b2 2) + E2b2] 
(a• - 

•(• + •) - [a•. - (4 - •)•/•]a 

a2 = [(1 + oze + e)/o• + (1 - e)2/411/2/e 
b2 = (1 - e)/(2e) 

c2 -- (2a'22e2)-loz-i/2(1 + e) -1/2 
A2 - - 2as 3 a'22 

B2 = OZ• 3 (a2 -- b2 ) 2 + 2oze2 (1 - e) (a2 - b2) 
+oze(1 - 4s + s 2) - (1 - e)(1 + 4ozs + s)(a2 - b2)-1/2 
(1 q- oze -1- e)(a2 - b2) -2 
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c• - o•e•(a• + b•) • - •o•e•(1 - e)(a• + b•) 
+o•(1 - 4• + •) + (1 - •)(1 + 4o• + •)(a• + b•)-•/• 
+(1 + o• + •)(a• + b•) -• 

D2 - b2(A2 + B2 + C2) + 2c•e2a•b• -• - 2c•e3b• 

-(• - •)(1 + 4o• + •) - •(1 + o• + •)b• -• 

E2 -- 2o•e 2a• 

G(ca) - -u(1 - ca)/ca 

C2. L Mode (Dispersion Relation (13)) 

(c2) 

F'2 - {a2 + [a• - (ca + b2)2] 1/2) 

Appendix B' Explicit Form of (23) for 
the Multi-ion Dispersion Relation (19) 

We solve 

dVl l : - (1- UV•l (vii 
dw I u 2 )[VllQ + ] (B1) -- 02 

where 

Po + P• + P2 + P3 

Q -- 2ca2[ ozeP + Pl ca2 q- P2ca + P3] 

Po: (1 + 2sea)(1 -ca)(4ca - 1)(16ca - 1)(1 + eca) -1 
P] = r/l(2ca- 1)(1 + eca)(4ca- 1)(16ca- 1)(1- ca)-1 
P'2 = •72(8ca - 1)(1 + eca)(1 -ca)(16ca - 1)(4ca - 1) -1 
P3 -r/3(32ca- 1)(1 + sea)(1 -ca)(4ca- 1)(16ca- 1) -1 

and u,P, pl,p2,p3 are given by (19)-(21). 

Appendix C' Explicit Forms for the Functions F 
and G Appearing in Solution (51)-(52) 

C1. R Mode (Dispersion Relation (12)) 

F(•) 
l+e 

= ( 

+ 
(al + bl - ca) 

+ U1 loge(al - bl + ca) 
V1 U 2 

- a l-b1 +ca ] ca2 

)[R1 log• ca - Sx loge(al + bl - 

(c1) 

F(ca) 
l+e 

- ( o•ea )[_• log• • - $• log• (a• - a• - •) 
+ + U2 log,• (a• + b• + 

(a2 -- b2 -- W) 
V2 u 2 

- (a2 + b2 + ca)] e2ca 2 (C3) 

R2 - (1- e)/(a2• - b22)2a 
S2 - [(1 - e)(2a2 - b2) + 2e(a2 - b2)2]/[4aa2(a2 - b2)21 
T2 --[1- e + 2e(a2 -b2)]/[4a•(a2 -b2)] 
U2 - [2e(a2 + b2) 2 - (1 - e)(2a2 + b2)]/[4a•(a2 + b2) 2] 
V2 - [-(1 - e) + 2e(a2 + b2)]/[4a22(a2 + b2)] 

O(ca): u(1 + sca)/(sca) (C4) 

The parameters al,bl appearing in (C1) and the 
rameters a2,b2 in (C3) are as defined in Appendix A. 
The solutions given in Appendix C are similar to those 
g•v•n by a•,• • Ao• [1980] •nd a•• [1981]. 
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