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[1] Oceanic infragravity waves are investigated as a possible source of seismic free
oscillations, often referred to as the ‘‘hum’’ of the Earth, using a numerical model of
depth-independent, nondispersive, long-wave dynamics with a forcing from nonlinear
interactions among the primary wind waves (including swell). Because of near-resonant
amplification, the structure of the primary-wave forcing field in shallow water, and an
edge-trapping mechanism, infragravity waves are excited very effectively near the coasts.
Deep-water infragravity waves are significantly influenced both by offshore leakage and
propagation of the coastally generated free waves and by deep-water primary-wave
forcing. With the inclusion of ‘‘mesoscale’’ variability on top of the more slowly varying
primary waves generated in synoptic storms, the deep-water infragravity waves are found
to have an amplitude on the order of a millimeter in height, which is consistent with
field observations and considered to be sufficient to account for local hum excitation in the
middle of the basin.
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1. Introduction

[2] Seismologists have detected Earth’s hum, i.e., low-
frequency seismic free oscillations in discrete frequencies
between 2 and 7 mHz that occur even on seismically quiet
days [Nawa et al., 1998; Suda et al., 1998]. The frequencies
of the free oscillation coincide with spheroidal fundamental
modes of Earth, distinct from the microseismic noise at
frequencies peaked near 0.2 Hz. The amplitude of hum is
typically equivalent to about a magnitude 6.0 earthquake
every day [Tanimoto and Um, 1999; Ekström, 2001]. The
source of the hum must be near Earth’s surface because the
fundamental modes are all Rayleigh waves. Since the hum
occurs continuously, it cannot be explained by intermittent
large earthquakes nor by summing the contributions of
small earthquakes [Tanimoto et al., 1998]. The likely cause
is pressure fluctuations in the air or water at their bottom
solid surface. Microseisms are known to be caused by
oceanic surface wind waves (i.e., ‘‘primary’’ waves, inclu-
sive of remotely generated swell) that generate pressure
fluctuations that do not wane with depth [Longuet-Higgins,
1950]. The same mechanism is not applicable to the
generation of the much lower frequency hum. Some
researchers have speculated that atmospheric disturbances
distributed uniformly over both land and sea surface are a
possible source of hum [Kobayashi and Nishida, 1998;
Tanimoto and Um, 1999; Nishida et al., 2000; Ekström,
2001]. Recently, Rhie and Romanowicz [2004] used two

arrays of broadband seismometers in California and Japan
to detect the propagation of Rayleigh waves during 2000.
The strongest incident Rayleigh waves originate in the
Northern Pacific during the boreal winter and in the
southern ocean in the austral winter. These are sites of
especially strong storms and associated wind waves. This
implicates the mechanism of nonlinear interaction among
wind waves to generate long, low-frequency, oceanic infra-
gravity waves, rather than atmospheric pressure fluctuations
[e.g., Webb et al., 1991; Webb, 1998; Tanimoto, 2005;
Webb, 2007]. Estimating the size of seafloor pressure from
existing measurements, Tanimoto [2005] found sufficient
energy in the infragravity fluctuations to excite the observed
seismic signals. Rhie and Romanowicz [2006] extended
their earlier analysis to compare the data from the seismic
arrays with a global wave analysis and showed that one
source of hum was located along the U.S. West Coast
during the winter of 2000. They proposed that some coastal
infragravity waves locally generate bottom pressure fluctu-
ations, while others propagate long distances and generate
fluctuations throughout the basin. The resulting low-fre-
quency seismic waves propagate over the globe and con-
stitute the hum.
[3] The theory of infragravity waves shows they are

generated by nonlinear interactions among the primary
waves, have depth-independent horizontal-velocity and
pressure profiles, and propagate as nondispersive shallow-
water waves [e.g., Hasselmann, 1962; Longuet-Higgins and
Stewart, 1962;McWilliams et al., 2004]. As part of the same
interactions, modulations of primary wave height also
induce a bound or quasi-static depression of the sea level
(i.e., wave set-up). Observed alongshore wave number
spectra [Munk et al., 1964; Huntley et al., 1981; Oltman-
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Shay and Guza, 1987], weak energy levels in the deep
ocean [Webb et al., 1991], and cross-shore amplitude
variations [Okihiro et al., 1992] all suggest that infragravity
waves are refractively trapped on the shelf as edge modes
with only weak radiation to the deep ocean. Various models
suggest that free waves are generated close to shore [e.g.,
Longuet-Higgins and Stewart, 1962; Gallagher, 1971;
Bowen and Guza, 1978; Foda and Mei, 1981; Symonds et
al., 1982], but the processes controlling the spatial and
temporal variability of infragravity waves are still poorly
understood. Because of their greater amplitude and instru-
mental accessibility, observations of infragravity waves
have been made mostly on continental shelves [e.g., Munk,
1949; Tucker, 1950; Guza and Thornton, 1982; Okihiro et
al., 1992; Herbers et al., 1994, 1995a, 1995b; Sheremet et
al., 2002]. In this nearshore context infragravity waves are
involved in surf beats, edge waves, foreshore beach erosion
during storms, formation of cuspate topography, harbor
oscillations, etc. Fewer measurements have been made for
infragravity waves in the deep ocean. The main reason is
that the amplitude of deep-water infragravity wave is
extremely small and thus hard to measure accurately. For
instance, Webb et al. [1991] reported maximum amplitudes
of deep-water infragravity waves inferred from bottom
pressure sensors ranging from O(10�4) m in the Atlantic
to O(10�3) m in the Pacific, although the sampling was
quite sparse. They also found that deep-water infragravity
wave energy is correlated not with the local wind-wave
energy but with swell energy averaged over all coastlines
from which free infragravity waves could originate. Fur-
thermore, Rhie and Romanowicz [2006] suggest the hum is
generated in deep water partly by freely propagating infra-
gravity waves generated near the shoreline.
[4] Webb [2007] proposed a weakly nonlinear spectral

theory on coupling between ocean waves and seismic
modes by extending the microseismic excitation theory by
Longuet-Higgins [1950] and Hasselmann [1963], relying on
weak wave triads for energizing very low-frequency differ-
ence waves on the continental shelves. He approximately
reproduces the seismic spectrum observed, and confirmed
that ocean waves, rather than atmospheric turbulence, are
driving the seismic modes of Earth. However, this mecha-
nism is somewhat doubtful for producing very low frequency
long waves from interacting primary waves with nearly
equal frequencies, since that requires phase coherence of
the primary waves over the longer time and distance of the
product long wave (n.b., this objection is not as cogent for
shorter infragravity waves like surf beats). Instead, we make
use of the more robust multiscale theory [McWilliams et al.,
2004] where the long-wave response is forced by the
spectrum-integrated primary-wave properties.
[5] This paper is aimed at clarifying the dynamics of

infragravity waves in the deep ocean that are due to local
and remote excitation by primary gravity waves whose
wave-averaged properties vary with ‘‘synoptic’’-scale
storms and with finer, ‘‘mesoscale’’ fluctuations. The latter
forcing comprises empirically demonstrated modulations of
the primary-wave-averaged forcing on an intermediate
mesoscale, longer than the primary waves but shorter than
the meteorological synoptic scale. Particular issues are
distinguishing the responses either bound to the forcing
field or freely propagating, assessing the degree of wave

confinement by topography near the coastline, and examining
the relative efficiencies of coastal and abyssal infragravity
wave generation. By the generation mechanism we study, the
frequencies of interest are defined by those of the hum itself.
Therefore we have not pursued surf beats, shear waves,
nearshore infragravity waves, �100 s wave-envelope modu-
lations relevant to surf-zone infragravity waves, nor any of
the other motions with frequencies only moderately lower
than those of wind waves and swells (typically higher than
40 mHz) observed in surf zones. Nevertheless, since the
infragravity waves have their maximum amplitudes at the
shoreline, we incorporate subgrid-scale forcing modulations
due to refraction and breaking in shallow water based on a
simplified WKB model with an empirical breaking parame-
terization. This approach enables us to investigate deep-ocean
infragravity long-waves with a relatively large grid spacing,
�O(103) m. This focus on lower-frequencies and longer-
scales phenomena allows us to accurately rely on the
nondispersive shallow-water approximation. We can further
reply on a linear wave-response dynamics where each
spectrum component of the primary wavefield modulation
at any scales independently forces its own response because
of the observed (and simulated) small long-wave amplitude
of �O(10�3) m. Therefore we investigate this problem with a
newly developed numerical model based on a barotropic
version of ROMS [Regional Oceanic Modeling System;
Shchepetkin and McWilliams, 2005]. A linearized long-wave
equation with general topography and shoreline shape and
with primary-wave-averaged forcing derived in a multiscale,
asymptotic wave-current interaction theory by McWilliams
et al. [2004] is used to represent infragravity waves on
regional and basin scales.

2. Infragravity-Wave Dynamics

[6] Long (infragravity) waves are driven by nonlinear
interaction among primary waves, whose sea level ampli-
tude hp varies on a fast wave-scale (x, t). hp is written in a
Fourier integral representation as

hp x; tð Þ ¼
Z 1

�1
ĥp k;X; tð Þ exp i k � x� wtf g½ �dk; ð1Þ

along with the linear dispersion relation,

w2 kð Þ ¼ gk tanh kh½ �: ð2Þ

w is a radian frequency; k = jkj = 2p/L is the magnitude of
the horizontal wave number vector k; and h(X) is the resting
water depth. The caret, �̂, denotes the complex amplitude of
each Fourier component. As in the asymptotic analysis of
McWilliams et al. [2004] (MRL04), we assume the waves
have a slowly varying envelope dynamics in the horizontal
and time coordinates (X, t), whereX = bx, t = b t, and b
 1,
including a long-wave component that does not oscillate on
the scale of the primary wave coordinates (x, t). The forced,
dissipative long-wave equations adapted from MRL04 are

@q

@t
þ gr~z ¼ D; @~z

@t
þr � hqð Þ ¼ F : ð3Þ
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D = � Cd q/h is the bottom drag force with a linear friction
coefficient Cd, and F is the nonlinear infragravity-wave
forcing averaged over the primary waves:

F ¼ � r � A2wk
2k tanh kh

� �y
� @

@t
A2k

2 sinh 2kh

� �y" #
ð4Þ

¼ � r � E

rc
k

k

� �y
� @

@t
E

rgh
cg

cp
� 1

2

� �� �y" #
ð5Þ

¼ � r � TSt þ @zs

@t

� 	
: ð6Þ

~z is the long-wave, free-surface elevation, and q is the
associated, depth-independent horizontal velocity. (�)y de-
notes a band-pass filtering operator, averaging over the
primary waves and excluding slower variations on the scale
of oceanic currents (not modeled in this paper). A is wave
amplitude; cg = @w/@k is group velocity; and cp = w/k is phase
speed. Both cg and cp are associated with propagation in the
direction of k. The quantitiesTSt and zs inF are the vertically
integrated Stokes drift (i.e., Stokes transport) and the quasi-
static sea level response, often called the set-up. The wave
energy per unit area is

E ¼ 1

2
rgA2: ð7Þ

[7] The alternative expressions for F are written for a
single Fourier component in hp, and the contributions can be
superimposed for multiple components.

3. Spectral Representation of Wave-Averaged
Quantities

[8] The primary wavefield hp is described by a two-
dimensional (2D) wave number spectra G(k; X, t) on the
wave-averaged scales. G is nonzero only for k values within
the primary wave range, and the wave properties such as
amplitude and spectrum shape change over the slowly
varying coordinates (X, t). In this study we will make use
of the global 2D frequency-directional wave spectral re-
analysis provided by ECMWF [ERA-40, cf. Bidlot et al.,
2002; Janssen et al., 1997], G(w, q), at each point in their
analysis (a 1.5� geographical grid), where q is the wave
number vector direction. The ECMWF wave analysis is
made four times a day by the WAM cycle-4 global wave
model with data assimilation. G is discretized with 25
frequency bins and 12 directional bins.
[9] The local variance of hp is represented using the

spectrum as

h2p X; tð Þ ¼
Z 1

0

Z p

�p
G w; q;X; tð Þdqdw; ð8Þ

with

G w; q;X; tð Þ ¼ 2pkG k;X; tð Þ
@w=@k

ð9Þ

is an alternative representation of G(k) using the dispersion
relation [Komen et al., 1994] (Figure 1, left). The mean
wave period Tm and mean wave direction qm are evaluated
with G by

Tm X ; tð Þ ¼ 2p

Z 1

0

Z p

�p
G w; q;X; tð ÞdqdwZ 1

0

Z p

�p
wG w; q;X; tð Þdqdw

; ð10Þ

qm X; tð Þ ¼ tan�1

Z 1

0

Z p

�p
sin qG w; q;X; tð ÞdqdwZ 1

0

Z p

�p
cos qG w; q;X; tð Þdqdw

: ð11Þ

[10] The Stokes transport and the wave set-up in (6) can
be calculated in spectral form [Kenyon, 1969, 1970; Battjes,
1972]:

TSt X; tð Þ ¼
Z 1

0

Z p

�p

G w; q;X; tð Þwk w; qð Þ
2k wð Þ tanh k wð Þh Xð Þ dqdw ð12Þ

zs X; tð Þ ¼ �
Z 1

0

Z p

�p

G w; q;X; tð Þk wð Þ
2 sinh 2k wð Þh Xð Þ dqdw: ð13Þ

4. Mesoscale Forcing Modulation

[11] We can further express the slow-wave number and -
frequency dependencies for wave-averaged properties such
as E, TSt, and zs through a Fourier transform into (K, W)
space (Figure 1, right). For example,

TSt X; tð Þ ¼
Z 1

�1

Z 1

�1
T̂St K;Wð Þei K�X�Wtf gdKdW; ð14Þ

and no dispersion relation is implied between W and K.
Since these are primary-wave-averaged quantities, the
spectral variance vanishes in the primary wave frequency
band wp, but there is variance at lower frequencies
associated with storms (Ws) and even with climate
variability. The spatial and temporal resolution of the
ECMWF wave analysis, on what we call the synoptic scale,
is rather coarse: Dt = 6 h and DX = 1.5�. However, the
primary wave properties vary on even finer scales that we
call the mesoscale, with Ws < Wm < wp. There is no
information about the mesoscale component in the ECMWF
analysis. We formally separate these slowly varying
components, e.g.,

TSt X; tð Þ ¼ TSt
s X; tð Þ þ TSt

m X; tð Þ; ð15Þ

the subscripts s and m stand for the synoptic and the
mesoscale components.
[12] A crude representation for the slowly varying (X, t)

behaviors is to collapse the full primary-wave spectrum in G
into a single primary-wave component (denoted by sub-
script p) with an equivalent primary wave sea level variance
A2/2. Practically speaking, the primary wavefield quantities
that matter for forcing the long waves (i.e., TSt and zs, both
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of which have very steep spectra at high frequency or wave
number for a typical surface elevation spectrum, as evident
in their definitions in (5)) have almost all their variance
from the primary-wave spectrum peak component, not the
shorter, faster components in the primary wave spectrum, so
their is nothing important lost by representing the primary
wavefield by its peak component. It is reasonable to identify
wp with 2p/Tm and qp with qm from (10) and (11). The
slowly varying fields can be expressed with separate syn-
optic and mesoscale components associated with separate
amplitudes, As and Am,

A X; tð Þ ¼ As X; tð Þ þ Am X; tð Þ;
� As X; tð Þ � 1þ dm X; tð Þ½ �: ð16Þ

dm is defined as the nondimensional fractional amplitude of
the mesoscale component. Since we require A > 0 and
analyze the synoptic wave variability with As > 0, jdmj < 1. A
further simplification is to assume that the primary wave
properties vary only on the synoptic scale, except for the
wave amplitude that varies on both synoptic and
mesoscales. With both these simplifications the synoptic
and mesoscale contributions to the Stokes transport are
expressed as

TSt
s X ; tð Þ � A2

swp

2 tanh kph
cos qp; sin qp

 �

; ð17Þ

TSt
m X; tð Þ � 2dm þ d2m

� 

TSt
s : ð18Þ

[13] An analogous expression to (18) can be given for zs,
and together these comprise the necessary forcing fields for
equation (3). For the basin-scale experiment in the later
sections, we estimate TSt and zs using the ECMWF-ERA40
spectral wave data.

[14] Furthermore, a similar collapse of the mesoscale
variability spectrum can be made into a single Fourier
component, again with an amplitude variance equivalent
to the spectrum integral over the mesoscale band. The
observed small long-wave amplitude, �O(10�3) m, allows
us to use a linear wave-response dynamics that means that
each spectrum component of the primary wave modulation
(mesoscale and synoptic) independently forces its own
response. Thus the response to a broadband modulation
field is merely the linear superposition of the independent
component responses, and there is nothing to be gained by
constructing a broadband mesoscale forcing that cannot be
learned by using representative mesoscale components and
demonstrating how the long wave response depends on their
amplitude and wave number. There is even the interpretive
advantage of isolating representative spectrum components
since that allows a clear demonstration of how their prop-
erties influence the response (note that influence of ‘‘mul-
tidirectional’’ mesoscale variations is briefly examined with
a realistic, basin-scale configuration in section 11 and
Appendix E).
[15] If the mesoscale component has a spatial wave

number Km = 2p/lm, where lm is a wavelength of meso-
scale fluctuations, then

dm X; tð Þ ¼ d0 sin Km � X� Wmt½ �; ð19Þ

dm X; tð Þ ¼ Kmc
gr; ð20Þ

Km X; tð Þ ¼ Km cos qp;Km sin qp

 �

: ð21Þ

0 < d0 < 1 is the relative magnitude of the mesoscale
amplitude. Wm is the mesoscale oscillation frequency
determined by the theoretical expectation that mesoscale

Figure 1. Schematic diagrams of different scale ranges in the frequency w or horizontal wave number k
spectra for sea-surface elevation h (left) or for the wave-averaged Stokes transport TSt (right). The
primary-wave frequency spectrum G(w) corresponds to the right peak in the left plot, and the slowly
varying time and space dependencies in G(X, t) contribute in the right plot to the slowly varying wave
number-frequency W-K spectrum. Infragravity-wave signals in ~z and zs appear as the middle peak in the
left plot.
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variations in primary wave energy propagate with the group
speed of the dominant primary wave with k = kp,

cgr X; tð Þ ¼ @w
@k

kp
� 


¼
wp kp
� 

2kp

1þ 2kph

sinh 2kph

� �
: ð22Þ

The mesoscale forcing propagation direction coincides with
the primary phase propagation direction qp. Note that
reflection of the meso- and synoptic-scale disturbances from
the shoreline is not considered in the present forcing
formalism.

[16] In calculating the infragravity-wave response to the
mesoscale forcing, we will choose Km

�1 somewhat arbitrarily
as shorter than the scales resolved in the ECMWF analysis
but larger than the grid scale of our model, viewing it as a
control parameter. On the other hand, an estimate for the
fractional amplitude d0 is evaluated using a combination of
TOPEX/Poseidon satellite radar altimetry (http://topex-
www.jpl.nasa.gov), the National Data Buoy Center (NDBC)
pitch-roll buoy data (http://www.ndbc.noaa.gov), and the
ECMWF global wave reanalysis (http://www.ecmwf.int/
research/era). Band-integrated synoptic and mesoscale sea
level variances are calculated from these sources and

Figure 2. Wave number spectra of significant wave height estimated with the TOPEX altimeter in the
Pacific Ocean averaged over cycles 269 through 272 (January–February 2000). (Left) Along Path #182
(eastern Pacific) and (right) Path #212 (western Pacific). Also shown are ECMWF wave analyses linearly
interpolated for the same time and place as the TOPEX data.

Figure 3. Frequency spectra of significant wave height, Hs, measured by NDBC wave buoys and the
corresponding ECMWF reanalysis at two locations in Pacific Ocean for the year 2000: (left) #46001 near
Alaska and (right) #51001 near Hawaii.
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averaged over the available samples, yielding A2
2 and A2

m

(see also Appendix A). This leads to the estimator,

d0 ¼
A
2

m

A
2

s

 !1=2

: ð23Þ

[17] TOPEX/Poseidon data provides the significant wave
height of the ocean surface directly underneath the satellite
with an accuracy of about ±0.1–0.2 m [Callahan et al.,
1994]. The altimeter wave height has a finer spatial spatial
resolution about 6 km along the satellite paths than that of
the ECMWF’s reanalysis (i.e., 1.5�) while temporal resolu-
tion is coarse since the repeat period of the satellite orbit is
about 10 d. On the contrary, NDBC provides significant
wave height once every hour with an accuracy of ±0.2 m,
although the buoys are sparsely distributed in space.
[18] Figure 2 compares wave number spectra of spatial

distributions of significant wave height measured by the
TOPEX radar altimetry along the paths 182 and 212 (both
in Pacific Ocean), averaged over Cycles 269 to 272 in
January and February 2000, and their counterparts estimated
with the ECMWF reanalysis. By applying the cut-off wave
number using the ECMWF grid spacing in the spectral
domain to extract the synoptic and mesoscale fluctuations,
we obtain reference values for d0 from (23) as summarized
in Table 1. Similarly, Figure 3 shows frequency spectra of
significant wave height measured by the two wave buoys
deployed in the Pacific Ocean and from the ECMWF’s
reanalysis. Table 2 is their summary. The comparison
between the measurements and reanalysis gives us d0
ranging from 0.076 to 0.263, suggesting that d0 can be a
function of time and space. By averaging these estimates, d0

may be reduced to a single mean value, d0 � 0.16 that we
will use in the present study because observations of
mesoscale wave variability, in particular wave groups in
the deep ocean, are rare [n.b., synthetic aperture radars have
recently begun to be utilized for detecting variability of
wave groups; Nieto Borge et al., 2004].

5. Nearshore Forcing

[19] The primary waves vary significantly in shallow
water near the shoreline because of refraction, shoaling,
and breaking. This is relevant to the wave-averaged forcing
F in (6). However, the width of this nearshore zone is often
small compared to the regional and basin scales that are our
focus, so special care must be taken with the representation
of its effects in a more coarsely resolved model. In addition,
nearshore infragravity waves are most energetic at the
shoreline and are important for exciting the hum on conti-
nental shelves, as documented empirically by Rhie and
Romanowicz [2006], and rationalized theoretically by Webb
[2007]. Instead of ignoring the surf zone effects totally as
Webb [2007] did, we have incorporated the minimum
effects of wave breaking and associated modification of
the nearshore forcing into our model as described below.
[20] We take the view that the offshore wavefield is

specified as described in sections 3–4, and kp and h2p are
modified near the coast using ray theory, an empirical
breaking parameterization, and grid-scale averaging. In
combination with the dispersion relation (2), ray theory
[e.g., Lighthill, 1978; Mei, 1989] implies

@k

@t
þrw ¼ 0; r� k ¼ 0;

@A
@t
þr cgA

� 

¼ � �b

w
: ð24Þ

A = E/w is the wave action, and �b is dissipation rate of
wave energy E due to breaking. In applying these equations
near the coast, we assume that the primary wavefield is
locally steady and represented by its equivalent monochro-
matic wave; alongshore derivatives of the local topography
and wave number vector are negligible compared to cross-
shore derivatives; and shoreline reflection is unimportant.
Then the ray equations reduce to

rw ¼ dw
dx?

¼ 0;
dkk

dx?
¼ 0;

d

dx?
c x?ð Þ
g E

� �
¼ ��b; ð25Þ

Table 1. Primary-Wave Amplitude Variances, A2, and Mean

Amplitude, �A, From the TOPEX and ECMWF Wave Dataa

Cycle 269 270 271 272

A2 (m2)
ECMWF 0.3945 0.3064 0.3355 0.3754
TOPEX 0.6001 0.4933 0.5166 0.6132
mesoscale 0.0088 0.0079 0.0075 0.0085

�A (m)
ECMWF 0.8120 0.7409 0.7458 0.7958
TOPEX 1.0073 0.9383 0.9291 1.0126
mesoscale 0.1260 0.1216 0.1192 0.1250

d0 0.1552 0.1641 0.1599 0.1571
aA2 and �A are estimated by taking averages of wave number spectra along

all the satellite paths that span the Pacific Ocean integrated over each
TOPEX cycles, #269–#272.

Table 2. Primary-Wave Amplitude Variances, A2, and Mean Amplitude, �A, Evaluated by Integrating Frequency Spectra of the NDBC

and ECMWF Wave Height Variations for the Eight Locations in Pacific Ocean Measured for a Year in 2000

buoy # 46001 46002 46006 46035 46059 46066 51001 51028

Longitude, �W 104.17 86.36 93.48 133.58 86.00 110.98 118.21 109.87
Latitude, �N 56.30 42.58 40.80 57.05 37.98 52.70 23.43 0.02

A2 (m2)
ECMWF 0.6967 0.5727 0.7019 0.7516 0.4081 1.0620 0.1952 0.0418
NDBC 1.1155 0.8237 0.9110 1.0831 0.7543 1.1612 0.2756 0.0529

mesoscale 0.0124 0.0064 0.0066 0.0579 0.0115 0.0062 0.0127 0.0029

�A (m)
ECMWF 1.1804 1.0703 1.1848 1.2260 0.9035 1.4574 0.6248 0.2890
NDBC 1.4937 1.2835 1.3498 1.4718 1.2282 1.5240 0.7425 0.3253

mesoscale 0.1573 0.1129 0.1150 0.3402 0.1518 0.1114 0.1594 0.0761

d0 0.1332 0.1055 0.0971 0.2775 0.1680 0.0764 0.2551 0.2634

C07029 UCHIYAMA AND MCWILLIAMS: INFRAGRAVITY WAVES IN THE DEEP OCEAN

6 of 25

C07029



where x? denotes the cross-shore spatial coordinate and kk is
the alongshore wave number component. Equation (25)
implies that w and kk are constant approaching the shoreline.
We can use the dispersion relation and the known
topographic shoaling profile h(x?) to determine the
horizontal wave number magnitude k(x?), hence the
perpendicular wave number component k?(x?) and the wave
number angle relative to the shoreline. Shoaling h(x?)
generally implies increasing k(x?) and turning of the ray
toward the shoreline.When �b = 0 (i.e., outside the surf zone),
(7) and (25) imply that

A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ k2?

q
cgk?

� P1 ð26Þ

is constant along a ray and independent of x? approaching the
shoreline, and with (22) this yields a formula for A(x?). As h
decreases, A generally increases since cg decreases. Within
the surf zone where wave breaking occurs and �b 6¼ 0, we
assume that the wave amplitude is limited to be a fraction of
the local depth,

A x?ð Þ ¼ 1

2
gh x?ð Þ: ð27Þ

This simple parameterization is generally supported accord-
ing to laboratory experiments [cf.Battjes, 1972] with g = 0.73
[Battjes and Stive, 1985]. By this rule, as h(x?) decreases,
A(x?) must also decrease, which is the opposite of the
shoaling effect in (26). So our shallow-water prescription for
A(x?) is to take the minimum value between the two
expressions (26) and (27).
[21] In discretization of the forcing term (6), we have found it

necessary to apply a local averaging and smoothing operator in
evaluatingF (Appendix B). This is both because the composite
rule for A(x?) has a discontinuous cross-shore derivative

where its two expressions match and because F has a
singular amplitude as h ! 0. The net result is reasonably
satisfactory in limiting the sensitivity to the grid size and the
shallowest depth near the shoreline hmin.

6. Resonant Amplification

[22] In this section we evaluate an analytical solution to
the forced long-wave equation (3) in a simplified setup, viz.,
one-dimensional (1D) problems with flat bottom topography
and no bottom friction. The governing equations reduce to

~ztt � c2~zXX ¼ �Ztt ; Ztt ¼ �
Z t

Fdt: ð28Þ

c =
ffiffiffiffiffi
gh

p
is the phase speed of long waves, and X denotes the

spatial coordinate. We consider a moving disturbance Z =
Z(X, t) in the primary wavefield with a specified
propagation speed Uf. The particular solution to (28) is
designated by ~z = Mr Z, where Mr is an amplification
factor in the response; hence,

Mr ¼ 1� U 2
f =c

2
� ��1

: ð29Þ

Thus the resonance condition to (29) is c = ± Uf, consistent
with that by Longuet-Higgins and Stewart [1962] based on
the radiation stress formalism for long waves generation.
In deep water a characteristic depth is about 4000 m so that
c � 200 m/s, whereas a typical Uf due to synoptic storm is
about 10 m/s. The group speed of a deep-water primary-
waves (i.e., the phase speed of mesoscale forcing), cgr, is
also approximately 10 m/s. Either case gives rise to Uf
 c,
so the long-wave response ~z is always off-resonant and
quasi-static in deep water.
[23] Equation (28) also provides a free-wave solution if

appropriate boundary conditions are given [e.g., Proudman,

Figure 4. Analytical amplification factor jMrj from (29) as a function of depth h and forcing phase
speed Uf. (Left) phase speed of the synoptic storm, Cs, and (right) group speed of primary wave (i.e.,
phase speed of the mesoscale forcing) cgr computed from the primary wave period Tp. Both synoptic and
mesoscale forcings are capable of inducing resonant amplification in shallow water (h < O(102) m), but
the deep-water response is always off-resonant.
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1953]. Suppose that there is a shoreline at X = 0 such that
barotropic velocity is q(0, t) = 0, and Z moves toward the
shoreline. Then we obtain the general solution of (28) as a
sum of the particular solution (above) and a general solution
of the homogeneous form of (28):

~z ¼Mr Z t � X=Uf

� 

� Uf

c
Z t � X=cð Þ

� 	
: ð30Þ

[24] This equation illustrates that in shallow water, where
the response to the traveling disturbance Z comes close to
resonant condition, there are two types of response: 1)
bound (slaved) waves that travel with the forcing field
and 2) free waves that propagate at a phase speed of c =ffiffiffiffiffi
gh

p
. Figure 4 shows jMrj as a function of depth h, a phase

speed of synoptic storm Cs, and a primary wave period

Tp, which is relevant to the phase speed of mesoscale
forcing, cgr. Hence the forcing phase speed Uf in (29) is
given by Cs or cgr(h, Tp). Long waves are excited
intensively in shallow water either by synoptic storms
or mesoscale forcing, if h < O(102) m.
[25] Next, a series of one-dimensional (1D), nondissipa-

tive, forced long-wave experiments with a flat bottom is
conducted to reproduce resonant response to given synthetic
forcing fields. The forcing imposed here is a combination of
a synoptic-scale storm traveling at a phase speed of Cs and
mesoscale forcing amplitude modulation as described in
section 4 with lm = 20 km and d0 = 0.16. A total of 10
depths ranging from 20 to 4000 m are chosen to represent
the flat topography to cover from shallow to deep water
conditions. The length of the domain is 256 km with a grid
spacing of 1 km. The initial condition is a resting state. A
periodic condition is applied to ~z and q at the two open

Figure 5. Amplification factor M in the same format as Figure 4 for (a –b) low-frequency band
(f < 0.139 mHz) and (c–d) high-frequency band (f � 0.139 mHz) evaluated from (32) with 1D solutions
with a flat bottom. The cross marks denote discrete forcing conditions for the calculations. Overall the
pattern ofM resembles jMrj in Figure 4.
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boundaries. The primary wave amplitude As resulting from
a synoptic storm traveling in the X direction is defined as

As X ; tð Þ ¼ A0 þ Af cos KsX � Wstð Þ; ð31Þ

where A0 and Af are the mean and fluctuating amplitudes
(= 3.25 and 1.75 m, respectively). The storm wavelength
is ls = 2p/Ks = 256 km, and Cs = Ws/Ks is its phase
speed equivalent to the group speed of the primary waves
as represented by (22) with a primary wave period, Tp,
and the linear dispersion relation (2). We conduct 1D
simulationswith tenTp ranging from2.5 to 40 swith a constant
Cs (= 10m/s), and tenCs values ranging from1 to 30m/swith a
constant Tp (= 10 s) for each of the ten flat topographies; hence
a total of 200 configurations are examined.
[26] An amplification factor M is calculated from the

numerical solutions to compare with the theoretical estimate
Mr:

M¼
~zR:M :S:

� �
Z t

FdtjR:M :S:

� � : ð32Þ

~zR.M.S. and
R t F dtjR.M.S. are standard deviations of the

response ~z and time-integrated forcing
R tFdt computed at

each grid point for 14 h after the model reaches steady state
(about 12 h after the initiation of the model). <�> denotes a
spatial-averaging operator.
[27] Figure 5 shows 1D solutions expressed byM.M for

the low-frequency band exposes synoptic-scale responses,
and the high-frequency band approximately represents the

mesoscale responses. Figure 5a is seemingly similar to
Figure 4a, and Figure 5d resembles Figure 4, demonstrating
that long-wave responses to the given forcing at an arbitrary
depth are well approximated by the simple expression jMrj
in (29). For example,M tends to have the maximum not at
the shallowest depth but slightly deeper (Figures 4a and 5a),
since jMrj and M peak where

ffiffiffiffiffi
gh

p
= Cs (e.g., a peak

appears at h � 40 m if Cs = 20 m/s). On the contrary, M
monotonically increases as depth decreases, being the
largest at the shallowest part (Figure 5b). The overall pattern
ofM in Figure 5b,c is essentially independent of Tp and Cs.
[28] These results clearly indicate that the low-frequency

and high-frequency responses are amplified according to Cs

and cgr(h, Tp), respectively: the mesoscale fluctuations in
the forcing are responsible only for high-frequency meso-
scale responses, while synoptic-scale variability in the
forcing induces low-frequency responses. The forcing phase
speed Uf due to synoptic storms (Cs) and mesoscale fluctu-
ations (cgr) are both important parameters that control
resonant amplification of the infragravity waves.

7. Deep-Water Generation

[29] Next we extend the 1D flat-bottom experiments to
2D cases on variable topographies in nonbreaking, deep-
water conditions for the primary waves. The 2D topographies
employed here are planar beaches with constant slopes in the
cross-shore (X) direction but uniform in the alongshore (Y)
direction, expressed by the following equation:

h X ;Yð Þ ¼ hmax � hmax � hminð ÞX=XL; ð33Þ

Figure 6. Amplification factorM for the high-frequency band (f > 0.1 mHz) calculated from (32) with
the 2D, nonbreaking cases for constant-slope cross-shore topographies: (a) without and (b) with a
shoreline by applying a Flather-type radiation condition and a flux-blocking condition on the shallowest
side of the domain. The bottom slopes change with the minimum depth of the domain hmin while the
offshore maximum depth is fixed at hmax = 3000 m. The resonant parameter jMrj with Tp = 6 s (i.e.,
cgr � 5 m/s in deep water) is indicated by the solid curves to demonstrate that jMrj is close to M.
Including the shoreline increases the response by a factor of 2 due to shoreline reflections.
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