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Abstract-A simple, fast and efficient algorithm to compute steady non-parallel flows and their linear 
stability in parameter space is described. The pseudo-arclength continuation method is used to trace 
branches of steady states as one of the parameters is varied. To determine the linear stability of each state 
computed, a generalized eigenvalue problem of large order is solved. Only a prescribed number of 
eigenvalues, those closest to the imaginary axis, are calculated by a combination of a complex mapping 
and the Simultaneous Iteration Technique. The underlying linear systems are solved with preconditioned 
BKGSTAB. It is shown that it is possible to deal efficiently with (discretized) problems with O(lO’) 
degrees of freedom. As an application, the bifurcation structure of steady two-dimensional Ray- 
leigh-Btnarcl flows in large rectangular containers (up to aspect ratio 20) is computed. We show how the 
results connect up with those obtained with weakly nonlinear theory and extend these into the nonlinear 
regime. Main aim is to investigate whether pattern selection occurs through the occurrence of saddle node 
bifurcations creating intervals of unique steady states. It turns out that these intervals do not exist; multiple 
stable states continue to exist at large aspect ratio over a large range of Rayleigh numbers. In addition, 
the bifurcation structure provides no answer why the ‘preferred’ wavelength increases with increasing 
Rayleigh number, as observed in experiments. 

1. INTRODUCTION 

In contrast to the situation for parallel flows, relatively little is known on the linear stability of 
non-parallel flows. This is not because the latter flows are not interesting; the mathematical problem 
is just much harder to solve. For parallel flows, the problem of linear stability can be reduced to 
a 2-point boundary (eigen) value problem. However, for non-parallel flows the problem becomes, 
in most cases, an elliptic eigenvalue problem. The latter is much more difficult to solve, even 
numerically. The computation of the linear stability of non-parallel flows is particularly important 
when studying the multiplicity of steady confined flows (depending on several parameters) in 
parameter space. Transitions to different steady patterns or to time-dependent flows may occur as 
a value of a (forcing) parameter is changed. A well-known example is the appearance of Taylor 
vortices between rotating concentric cylinders [ 11. 

In this paper, we consider a relatively old problem which has been studied for many decades, 
i.e. pattern selection due to buoyancy driven convection in a layer of a Newtonian liquid heated 
from below. We ‘were stimulated by the recent book of Koschmieder [2], wherein he states that “we 
do not seem to know why or by what mechanism the convective motions select, out of a continuum 
of unstable wavenumbers available according to linear theory and weakly nonlinear theory, one 
particular wavenumber, or perhaps a narrow band of wavenumbers at a particular supercritical 
Rayleigh number”. In his book, he describes that one of the main discrepancies between weakly 
nonlinear theory and experiments in large aspect ratio boxes is, that weakly nonlinear theory 
predicts a decrease in wavelength of the ‘preferred’ (i.e. realized) pattern, whereas in experiments 
the opposite is observed. It is questioned, whether a ‘preferred’ pattern-which suggests a certain 
uniqueness-really exists. Getling, [3], for instance, argued that the realized state may not be related 
to stability but t.o the combined action of selective and anti-selective factors, determined by the 
initial and boundary conditions. Attempts have been made to characterize the ‘preferred’ pattern 
through extremals based on simple properties of the flow, for example maximum heat transfer. 
However, no such principle has been convincingly demonstrated to exist [4]. 
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There are basically two different theoretical approaches to the pattern selection problem at 
slightly supercritical Rayleigh numbers Ra. The starting point of the modulation equation 
approach is the critical state of the infinite layer (the minimum of the neutral curve). For values 
of Ra slightly larger than the critical value, Ra,, a band of wavenumbers becomes unstable. 
Modulation equations describe the evolution of the flow due to interaction of these unstable modes. 
By careful analysis, the effect of distant no-slip lateral boundaries (a distance L apart) can be taken 
into account. In a series of papers [5-71, the structure of steady states and their linear stability 
was investigated for the two-dimensional problem with stress free horizontal boundaries. Near 
onset, formally when Ra - Ra, = O(L-‘), two pairs of (symmetry related) solutions branch off 
from the conduction solution. Only the pair of solutions which arises at the first bifurcation is 
stable. At larger forcing, formally when Ra - Ra, = O(L-‘), other stable states appear (the 
so-called phase winding solutions) and their structure and stability depend on the Prandtl number 
Pr [7]. Either there is a smooth evolution through the range Ra - Ra, = O(L-‘) with little change 
in the wavelength (at large Pr) or there is a discontinuous evolution in which to preserve stability, 
the solution must jump from one solution branch to another (at small Pr). In both cases, sidewalls 
restrict the number of stable flow patterns compared to those possible in an infinite layer. 

Another approach is through local bifurcation analysis of steady states in finite aspect ratio 
containers. For small aspect ratio containers the paths of primary bifurcation points is quite 
different for ‘slippery’ than for rigid sidewalls [8]. The neutral curve is composed of parts of two 
intertwining curves, along which the most unstable pattern changes (see [9] for a related case) as 
the aspect ratio is varied. Although the curves closely approach as the aspect ratio becomes large, 
the bifurcation picture remains that of two closely spaced pitchfork bifurcations, of which the first 
secondary branches are stable, whereas the other secondary branches are unstable. Secondary 
bifurcations might introduce stable mixed modes and/or change the stability of both secondary 
branches, depending on the Prandtl number. The analysis in [8] was done for rigid horizontal walls 
and was probably not continued to large aspect ratio because the eigenfunctions (at primary 
bifurcation points) had to be computed numerically. 

The results from modulation equations (where no-slip sidewalls are taken into account through 
a boundary layer analysis) and local bifurcation theory connect up at large aspect ratio A. Some 
‘phase winding’ solutions must correspond to the mixed modes which appear through secondary 
bifurcation. However, both approaches have the drawback that they can only be justified close to 
the critical state. In this study, we address again the question of pattern selection in two-dimen- 
sional, large aspect ratio, rectangular containers by computing the bifurcation structure of steady 
two-dimensional flow patterns numerically for Rayleigh numbers far into the nonlinear domain. 
The two-dimensionality of the flow (at not too small Pr and at large A), for Ra up to about 10 * Ra, 
is reasonable and hence our results should be able to describe laboratory experiments quite well. 
To be able to check the range of validity of the asymptotic results provided by weakly nonlinear 
theory and to extend these into the full nonlinear range, one must be able to compute steady states 
as a function of Ra for large A. Time integration is not very suited to compute these states, because 
the approach to steady state is very slow [lo]. Another disadvantage of time integration is that 
unstable steady states cannot be computed. Although these states are not physically relevant, 
transitions of these states through secondary bifurcations, often lead to stable states. 

Continuation techniques [ 11, 121 have been used successfully in many examples to follow 
branches of unstable and stable steady states in parameter space. The calculation of the linear 
stability is important since otherwise a false picture of the physically relevant flows may arise. For 
example, in [13] a multitude of steady (double diffusive) patterns was found in a laterally heated 
stratified liquid. However, it was shown [14] that most of these flows are unstable leaving a very 
simple picture of realizable flows. Dijkstra [15] investigated the bifurcation structure of Ray- 
leigh-Btnard-Marangoni flows in small aspect ratio containers using pseudo-arclength continu- 
ation. The linear stability of each steady state was simultaneously determined by solving the 
associated generalized eigenvalue problem The most time consuming part of the code was the 
solution of the underlying linear systems. Two types of linear systems have to be solved: one type 
arising after Newton linearization of the nonlinear algebraic systems of equations, the other type 
within the eigenvalue solver. In [IS] this was done with a direct (band) solver which severely 
constrained the number of degrees of freedom of the particular system. This limited the study of 
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the multiplicity of two-dimensional Rayleigh-Binard-Marangoni flows to rectangular containers 
with a maximum aspect ratio A of 4. 

To compute a sufficiently accurate bifurcation structure for containers with A up to 20, the direct 
linear systems solver used in [lS] is replaced by an iterative solver. Here, we use an efficient version 
of a preconditioned gradient like method as presented in Van der Ploeg [16]. The type of 
preconditioner has already proved to be very efficient for a class of standard problems. It turns 
out to work well if applied to the class of less conditioned linear systems which are met in 
continuation prolblems involving a large class of non-parallel flows. This leads to a very efficient 
method to compute steady non-parallel flows and their linear stability in parameter space. It 
appears that this is the first version of a continuation algorithm in which iterative linear solvers 
are used and therefore can deal with systems having very large degrees of freedom. All similar codes 
known to the authors are designed for systems with relatively small degrees of freedom [ 17-191 since 
direct solvers are used and full eigenvalue problems are solved with standard techniques. We 
therefore present the main numerical methods in some detail in Section 2 of this paper, together 
with some elementary results on the performance of the eigenvalue solver. 

The Rayleigh-Benard problem is considered in Section 3. The results near onset confirm most 
of the results of weakly nonlinear theory. The main new results are the computation of the 
bifurcation structure of the steady states in the nonlinear regime. For A = 10, velocity profiles 
computed show very good agreement with measurements. Finally, we investigate whether pattern 
selection is induced through the occurrence of saddle node bifurcations far above onset. In small 
aspect ratio containers, it was shown in [15] that these saddle node bifurcations lead to intervals 
in the stability parameter, with in each a unique stable steady state. For A = 20 and Pr = 7, the 
result is a negative one: these intervals do not exist. The pattern selection as observed in experiments 
is not related to this type of bifurcation structure. 

Our eventual goal is to apply these techniques to study the multiplicity of patterns of the large 
scale ocean circulation. Although large scale numerical ocean models have been developed over 
the last decades, they all use time-integration and are therefore not very suited (because of the large 
spin-up times) for these type of studies. Although some technical difficulties (memory usage, choice 
of parameters in the preconditioner, choice of testfunctions) will probably arise from application 
to application, the algorithm used here has the potential to perform these type of bifurcation studies 
in the near future. 

2. DESCRIPTION OF THE ALGORITHM 

The algorithm is comprised of two main pieces: the continuation method to advance one step 
on a branch of steady states as a parameter is varied and an eigenvalue solver to determine the 
linear stability of the new computed steady state. 

2.1. Computation of steady non-parallel jlows in parameter space 

When a set of time-independent partial differential equations is discretized by some finite 
difference, finite volume or finite element method, a system of nonlinear algebraic equations 

F(u, P) = 0 (1) 

emerges. Here u is a d-dimensional vector consisting of the unknowns at the gridpoints, p is the 
n,-dimensional vector of parameters and F is a nonlinear mapping from Rd x R”o+Rd. To 
determine branches of steady solutions of (1) as one of the parameters (say p) is varied, the 
pseudo-arclength method is used. This method is well described in [20]; the branches (u(s), p(s)) 
are parametrized by an ‘arclength’ parameter s. An additional equation is obtained by ‘normalizing’ 
the tangent 

i$(u - u,,) + /,&(p - /+,) -As = 0 (2) 

where (uO, pO) is an analytically known starting solution or a previously computed point on a 
particular branch and As is the steplength. To solve the system of equations (1,2) Euler-Newton 
continuation is used. The Jacobian matrix f(s) of (1,2) along a branch is given by 

(3) 
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where @ is the Jacobian F,. During one Newton iteration, linear systems of the form 

@z=y (4) 

have to be solved where z and y are (d x 2) matrices. 
To monitor singularities on a particular branch, several indicator functions are used. For 

example, limit points are detected by following b. Other singularities, like Hopf bifurcation points, 
must be detected by solving the linear stability problem. Only for simple bifurcation points (i.e. 
transcritical-or pitchfork bifurcations) there are cheaper alternatives, for example the sign of 
det(9). A family of testfunctions rw is obtained as follows [21]: let a,, be the matrix @ in which 
pth row is replaced by the qth unit vector. 

for v, where eP is the pth unit vector, then 

If we solve the linear syst& 

GPqv = eP 

it can be shown [21] that 

tpg = e,T@v 

(5) 

(6) 

changes sign as 9 becomes singular. In principle, the choices of q and p are arbitrary as long as 
9, is nonsingular. Of course, for any solution method, it is advantageous that @m and @ have 
the same structure. However, in specific problems, not all values of q and p can be chosen and it 
is advisable to make a choice based on the knowledge of the (symmetry properties of the) solutions 
of the particular problem. For each testfunction zPq computed, we have to solve one additional 
linear system. 

2.2. Computation of the linear stability of a particular steady state 

In most applications, discretization of the equations governing the evolution of infinitesimal 
disturbances on a particular steady state leads to a generalized eigenvalue problem 

dx = a.!& (7) 

where d is a nonsingular, non-symmetric d x d matrix [typically d = O(10” - lo’)]. Through 
Dirichlet boundary conditions and/or the Incompressibility condition, 98 may become singular. 

The eigenvalues of the pensil (the set of all matrices of the form L& - ZL?~ with z E C) are elements 
of the set 

a(&‘, L%) = (z E C 1 det(d - z@ = 0) (8) 

If 99 is nonsingular, the problem reduces to an ordinary eigenvalue problem for the matrix 
%Y-‘d. Because only real matrices are considered, there are d eigenvalues which are either 
real or occur as complex conjugate pairs. However, if L@ is singular, the eigenvalue structure 
may be more complicated; the set a(&‘, 98) may be finite, empty or even the whole complex plane 

PI. 
Traditional eigenvalue solvers (e.g. the QZ algorithm [22], p. 25lfl) which determine all 

eigenvalues and, if desired, all eigenvectors are impossible to use. In many hydrodynamic stability 
problems, the instability of a certain steady flow pattern occurs only through a few number of 
modes. In the discretized linear stability problem the set o(&, ~8) is finite and one is only interested 
to compute a few eigenmodes, i.e. those with eigenvalues closest to the imaginary axis (the ‘most 
dangerous’ modes). This motivated several studies to develop specific algorithms for this task. 
Goldhirsch et al. [23] present three different versions of such an algorithm suited for (ordinary) 
non-symmetric eigenvalue problems. Christodoulou and &riven 1241 use a combination of spectral 
transformations and the Arnoldi algorithm [25] and apply this to compute the linear stability of 
steady (coating) flows. 

A variant of the methods in [24] was suggested in Dijkstra [15], where a combination of a spectral 
transformation and the Simultaneous Iteration Technique [26], abbreviated from now on as SIT, 
was used. As in 1241, the idea of the algorithm is to transform the eigenvalue problem in such a 
way that the most dangerous modes become the most dominant modes (i.e. those with eigenvalues 
with largest norm). In this way, generalized power methods can be used on the transformed 
problem. 
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The first step of the eigenvalue algorithm is the application of a complex mapping 

A-1 
a=b+a--- 

A+1 

wherebER,aEK!+. The parameter b introduces a shift of the spectrum over the real axis, whereas 
the parameter a stretches the spectrum. The left complex plane !%(a - b) < 0 is mapped within the 
unit circle )A] < 1 (see Fig. 1 for a = 1, b = 0) and W(B - b) is mapped onto the unit circle. 

The eigenvalue problem (7) transforms with (9) to 

(&+((a -b)@x= -(c&-(a+b)B)lx (10) 

Let % = d + (a -. b)a and 9 = -d + (a + b&S?. Although a is singular, the matrices % and 9 
are generically not singular and we therefore consider the problem 

9-%x = Ix (11) 
The properties of the mapping (9) are such that the most dangerous modes of (7) are mapped onto 
the most dominant modes (i.e. with largest norm) of (11). The eigenvalues (r = + co are mapped 
onto Iz = -1. 

To determine a prescribed number of dominant modes, the SIT is particularly suited. This 
algorithm is well described in [26] and we only repeat the essentials. Let the desired number of 
accurate eigenvalues and eigenvectors be n,-- 2, then one starts with n, vectors of length d, the 
starting vectors; let the d x n, matrix be U”. The SIT consists of a filtering stage and a reorientation 
stage. During the filtering stage, components in the direction 
in amplitude. A prescribed number, say I, of matrix vector 

Un+l =f&+-‘@u 

and thereto computed. Hence, linear systems of the form 

gun+’ = W” 

of the dominant eigenmodes increase 
products of the form 

(12) 

(13) 

have to be solved. After each filtering stage, there is a reorientation stage in which an 
approximation to the eigenvalues I is found by solving a small eigenvalue problem of order nf with 
standard methods, for instance QR. The whole process of filtering and reorientation has to be 
performed a number of times, say k, until convergence (details in [26]). When converged according 
to a certain stopping criterion, the matrix U gives the eigenvectors corresponding to the nr 
eigenvalues I of which n, - 2 are accurate. The eigenvalues o are found from (9). 

2.3. The solution of the linear systems 

For both the computation of the steady states as well as the determination of its linear stability, 
linear systems Ax = b have to be solved. The Bi-CGSTAB method [27] is used as an iterative 
method for the solution of these linear systems. This is a conjugate gradient-like method which 
can be used for systems of linear equations in which the coefficient matrix is non-symmetric. Its 

13 - plane h - plane 

Fig. 1. The complex mapping (9) for a = 1, 6 = 0 in the complex plane. 
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convergence behavior is strongly influenced by the location of the eigenvalues of the coefficient 
matrix, and it appears to be very important that the spectral condition number of this matrix is 
small [28,29]. For this reason we apply Bi-CGSTAB not to the d x d system &x = b, but to the 
preconditioned system 

9-‘Ax = .T’b 

The non-singular matrix 9 is called the preconditioner. There is a wide choice of preconditioners, 
see for example [30]. The matrix B should have the following properties. 

It should be a proper approximation of A such that 9-‘A resembles the identity matrix. The 
most important quality of a preconditioner is to reduce the spectral condition number of the 
preconditioned matrix 8-‘A. 
The preconditioner should be cheap to compute, and it should be possible to solve the system 
gy = c for given c in O(d) operations. 
It should not require a large amount of storage. 

For sparse matrices which are diagonally dominant, a very effective way of obtaining a proper 
preconditioning matrix is to proceed with an LU-decomposition, but to preserve the sparsity in 
the factors L and U by ignoring some or all elements causing fill-in additional to that of A. The 
matrix B is then chosen equal to LU. In this way one obtains the splitting (LU, -R), in which 
R = A - LU is the so-called residual matrix. In principle, any conjugate gradient like method 
suitable for non-symmetric systems can be applied to the preconditioned system 

U-‘L-‘Ax = U-IL-lb 

In this paper, we use an incomplete LU-decomposition in which the sparsity pattern of L + U is 
based on a drop tolerance cp. First the matrix is scaled in such a way that 

j$, laiil = 1 for 1 < i < d 

Next, we construct a splitting (LU, -R) in which all entries of R are in absolute value smaller than 
cp. Herein, cp is a threshold parameter which has to be chosen in advance. When neglecting the 
effect of roundoff errors, we make an exact decomposition of the matrix A - R. No restriction is 
made with respect to the sparsity pattern of the coefficient matrix, so the method can be used even 
when a complicated domain or an irregular node numbering is used. The incomplete decomposition 
is constructed row by row. Given the first i - 1 rows of L and U, we construct row i of L and 
Ufrom R=A-LUas 

min(i, k) 

rik = aik - jF; lq”jk 

Suppose I, has been calculated for j < k. If k < i one obtains from (14) 
k-l 

(14) 

rik+likukk=aik- 1 +jk, k -ci 
j=l 

(15) 

If the absolute value of the right-hand side of this equation is less than Ed, fill-in on position (i, k) 
is neglected; otherwise lik is calculated from (15) together with rik = 0. With iii = 1, uii can be 
calculated from 

i-l 

uii = aii - 2 lpji 
j=l 

(16) 

If k > i one obtains from (14) together with Zii = 1 

i-l 

rik+uik=aik- 1 @jk, k >i 
j= I 

(17) 

If the absolute value of the right-hand side of (17) is greater than or equal to c~, we demand r, 
to be zero; otherwise fill-in position (i, k) is neglected. The construction of the factors L and U 
is described in more detail in [16]. The associated CPU-time required is relatively small, not more 
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than the time for one or two iterations with BXGSTAB. From numerical experiments it is found 
that the choice of cP is not very critical, and all values in the range 0.001-0.01 perform well. When 
several systems of linear equations have to be solved in which the coefficient matrices do not differ 
very much, as in continuation methods, it is possible to use the same preconditioner several times. 
In that case it may be advantageous to choose a relatively small value for cPp- 

In order to inc.rease the efficiency of the incomplete decomposition, it is possible to perform a 
renumbering of the unknowns which is based on the same basic idea as in multigrid methods: many 
iterative methods can eliminate high-frequency errors very effectively, but they are inefficient at 
eliminating a long wavelength error. A couple of iteration steps result in an approximation with 
a smooth error. This error can therefore be well corrected on a coarser grid. Solving the equations 
on the coarse grid gives the two-grid method. Applying this idea recursively on coarse and coarser 
grids leads to the multigrid method. Our preconditioning technique uses a partition of the 
unknowns based on a similar sequence of grids as in multigrid. Renumbering the unknowns 
according to this partition enables us to construct an incomplete LU-decomposition which can be 
used in eliminating effectively both high- and low-frequency errors. The renumbering of the 
unknowns as described above results in a system of linear equations which can be written as 

where x, is the vector containing the unknowns of the first level, and x2 those of higher levels. This 
partitioning of the matrix can be repeated for the matrix in the lower-right corner until we arrive 
at the coarsest grid. The preconditioning technique consists now of making a splitting (LU, -fi) 
of A, in which the elements rii of the residual matrix R = A - LU satisfy 

The drop tolerance cii is chosen in such a way that one obtains a residual matrix with relatively 
small elements rii in the lower-right corner. For simple constructed problems, an expression for this 
drop tolerance can be derived in such a way that the condition number of the preconditioned matrix 
has a small upperbound independent of the dimension of the system [31]. Several numerical 
experiments demonstrate that this preconditioning technique is of interest in much more general 
cases, for example, when the mesh size is far from constant, or when the partial differential equation 
contains dominating convective parts. In summary, the computational work to solve a linear system 
of equations consists of three parts: the construction of the preconditioner (with or without 
renumbering), its application and the number of iterations with Bi-CGSTAB. From numerical 
experiments [16] we conclude that the computational time used to construct the preconditioner 
grows linearly w:ith the number of unknowns. Its application is linear with the fill-in. This fill-in 
is about a factor two or three larger than that of A, which is modest. 

2.4. Summary oj- the total algorithm 

The total algorithm combining the continuation method with the eigenvalue solver and the 
iterative linear systems solver is summarized as follows. Suppose a point (II,,, pO), the tangent 
(I&,, ,&,) and n, eigenvectors (and eigenvalues 6, , . . . , onr) are computed, then 

1. 
2. 

3. 

4. 

5. 

Compute the Euler guess: u = u,, + Asir,,; p = p0 + As&, 
Compute the Jacobian Q, and the preconditioning matrix 9, with a specific choice of the 
drop tolerance Q,. 
Solve the system (1,2) in a Newton iteration with initial guess from step 1 until convergence 
in m steps. This requires the solution of 2 * m systems of linear equations with (fixed) 
preconditioning matrix 9,. 
Compute the matrix 9 in (13) and determine the preconditioning matrix 9, with a certain 
choice of f,. Start the Simultaneous Iteration Technique with the n, starting (eigen)vectors. 
With filtering index f, and k reorientations until convergence, this requires the solution of 
nr * 1 * k linear systems with (fixed) preconditioning matrix 8,. 
Compute a desired number, say n, of testfunctions rPu. For each testfunction r, a linear system 
must be solved with preconditioning matrix 9,. 
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For each problem, the user has to supply the system of nonlinear equations (1) and the Jacobian 
matrix of that system (@) in a particular form as desired by the Bi-CGSTAB algorithm [16]. Apart 
from the choice of numerical parameters, such as L, and a suitable choice of the testfunctions tPY 
the remainder of the code is totally application independent. 

It is not a priori clear that the iterative method is superior, with respect to CPU time, to the 
original algorithm [15] in which direct linear systems solvers were used. In total 
nr * 1 * k + 2 * m + n linear systems have to be solved for one complete step on a branch. The 
convergence ofthe Bi-CGSTAB algorithm combined with the preconditioner should therefore be 
fast. Obviously, with respect to memory usage, the iterative algorithm is strongly favorable. The 
fill-in during the incomplete decomposition (dependent on tP) is much smaller than that of a 
complete decomposition. In the following test problem we compare the performance of the direct 
and iterative solution technique of the linear systems as applied in the generalized eigenvalue solver. 
This is the most expensive part of the code, since the largest number of linear has systems to be 
solved. To avoid complications arising due to infinite eigenvalues we choose a very simple ordinary 
eigenvalue problem of which the eigenvalues are analytically known. 

2.5. Performance of the eigenvalue solver 

Consider the following Poisson problem on [0, l] x [0, l] for the function u(x,y) 

v*u =f(x, Y) (18) 

with Dirichlet boundary conditions u = 0 on all boundaries. When the problem is discretized using 
central differences on a uniform grid with grid size h and k, we get the following linear algebraic 
problemfori=l,..., N-l;j=l,..., M-l with 

a,%,j+ I + %%,j-I - ui,, + awui- 1.j + vi+ I,] = bt,, (19) 

with 

h* 
aN = as = 2(k2 + h2) 

k2 

b, = A.jh2k2 

‘J (k* + h*) 

This can be written as &I = b where u is a (N - 1) * (M - 1) vector of unknown values of u at the 
internal gridpoints. If this linear system of equations is solved using the Jacobi method, we get an 
iteration matrix F = E - 9. It is well known that the eigenvalues u of the ordinary eigenvalue 
problem 

F-x=0X (20) 
are 

h* 
6ij=l_icos(i7r/iV)+k2k+2h 

’ k+h 
2 cos(j7t p4) (21) 

for i=l,... ,N-l;j=l,..., M-l. 
The test problem consists of determining the largest eigenvalues of the matrix 4 numerically 

with the generalized eigenvalue solver. Equation (20) describes an ordinary eigenvalue problem and 
the matrix .5@ in (7) is the identity matrix. Note that it is possible to determine the largest eigenvalues 
directly with the SIT code without any complex mapping. However, as already mentioned above, 
we want to compare the performance of the linear system solvers within the generalized eigenvalue 
solver. Also no special use is made of the symmetry of the system of equations. For the parameters 
in the complex mapping (9), we take a = 1, b = 0. 

To determine the accuracy of the calculated eigenvalues and eigenvectors each eigensolution is 
backsubstituted into (20) and divided by the L2 norm of the corresponding eigenvector. The L, 
norm of this residue is then taken as a measure of the accuracy of the specific eigensolution. For 
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Table I(a). First 4 eigenvalues of the iteration matrix 9 with 
N=M=SO 

D (I Cornouted Relative accuracv 

I I 0.99810 8 x W9 
2 1 0.99526 2 x 10-e 
1 2 0.99526 2 x 10-s 
2 2 0.99241 3 x lo-’ 

Table l(b). Timing and memory requirements of the eigenvalue solver 

Direct solver 

h M d Time Time* El. in 9’ Mem (Mw) 

25 25 6.3 x IO2 3 4.80 x IO-’ 2 
50 50 2.5 x IO’ 33 1.32 x 10m2 24 

100 100 1.0 x 104 - 396. 

Iterative solver, no renumbering 

h M d Time Time* El. in B* Mem (Mw) 

25 25 6.3 x IO* 1.4 2.24 x 10-j 23.1 - 

50 50 2.5 x 10’ 9 3.60 x IO-’ 28.1 1 
100 100 1.0 x 10’ 50 5.00 x 10-X 31.6 2 
200 200 4.0 x IO’ 415 1.04 x 10-2 33.3 8 

Iterative solver, renumbering 

h M d Time Time* El. in b* Mem (Mw) 

25 25 6.3 x IO2 0.9 1.44 x 10-l 20.7 - 

50 50 2.5 x 10) 4 1.60 x 1O-3 22.3 
100 100 1.0 x IO’ 19 1.90 x 10-3 24.8 2 
200 200 4.0 x 10’ 90 2.25 x lO-3 26.4 8 
300 300 9.0 x 10’ 220 2.44 x 10-3 27.0 18 
400 400 1.6 x IO5 416 2.60 x IO-’ 21.2 32 

*Per unknown, . obtained by extrapolation (out of memory). 

the described testproblem the number of computed eigenvalues n, is set to 4. In all cases 
random vectors (with absolute magnitude smaller than 1) were used as an initial guess for 
the eigenvectors. The required accuracy is set to IO-’ for the first two eigenvectors. To accomplish 
this accuracy 10 (I = 10) iterations were needed during the filtering stage of the SIT, together 
with one reorientation cycle (k = 1). The same accuracy is also obtained with (I = 5, k = 2) and 
takes about the same amount of CPU time, since the number of linear systems of equations to 
solve is the same. 

The eigenvalue .results for the particular case N = M = 50 are shown in Table l(a). The algorithm 
is able to determine multiple eigenvalues; the accuracy of the last computed eigensolution is slightly 
less than the others. The timing results for this test problem using both a direct solver, with a 
complete &Y-decomposition computed with a bandsolver (the NAG routines FOlLBF and 
F04LDF), and BXGSTAB are shown in Table l(b) for several resolutions N = M. For a complete 
LU-decomposition of a banded matrix (FOlLBF was only called once) with bandwidth md and 
order d, the CPU time increases with (m,)*d. The preconditioning was also performed only once 
with cp = lo-*. Since k = 1, we are in fact comparing the time it takes to solve the l*nf linear systems 
with both methocls. 

The code for the iterative solver is only partially vectorized because the preconditioning 
technique is not very well suited for vectorization. However, even with a relative low grade of 
vectorization, a relatively good efficiency is obtained in terms of computational time and use 
of core memory. Time and memory requirements depend on the amount of fill-in that is 
allowed in the preconditioning matrix 9 and thereby on e,,. Also shown in the table is the 
number of elements (per unknown) in 9. Here an optimum is sought between time needed for 
the preconditioning and the resulting iterative solution of the linear systems. The initial precondi- 
tioning is sufficient for the rest of the filtering iterations and the underlying linear solver 
Bi-CGSTAB takes only three iterations for the chosen value of cp. Clearly, the use of the iterative 
solver, even without renumbering, is a significant improvement over the direct solver. For large 
systems the gain in CPU time is already very good [O(lO) for 2500 unknowns]. For even larger 
systems [U(104) or larger] direct methods are simply not possible on current computer systems 
because of memory limitations. The results using the renumbering technique are far better than 
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those without renumbering. The three different cases are summarized in Fig. 2, where the CPU time 
per unknown (t/d) is plotted versus the number of degrees of freedom d. For the preconditioner 
with renumbering, t/d is proportional to a very small power of d. 

3. RAYLEIGH-BENARD FLOWS IN LARGE ASPECT RATIO CONTAINERS 

As a typical application of the code, we consider a liquid layer heated from below in a 
two-dimensional rectangular box of aspect ratio A (ratio of length to height). The temperature on 
top and bottom is constant, the sidewalls are perfectly isolated and all walls satisfy no-slip 

conditions. If the liquid is motionless, the only solution is the conduction solution for which the 
temperature is a linear function of z. If the horizontal and vertical velocities are u and w, 
respectively, the governing dimensionless equations, with the usual scaling (see e.g. [2]), in 
streamfunction Ic/ (with u = a$/& and w = -a$/&)-vorticity w (W = &v/ax - au/&) formu- 
lation are 

(22) 

w = -v’rc/ (23) 

aT aT 
at +uax+w~=V’T+w - 

with boundary conditions 

(24) 

(25) 

where T is the temperature deviation from the condition solution T= 1 - z, Pr is the Prandtl 
number and Ra the Rayleigh number. 

The governing stationary equations and boundary conditions are discretized using a control 

volume method as in [15] on a grid for i = 0,. . . , N; j = 0,. . . , M. By using the mapping 

y = +(I + tanh(qv - i))/tanh(q/2)) (27) 

a non-equidistant grid in y is obtained from an equidistant one in p. These non-equidistant 
grids were employed in both the x- and z-direction; the stretching parameters q are indicated 

below as qx and qz. Discretization gives a nonlinear system of algebraic equations of the 
form 

(28) 

‘;; 0.6 
P 
0 

- 0.4 

5 

0.2 

0 2.5 
d (104) 

5 

Fig. 2. CPU time (CRAY-YMP) per unknown (t/d) as a function of the degrees of freedom d for the 
direct solver (. . . ) and the iterative solver with (-) and without (- - - - - - -) renumbering. 
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Table 2. Values of Ra, and Ra,, the first two primary bifurcation 
points at A = 10 for several resolutions and (non-equidistant) grids. 
A value qr = 1 indicates an equidistant grid, a value of 3 indicates 
a stretching of the grid to create more points near the sidewalls, 

according to the mapping (27) 

4, 4: 

3 3 
3 3 
3 3 
3 3 
I 3 
I 3 
I 3 
I 3 
I 3 
I I 

N 

128 
256 
512 

1% 
256 
256 
512 

2?6 

M Ra, Ra, 

16 1787.3 1788.8 
16 1745.4 1748.2 
16 1734.8 1737.7 
I6 1731.3 1734.1 
16 1757.3 1759.2 
I6 1737.8 1740.4 
32 1735.7 1738.9 
16 1732.9 1735.7 
I6 1731.3 1734. I 
I6 1744.4 1747.7 

where II is the d = 3(N + l)(M + 1) dimensional solution vector consisting of the unknowns at the 
gridpoints. The 3-dimensional vector p consists of the values of the parameters (Ra, Pr, A). The 
linear stability of a particular solution of (10) is determined by solving the generalized eigenvalue 
problem of the form (7) where d is the (in this case symmetric) Jacobian of F,., and W is a singular 
diagonal matrix. In this case, infinite eigenvalues occur, but components of the corresponding 
eigenvectors are first filtered out, by using inverse iteration [15,24]; this takes little extra 
computational time. For the parameters in the mapping (9), we again take standard values a = 1, 
b =O. 

The results are divided over three sections. In the first, we consider the influence of (distant) 
sidewalls of the container on the critical Rayleigh number for the onset of convection. The critical 
Rayleigh number is here determined by the value of the Rayleigh number at the first primary 
bifurcation point. In the second section, we focus on A = 10 and study the stable (and unstable) 
steady solutions and the associated convective heat transfer, through the Nusselt number Nu, for 
different Prandtl numbers. These results can be compared with experimental work. In the 
third section, we consider A = 20 and investigate whether any ‘pattern selection’, in the form of 
intervals in Ra where unique stable steady states exist, is found directly from the bifurcation 
diagrams. 

3.1. The onset of convection 

The primary bi:Furcation points could be easily detected although they are closely spaced. All 
primary bifurcations are of pitchfork type, because of the Z, x Z, symmetry of the problem. Due 
to this symmetry, some testfunctions 7,,q will not detect certain bifurcation points for specific choices 
of p and q. Since we are only interested in large aspect ratio containers, the only relevant symmetry 
is reflection through the mid-axis of the container. If one chooses the value of p corresponding to 
a streamfunction value at a location where the eigenvector at the singularity is such that the 
streamfunction (at that particular location) is zero, then the testfunction will not detect the 
singularity. This i:s due to the fact that the eigenvector is supposed to be normalized with its pth 
component being unity [21]. For example, if the eigenvector consists of an even cell pattern, a value 
of p corresponding to the streamfunction on the mid-axis will not detect the singularity associated 
with this eigenvector. The solution is simple, we choose two values of p corresponding to both 
temperature and streamfunction at the same location. When the streamfunction is an odd function, 
the temperature will be even and vice versa. One of the testfunctions will detect a singularity. Note 
that singularities are always noticed through the eigenvalue solver. 

In Table 2, the values of the first and the second primary bifurcation point for A = 10 are 
shown for several grids. The extrapolated value (it is observed that quadratic convergence is 
attained for the hner grids) is 1731.3. Note that an equidistant grid in x gives better results 
than a grid with a stretching qx = 3 (more points near the sidewalls). For an infinite layer the 
critical value is 1’708. The sidewalls have a stabilizing influence, as is well known from similar 
problem [7,9] and for finite aspect ratio containers the critical value Ra, is therefore larger. The 
value found here is slightly below the range of values reported experimentally in [32]. The 
experimental values are likely to be larger because the roll-axes may not be perfectly aligned to 
the sidewalls. 
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3.2. Finite amplitude convection, A = 10 

We first show timing results (Table 3) for the computation of one regular point and its linear 
stability on a particular branch in the bifurcation diagram. The number of Newton iterations is 
for each resolution equal to 3 (the step size was chosen accordingly), and the number of dominant 
eigenvalues nf = 4. The values in Table 3 are typical for the bulk of the computations, where good 
approximations to the eigensolutions are available. In this case the SIT converges fast, usually 
within 2 reorientations. Renumbering was used in computing the preconditioning matrix, with a 
straightforward extension of the procedure described above to more than one unknown per point. 
Although it speeds up the code somewhat this probably can be improved; work on this is in 
progress. 

The data in Table 3 indicate that the eigenvalue solver is much more expensive than the 
determination of the steady state itself. In the computations below, we therefore did not determine 
the stability at each point but at every Sh point on a branch. The total computational time does 
not increase linearly with the number of unknowns but somewhat faster. Table 3 also illustrates 
that a good choice of Q, is worthwhile. 

If we pose as criterion that the numerical value of the first two bifurcation points may only differ 
1% from the extrapolated value, then a 256 x 16 grid (both equidistant and stretched) is adequate 
(see Table 2) to determine a correct bifurcation structure. These bifurcation structures were 
computed for three different Prandtl numbers (Pr = 0.7, 5.5 and 1000). In these computations, the 
grid was stretched in x-direction (qx = 3), because it was expected that changes in the number of 
cells would occur along one of the sidewalls, requiring extra resolution. The bifurcation structure 
for Pr = 5.5 is plotted in the weakly nonlinear regime in Fig. 3(a). On the vertical axis, the vertical 
velocity at the gridpoint (3, 12)-near the upper left corner-is plotted. The slightly supercritical 
patterns near the primary bifurcation points are shown in Figs 3(b-d). In the nonlinear regime, 
larger Ra, the bifurcation structure is shown in Fig. 4(a). Patterns at labelled points in Fig. 4(a) 
are presented in Figs 4(b-f). At the first primary bifurcation point (Ra = 1745.4) the motionless 
solution becomes unstable to the IO-cell pattern [Fig. 3(b)] which stabilizes in a supercritical 
pitchfork bifurcation. This lo-cell pattern remains stable up to large Rayleigh number [Fig. 4(a, b)]. 
At the second bifurcation, a 9-cell solution branches off [Fig. 3(c)]. This solution remains unstable 
up to the secondary bifurcation point at Ra = 1835, but is stable for larger Ra [Fig. 4(d)]. The mixed 
mode branch appearing at this secondary bifurcation point, consists of an asymmetric pattern 
where a new cell develops near the left wall of the container [Fig. 4(c)]. This pattern remains 
unstable [Fig. 4(a)]. At the third primary bifurcation point, the motionless solution becomes 
unstable to an 11-cell pattern [Fig. 3(d)]. Although there is a secondary bifurcation point at 
Ra = 2043 at which asymmetric solutions branch off [Fig. 4(e)], the solution along this branch 
remains unstable over the computational domain considered [Fig. 4(f)]. 

We next compare these results with experiments, in particular the work by Dubois and Berge 
[33] and Walden et al. [32]. In [33], a container with A = 10 is used and the Prandtl number is about 
1000. Velocity profiles (vertical as well as horizontal) are measured and presented in [33] for several 
values of supercritical Rayleigh numbers. The lo-cell solution branches are almost identical for 
Pr = 1000 and Pr = 5.5. Both IO-cell patterns are stable up to large Ra. This is consistent with that 
found in [33] (in these experiments both symmetry related IO-cell patterns could be induced through 

Table 3. CPU-time (CRAY-YMP) and memory usage for Rayleigh- 
Benard problem for one typical step on a branch, excluding/ 
including the computation of the linear stability through tzt = 4 
eigensolutions. The number of Newton iterations was in each case 
m = 3, the number of filtering steps was I = 5 and the number of 

reorientations k = 2 

N M Eigenvalues Lp CPU time (s) Mem (Mw) 

256 I6 no 5.0 x 10-S 58 6.6 
256 16 yes 5.0 x 10-S 141 6.6 
256 16 yes 5.0 x 10-q 249 6.6 
256 I6 yes 5.0 x 10-e 147 6.6 
I28 16 no 5.0 x 10-s 34 3.4 
I28 16 yes 5.0 x 10-S 64 3.4 
512 I6 no 5.0 x 10-s I01 13.1 
512 16 yes 5.0 x 10-S 308 13.1 



Non-parallel steady flows and their linear stability 

(a) O.’ ~~~“‘~~‘1”“““‘1”“““” 
W 

1725 y 1775 1825 1875 
(C) Ra 

427 

- 

Fig. 3. (a) Bifurcation picture for A = 10 and Pr = 5.5 in the weakly nonlinear regime. Solid ( ) curves 
indicate (un)stable states. Selected patterns of the streamfunction at labelled points in the figure are shown 

in the panels (b-d). Contour levels are labelled in the plots. 

different initial conditions) where the lo-cell patterns could be realized for Ra up to IORa,. In 
Fig. 5(a), we show the vertical velocity w(x, z = 0.5) over the interval xc[3.5,6.5] for two values 
of supercritical Rayleigh numbers close to the values of Fig. 3 in [33]. Using the experimental values 
of thermal diffusivity and layer height, we calculate for Ra = 6.7 x Ra, a maximum velocity of 
419 pm s-’ . This .value is close to the experimental value shown in Fig. 3(b) of [33]. Also, the change 
in the shape of the velocity profile, as observed in experiments, with increasing Ra is clearly seen. 
Just as in [33], we decomposed the vertical velocity field at z = 0.5 into two Fourier components, 
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one (w,) with wavelength 2.0 and one (w3) higher harmonic of wavelength 2/3. The maximum 
amplitudes of these components are shown in Fig. 5(b) as a function of Ra. The behavior is in 
excellent correspondence with the measurements in [33], the first harmonic has a square root 
dependence on Ra, whereas the higher harmonic behaves like Ra 3’2 Best fits, when the dimensional . 

values are considered, are 

w, = 1546°.5 pm s-’ w3 = 4.1c’.s pm s-’ (29) 

(d) f---- 

k 

(a) 

-2.2 

A 3 10 

tu 
Pr I 5.5 

700 3100 4500 5900 7300 9700 

Ra 

(b) 

Fig. 4(a-d)-Caption opposite. 
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k--_-L. 
Fig. 4(e-f). 

Fig. 4. (a) Bifurcation picture for A = IO and Pr = 5.5 in the nonlinear regime. Again, selected patterns 
at labelled points in the figure are shown in the panels (bf). 

where c = (Ra - Ra,)/Ra,. This is quite close to the relations found in the experiments. The 
dependence of Nu on Ra along the stable IO-cell branch is for the three Prandtl numbers shown 
in Fig. 6(a). There is hardly any difference between the heat transfer associated with the slightly 
different convection patterns. Clearly Nu is linear with Ra close to onset, but levels off at larger 
Ra, in correspondence with experiments. Walden et al. [32] consider a container with an aspect 
ratio 10.61 x 5.32 (their container A) and measure the Nusselt number Nu as a function of 
increasing Rayleigh number. They observe several steady (nearly) 2-dimensional patterns each 
having its different curve Nu-Ra (see their Fig. 3). The Nusselt number of the linearly stable 
patterns are shown in Fig. 6(b) in the same way as Fig. 3 of [32]. Because of the internal symmetry, 
symmetry related cells have the same Nusselt number. The 94~11 and IO-cell solutions have nearly 
the same Nu number and the values are within the range of the experimental results, although they 
are slightly larger. Again, the non-perfect alignment of the roll-axes in the experiments may be 
responsible for the Iower experimental values of Nu. 

(a) (b, a.5 
W 

1 3 

2.5 

2 

1.5 

1 

0.6 

0 
0.35 0.4 0.46 0.5 0.55 0.6 0.65 0 1.5 3 

E 
4.5 6 

xlA 

Fig. 5. (a) Vertical velocity at the midheight of the layer (z = 0.5) as a function of x/A for Pr = 1000 and 
the two indicated values of L = (Ra - Ra,)/Ra,. (b) Fourier components of the vertical velocity along the 

IO-cell branch as a function of c for the same values of A and Pr as in (a). 
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(a) 2.1 

Nu 
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1000 2750 4500 6250 

Ra 

Fig. 6. The Nusselt number Nu as a function of Ra. (a) For the three different Prandtl numbers along 
the IO-cell branch. (b) For Pr = 5.5 along the 9- and IO-cell branches. 

3.3. The cell pattern selection problem, A = 20 

In this last section, we compute bifurcation diagrams at a fairly large aspect ratio (A = 20) using 
a stretched 512 x 16 grid. First we compare these qualitatively with the asymptotic results of weakly 
nonlinear theory [7] for a container with distant sidewalls and stress free horizontal boundaries. 
In fact, one can view these results as extensions of the weakly nonlinear theory both with respect 
to the type of horizontal boundaries and into the full nonlinear regime. Second, we test the 
hypothesis that pattern selection is induced through saddle node bifurcations far from onset. In 
support of this hypothesis we would like to find several intervals in Ra where unique stable steady 
states exist. 

The bifurcation picture for Pr = 7, A = 20 is presented in Fig. 7(a) for Rayleigh numbers 
close to onset (the weakly nonlinear regime). The corresponding steady patterns of slightly 
supercritical values of Ra are given in the Figs 7(b-e). The first two solutions bifurcating at 
Ra = 1729.2 [the 20-cell solution in Fig. 7(b) and the 19-cell solution in Fig. 7(c)] have 
constant phase (of the complex amplitude function which modulates the size of the individual 
rolls) and only the first (the 20-cell solution) is stable. For the other two [Figs 7(d) and (e)], 
the amplitude function goes to zero at locations within the container (these type of solutions 
were also found by Daniels [7]) and both solutions are unstable. Hence, the picture of steady 
states close to onset is qualitatively similar to that of stress free horizontal walls. For larger 
values of Ra the bifurcation structure in Fig. 7(a) shows that the secondary bifurcation point 
on the 19~11 branch (at which the solution stabilizes) already occurs close to the onset, at 
Ra = 1733.5. 

Both the 20cell and 19-cell remain stable over the rest of the computational domain [Fig. 8(a)]. 
For the infinite layer, the critical wave number is 3.117; this corresponds to 19.84 cells at 
onset. Figure 8(b) shows that 20 cells fit in ‘comfortably’ if the wavelength of the cells near 
the boundary is slightly larger than the critical value whereas the wavelength over the remainder 
of the layer is slightly smaller. Also 19 cells fit in ‘well’ [Fig. 8(c)], with the wavelength over 
the layer being slightly larger than the critical wavelength. At the secondary bifurcation point, 
Ra = 1733.5, new unstable solutions appear. This branch is labelled ‘mixed’ in both Figs 7(a) 
and 8(a). These are probably the ‘phase winding’ solutions found in weakly nonlinear theory. 
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-0.024 

-0.04 ‘,““‘.‘I 
1725 1735 1745 1755 1765 1775 

Ra 

Fig. l(a)-Coption opposite. 
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W 

Fig. 7(b-e) 

Fig. 7. (a) Bifurcation picture for A = 20 and Pr = 7.0 in the weakly nonlinear regime. Bifurcation 
points are shown as squares. Selected patterns at labelled points in the figure are shown in the panels 

(b - e). 

Pictures of two solutions on this branch are presented in the Figs 8(d) and (e). With respect to our 
hypothesis, we observe that in Fig. 8(a), no saddle node bifurcations appear far from onset. Hence, 
the bifurcation picture clearly shows that for this value of Pr there is no discontinuous change 
between unique states. Instead more than one stable state is possible in large aspect ratio containers. 
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4. CONCLUSIONS 

The numerical technique which is presented in this paper is useful to investigate the structure 
of solutions of large systems of nonlinear algebraic equations in parameter space. These large 
algebraic systems,, for example, arise through discretization of systems of steady partial differential 
equations describing, for example, confined flows. In this way, it becomes possible to effectively 
analyse non-parallel flows and their linear stability in parameter space. The advantage of this type 
of analysis is that unstable solution branches can be found, which is hardly possible (only with 
special tricks) using time-integration techniques. Although these unstable solutions have no 
physical relevance they are often necessary to construct the right transitions between stable 
patterns. 

Results of a test problem have been presented to show that the eigenvalue solver performs well 
and that (for the particular problem) the computational effort per unknown hardly increases with 
the number of degrees of freedom d, if d is large. This efficiency is obtained through the type of 
preconditioner (with renumbering) used; the major part of the computational work in the 
eigenvalue solver is to solve linear systems. Although Bi-CGSTAB is used here, many other 
standard methods to solve the preconditioned system would give nearly the same results. A 
preconditioned conjugate gradient like method combined with the SIT therefore enables one to 
treat large generalized eigenvalue problems in this way. 

Application of the code to the classical Rayleigh-BCnard problem in large aspect ratio containers 
shows that indeed high resolution is necessary to compute a sufficiently accurate bifurcation 
diagram (Table Z!). The aim of the present paper is to demonstrate that the present code can do 
this job. Thereby it opens the gate to compute these type of bifurcation diagrams for flows for 
which, up to now, only theoretical information in the weakly nonlinear regime through asymptotic 
techniques or in the full nonlinear regime using time-integration could be obtained. The results for 
A = 10 were shown to compare well with measurements. The results for even larger aspect ratio 
A = 20 compare (near onset) qualitatively well with those of weakly nonlinear theory. Our 
hypothesis about the selection induced by saddle node bifurcations fails in the particular case 
investigated. The bifurcation results as presented therefore give no indication why the wavelength 
of the experimentally observed pattern increases with increasing Rayleigh number. A detailed 
answer to the question of the pattern selection problem as found in experiments and pointed out 
in the introduction requires more (computational) effort and is outside the scope of this paper. 

Finally, the numerical method is not without its drawbacks and can be improved in several ways. 
First, the test functions used to detect simple bifurcation points are not robust and have to be 
reconsidered for each application. More robust test functions are currently developed. Second, the 
linear solver works very well for linear systems which are diagonally dominant but for systems 
which are not, the amount of fill-in in the preconditioning matrix and thereby the required CPU 
time and use of memory increases. We are currently experimenting with the parameters in the 
complex mapping (9) to improve this (at least in the eigenvalue solver). When the CPU time 
becomes excessively large or the amount of fill-in too large, then time integration remains as the 
only option to determine any dynamics of the system. 

Although there may remain technical problems from application to application, the code enables 
one to deal with bifurcation problems defined by large systems [d = O(lO’)] of non-linear algebraic 
equations in an efficient way. The code has recently been applied to a pattern selection problem 
in 3D Marangoni convection [34]. It has the potential to study a new range of problems, for 
instance the stability of the large scale ocean circulation, with continuation techniques in the near 
future. 
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