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1 Introduction

Visual effects often requires the simulation of natural phenomenon
such as water, explosions, steam, or fire. For The Cat in the Hat,
Rhythm and Hues was required to simulate a character-animated
fish interacting with water in a fishbowl.

In small-scale fluid motion, surface tension provides an impor-
tant visual cue for depicting the physical size of the underlying
fluid. Waves driven by surface tension, called capillary waves,
travel much faster over the water surface than waves driven by grav-
ity, which are generated at larger scales.

In addition to small-scale waves, surface tension forces also drive
larger-scale gross motion of the fluid. This can be seen in the
fishbowl, shown in Figure 1. Without surface tension, the sur-
face waves would reflect until numerical viscosity damped them
out, and the fish bowl would look more like a swimming pool. To
simulate such a small-scale water surface required developing new
techniques for modeling surface tension.

Numerically, simulating surface tension is difficult because it in-
herently imposes a severe time-step restriction due to the propaga-
tion speed of capillary waves. The time step restriction due to cap-
illary wave propagation is O(∆x1.5), while the standard CFL time
step restriction is only O(∆x). In conventional methods for solv-
ing the Navier-Stokes equations, the total simulation time is quickly
dominated by surface tension as higher resolutions are used. This is
one reason computer graphics practitioners have tended to ignored
it.

We have developed a split time scale method ([Yanenko 1971])
that separates the fast-changing surface tension term from the
slowly-changing terms bound by a less restrictive CFL-time step
condition. This new scheme reduces the number of computationally
expensive steps, while accurately calculating fast wave propagation
within the framework of existing fluid simulators.

2 Numerical Method

Using finite time step ∆t, a fluid system may be updated using the
rule,

ut+∆t = ut +∆t
[

F(St)+g− (ut
·∇)ut

−∇pt/ρ t+∆t
]

where ut(x) is the time-dependent velocity field describing the fluid
flow at point x at time t, pt(x) is the fluid pressure, St is the surface
geometry, F(St) is the surface tension force, g is the gravity vector,
and ρ t(x) is the fluid density. We must also update the surface
geometry,

St+∆t = advect(St ,ut ,∆t)

where advect is a procedure (such as the particle-level set
method [Enright et al. 2002]) that evolves the shape of the air/water
interface under the influence of the flow field ut over the timespan
from t to t +∆t.

Our technique splits the update equations into two parts, one
containing only the surface tension term and the other containing
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Figure 1: Frame from Cat in the Hat including surface tension ef-
fects. Cat in the Hat TM c©2003 Universal/DreamWorks.

all terms. The surface tension terms are “cycled” at the rate de-
termined by capillary wave propagation, while the overall equation
is only updated at the rate determined by the CFL condition. This
gives rise to the following multiple-time scale update rule:

ut+ 1
n ∆t
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∆t
n

[
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]

· · ·
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F(St+ (n−2)
n ∆t

]

ut+∆t = ut +∆t
[

F(St+t+ (n−1)
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]

At substep i, the surface geometry is advanced using

St+ i
n ∆t = advect(St+ i−1

n ∆,ut+ i−1
n ∆

∗
,

∆t
n

).

Because the full equation is updated less frequently than just the
surface tension terms, there is a significant savings in the number
of times the pressure must be calculated, which requires solving a
large sparse linear system. For medium resolution simulations, we
typically see a speedup of a factor of 2 over the naive single time
scale method. This is the difference between an unacceptable long
30 hours, and a 15 hour simulation which can run overnight.
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