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 21 
Abstract 22 

Spectral analyses of time series of zonal winds derived from locations of balloons drifting 23 

in the southern hemisphere polar vortex during the VORCORE campaign of the 24 

STRATÉOLE program reveal a peak with a frequency near 0.10 hr-1, more than 25% 25 

higher than the inertial frequency at locations along the trajectories. Using balloon data 26 

and values of relative vorticity evaluated from the Modern Era Retrospective-analyses for 27 

Research and Applications (MERRA), we find that the spectral peak near 0.10 hr-1 can be 28 

interpreted as due to inertial waves propagating inside the Antarctic polar vortex. In 29 

support of our claim, we examine the way in which the low-frequency part of the gravity 30 

wave spectrum sampled by the balloons is shifted due to effects of the background flow 31 

vorticity. Locally, the background flow can be expressed as the sum of solid body 32 

rotation and shear.  We demonstrate that while pure solid body rotation gives an effective 33 

inertial frequency equal to the absolute vorticity, the latter gives an effective inertial 34 

frequency that varies, depending on the direction of wave propagation, between limits 35 

defined by the absolute vorticity plus or minus half of the background relative vorticity.36 
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 37 

1. Introduction  38 

In an atmosphere at rest, the frequency spectrum of internal gravity waves is bounded 39 

above by the Brunt-Väisälä frequency and below by the inertial frequency given by the 40 

local value of the Coriolis parameter , where is latitude and  is the 41 

angular speed of the Earth’s rotation (24 hour)-1. Inertial gravity waves with lower 42 

frequencies are evanescent and have very short attenuation lengths (Eckart 1960).   43 

Atmospheric measurements in Earth-fixed coordinate frames, e.g., time series of 44 

stratospheric winds and electric fields, typically show a spectral peak near the inertial 45 

frequency (Thompson 1978; Sidi and Barat 1986; Hu and Holzworth 1997). In some 46 

cases, however, spectral peaks have been observed at frequencies ~3-20% higher than the 47 

inertial frequency.  The source of these frequency shifts is not yet fully understood; it has 48 

been suggested that Doppler and stratification effects contribute to the shifts (Mori et al. 49 

1990).  It has also been suggested that rotational effects originating the vorticity of the 50 

background flow might contribute to higher inertial frequencies [Kunze, 1985; Jones 51 

2005; Lee and Eriksen, 1997] and that these effects might be instrumental in trapping 52 

near inertial waves in vorticity minima (centers of anticyclonic motion) [Lee and Eriksen, 53 

1997]. Plougonven and Zeitlin [2005] suggest a source of near inertial waves generated 54 

by the geostrophic adjustment process.  55 

Shifts in the spectral peak have also been reported in the spectrum of horizontal velocity 56 

inferred from location time series of three super-pressure balloons (SPBs) released during 57 

the Arctic Kiruna 2002 Campaign (Broutman et al. 2004, Hertzog and Vial 2001).  The 58 
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spectral peak for two of the balloons in that campaign was slightly higher (5-10%) than 59 

the inertial frequency (Hertzog et al. 2002). These shifts cannot be due to Doppler effects 60 

since measurements made on drifting balloons are recorded in a quasi-Lagrangian 61 

reference frame. The spectrum corresponding to a third balloon in the Arctic Kiruna 2002 62 

campaign lacked the near-inertial spectral peak, a feature attributed to differences in the 63 

magnitude of meridional excursions, implying significant variations of the Coriolis 64 

parameter along that balloon’s trajectory.      65 

In the present paper we examine the spectrum of zonal wind speeds derived from location 66 

time series of SPBs released in the lower stratosphere during the austral spring of 2005 67 

by the VORCORE Antarctic campaign. One of VORCORE’s principal objectives was  an 68 

improved understanding of the gravity wave field in the Antarctic polar vortex. The SPBs 69 

released by VORCORE drifted for several months at two isopycnic levels corresponding 70 

approximately to either 50 hPa or 70 hPa. The inertial frequencies corresponding to the 71 

latitudes of the SPB locations range from 0.075 hr-1 at 65°S to 0.083 hr-1 at 90°S (based 72 

on ). However, the data analysis obtains a spectral peak near 0.10 hr-1, more 73 

than 25% higher than the largest value of the inertial frequency.  We suggest that such a 74 

shift to higher frequencies in the spectral peak is consistent with the effects of the relative 75 

vorticity of the background flow on the inertial gravity wave field. The effects of the 76 

background relative vorticity cannot be ignored in the dispersion relation of the gravity 77 

wave field.  For example, it has been shown that for some specified configurations of the 78 

background flow the lower bound of the inertial wave spectrum is shifted by a substantial 79 

fraction of the relative vorticity (Kunze 1985; Kunze and Boss 1998; Jones, 2005).  We 80 

study these effects for the background flows in which the SPBs drifted during the 81 
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VORCORE campaign. Our principal finding is that the spectral peak near 0.10 hr-1 can be 82 

interpreted as due to inertial waves influenced by the relative vorticity of the background 83 

flow inside the Antarctic polar vortex. We show that features of the observed spectra are 84 

consistent with relative vorticity expressed as the sum of solid body rotation and shear.  85 

An outline of the paper is as follows.  We begin with an overview of the effects of 86 

rotation on the gravity wave dispersion relation and the location of the inertial peak 87 

(effective inertial frequency). Next, we describe the data sets used, present the results of 88 

the data analysis, and compare the observed spectra with the calculated effective inertial 89 

frequency which has contributions from both curvature and shear in the vortex.  A 90 

discussion of the results and limitations of the analysis concludes the paper. A detailed 91 

analysis of how relative vorticity influences the effective inertial peak for waves 92 

propagating in a rotating and sheared background is given in the appendix.   93 

2.  Theory of inertial gravity waves in rotational background 94 

flow 95 

In a background state at rest, the approximate dispersion relation for low frequency 96 

gravity waves is 97 

 (1) 98 

Here m is the vertical wavenumber, k is the horizontal wavenumber, ω is wave frequency, 99 

N2 is the square of the Brunt-Väisälä frequency, and H is the scale height. For , m2  100 

is less than zero and the wave is evanescent. The inertial-gravity wave spectrum is cut off 101 

for frequencies below f.  102 
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In a background state not at rest, its effects on the gravity wave dispersion relation 103 

are considered in two steps. The first step includes translational effects on wave 104 

frequency by replacing ω  with the intrinsic frequency , where c is the 105 

phase speed, k is the magnitude of the horizontal wavenumber vector k, and  is the 106 

component of the background flow projected on k. The frequency seen by a drifting 107 

balloon is approximately the intrinsic frequency (Hertzog and Vial 2001).  108 

The second step includes rotational effects. This is illustrated for the simple case in 109 

which the background velocity field is constant angular velocity , where is 110 

the background vorticity assumed to be constant and  is the vertical unit vector around 111 

the vertical axis (solid body rotation). In a frame of reference rotating with the flow, and 112 

hence with angular velocity , the horizontal velocity in reference to Earth, u, 113 

is given by  114 

 115 

 (2) 116 

where is the deviation from the background flow, and is the position vector. The 117 

fluid acceleration in reference to Earth du/dt is given by   118 

 (3) 119 

where  is the relative acceleration. The second term on the right of (3) is a 120 

Coriolis-like term, which in the equations of motion adds to the Coriolis term arising 121 

from the rotation of the Earth yielding .  Thus, for such an observer moving 122 
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with the background flow, such as a drifting balloon, one would have an effective 123 

frequency feff given by 124 

 (4) 125 

To examine how the dispersion relation is changed we consider the equations of 126 

motion in the Earth-fixed frame.  These are  127 

 (5) 128 

 (6) 129 

where , u, υ and  are, respectively, the 130 

azimuthal, radial and vertical components of the velocity, is density and is pressure. 131 

Also,  and are, respectively, the curvilinear coordinates defined by  132 

and , where ,  and are, respectively, the radial, azimuthal and vertical 133 

coordinates. Let the horizontal background flow be in solid body rotation as above and 134 

write the equations of motion for a system rotating with the angular speed of the 135 

background flow. The linearized forms of (5) and (6) are  136 

 (7) 137 

 (8) 138 

where , overbars denote the background flow in solid body 139 

rotation and primes denote departures therefrom. For this system, the dispersion relation 140 
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based on the full quasi-static system that includes the heat and continuity equations (see 141 

the Appendix) is 142 

 (9) 143 

where  is given by (4), and  where is the intrinsic frequency.  144 

For , m2 is negative and the wave is evanescent. Thus the inertial-gravity 145 

wave spectrum measured by a balloon is cut off for intrinsic frequencies below the 146 

effective inertial frequency.   147 

We show in the appendix that for a more general combination of shear and 148 

curvature , where  is the absolute vorticity of the 149 

background flow. For pure shear (locally approximated as linear shear) with no curvature, 150 

wave motion normal to the direction of shear gives , while motion along 151 

the direction of shear gives . When the motion approaches a direction 152 

midway between these two extremes . This is to be compared with the result of 153 

Kunze (1985) where  irrespective of wave direction. Pure solid-body 154 

rotation gives , in agreement with (5). Accordingly, for measurements made on a 155 

balloon drifting with the wind, we expect the spectra derived from an ensemble of waves 156 

with a range of directionality to show peak energy between  and 157 

 rather than near f.  158 
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3. Data Description 159 

Beginning on 5 September 2005, the VORCORE campaign released nineteen SPBs with 160 

10 m diameters and eight balloons with 8.5 m diameters from McMurdo, Antarctica 161 

(77.5° S, 166.4° E); they drifted near 50 hPa and 70 hPa, respectively. The mean flight 162 

duration of the twenty-seven balloons was 59 days and the longest flight duration was 163 

109 days (see Hertzog et al. 2007).  164 

Each SPB carried temperature and pressure sensors and a Global Positioning System 165 

(GPS) receiver. Balloon positions were recorded every 15 minutes with a position 166 

accuracy of 15 m so that wind speeds could be estimated with accuracy greater than 0.2 167 

m s-1 (Hertzog et al. 2007).  The geographical sampling of the Antarctic vortex core was 168 

very good with best sampling in the 60° S-80° S latitude band and 60° W-120° E 169 

longitude sector since the vortex had a tendency to be centered off the pole towards South 170 

America (Hertzog et al. 2007).  171 

Evaluation of general conditions in the polar vortex, required to understand and 172 

interpret balloon data, was done using the Modern Era Retrospective-analyses for 173 

Research and Applications (MERRA) tool produced by NASA. MERRA products are 174 

produced at 3 hour intervals with a spatial resolution of  ½ degree latitude, 2/3 degree 175 

longitude and 72 pressure levels to 0.01 hPa (approximately 80 km altitude). We compute 176 

the absolute vorticity using the MERRA horizontal winds to obtain vorticity maps for 177 

each 3-hour interval, then interpolate to find the absolute vorticity at the time and 178 

location of each balloon measurement. An example vorticity map for 20 October, 2005 179 

derived from MERRA horizontal winds at 52 hPa is presented in the top panel of Figure 180 
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1.  The values of within the Antarctic polar vortex approach -1 x 10-4 s-1, a significant 181 

fraction of  f (-1.4 x 10-4 s-1 at 70°S). An example showing the range of absolute vorticity 182 

(or effective inertial frequencies assuming pure solid body rotation) inside the vortex is 183 

shown in the bottom panel of Figure 1.  Inside the vortex, the  is typically ~ 1.8 x 10-4 184 

s-1, approximately 25% higher than  at these latitudes. Henceforth all references to 185 

values of  and , including minima and maxima are in the sense of the 186 

absolute values.	  Not also that in the following discussion results of the balloon analysis 187 

(FFT, wavelet) are given in cycles/s and vorticities in angular frequencies (which include 188 

a factor of 2π). This convention is chosen to be consistent with standard practice when 189 

discussing vorticity while also allowing intuitive conversion between frequency and 190 

period for wave data.   191 

4.  Data Analysis and Results 192 

a. Spectral analysis 193 

In this section we present a spectral analysis of zonal wind derived from SPB location 194 

data showing a frequency shift of the spectral peak.  The SPB flights used in the analysis 195 

that follows spanned the October through November period, when, except for late 196 

November, the polar vortex remained well-defined and strong.  In 2005, the vortex was 197 

very stable in September and October, moved off the pole in November and broke up in 198 

early December (Hertzog et al. 2007).  199 

Zonal wind velocities were derived from the SPB measurements as described in 200 

Hertzog et al. (2007).  Fourier analysis of the zonal wind velocity over two-week periods 201 
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was performed individually for each balloon and then averaged.  The results, presented in 202 

Figure 2, show a distinct spectral peak at ~0.10 hr-1, well separated from the frequency of 203 

the semidiurnal tide (indicated by the green line), that persists from early October through 204 

November.  The red hatched area shows the range of inertial frequencies f for all balloons  205 

in the two week period; effective inertial frequencies for pure solid body rotation, 206 

, for each two-week period are indicated by the black hatched area in Figure 2.  207 

For each two-week period considered, the spectral peak falls within the range of solid-208 

body effective inertial frequencies, and generally lies outside the range of the frequencies 209 

found for f. The peak shifts toward the inertial frequency range in late December, which 210 

is consistent with the breakup of the vortex.  211 

b. Wavelet Analysis 212 

The intermittent nature of inertial waves suggests wavelet analysis as a means to explore 213 

the temporal behavior of the zonal wind spectra. The time series from each balloon was 214 

analyzed with Morlet wavelets in order to identify the spectral features as a function of 215 

time (Torrence and Compo 1998). The wavelet analysis confirmed that the dominant 216 

peak in the spectrum occurred near 0.1 hr-1, as indicated by the Fourier analysis discussed 217 

above.  The peak wavelet power was generally found to lie between ~0.08 – 0.13 hr-1.   218 

Figure 3 shows the results of a wavelet analysis for three sample balloon trajectories.  219 

Also shown are the values of the inertial frequency at the balloon location f and the local 220 

value of  (feff for the case of pure solid body rotation). Local values of  are 221 

determined by interpolating MERRA vorticity to each balloon trajectory as a function of 222 

location and time at the 52 hPa pressure level.  Figure 3 shows that there is significantly 223 
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better agreement between the location of the spectral peak and  (black curves), than 224 

the frequency corresponding to f (red curves), particularly in October and early 225 

November. Several instances of significant spectral peaks on the low frequency side of feff 226 

seen in Balloon 2 during November, when a significant oscillation occurs near 20 hours 227 

(the lowest plotted frequency), is probably a manifestation of the diurnal tide. 228 

There are a number of instances in Figure 3 for which a cutoff near  is not 229 

apparent.   Results of a statistical analysis to examine the difference between the 230 

frequency of the measured spectral peak and the local values of f are presented in Figure 231 

4.  The frequency of maximum wavelet power is determined for each balloon 232 

measurement, e.g., the frequency of the peak wavelet power as a function of time for the 233 

wavelet spectra shown in Figure 3.  The results, binned in 0.05 s-1 intervals, are presented 234 

in Figure 4, which shows the number of balloon measurements as a function of difference 235 

between measured peak frequency fm and inertial frequency f.  Note that wave period, 236 

rather than frequency, is plotted since the wavelet algorithm used for the spectral analysis 237 

returns wavelet power as a function of period rather than frequency and is the natural way 238 

to bin the results.  Statistics are presented for each two-week period in October and 239 

November, since the wavelet analysis shown in Figure 3 suggests that the spectral peak 240 

diverges from pure solid body rotation  sometime in November.   241 

The distribution of balloon measurements presented in Figure 4 shows peaks near 242 

 as well as peaks displaced somewhat from  toward . The spectral peak of 243 

zonal wind measurements for October is generally consistent with that expected for pure 244 

solid body rotation  with secondary contributions near . The vortex was 245 



13 

observed to weaken, deform and move off the pole during November. The main peak in 246 

the occurrence frequency shifts toward  in the first half of November and in the 247 

second half the main part of the distribution is found between  and  with a 248 

slight bias toward .  In section 5 it is shown that the relative vorticity can be 249 

expressed as the sum of a solid body component and a shear component. The 250 

displacement away from  is consistent with an increase in the relative contribution of 251 

the non-solid body component.  The high-frequency tail is associated with power from 252 

sporadic high-frequency gravity waves that occasionally cause peak amplitudes at 253 

frequencies higher than the inertial frequency, and is consistent with the results from the 254 

Fourier analysis presented earlier in Figure 2. 255 

5. Discussion  256 

We show in the appendix that for a fairly general combination of shear and rotation 257 

, where  is the absolute vorticity of the background 258 

state. In a “natural” coordinate system where the x-axis is along the basic flow velocity 259 

vector and the y-axis is in the orthogonal direction consistent with a right-handed system 260 

the vorticity is written (Holton, 1972) 261 

 (10) 262 

where  is the rate of change of the angle  between the x-axis and the tangent to 263 

the streamline as a function of the distance s along the streamline. In terms of the local 264 

radius of curvature r  265 
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 (11) 266 

where  is positive for cyclonic motion and  is the velocity component in the x-267 

direction.  268 

Since the horizontal scale of typical gravity waves (~a few tens of kilometers or 269 

less) is much less than the scale of variation of the background flow (~ a few hundred 270 

kilometers or more) we can expand the wind field to first order using a Taylor expansion 271 

of the rotational part of the wind field at the balloon position as  and 272 

, whence  273 

  (12) 274 

When  and  one obtains the result for solid body rotation  (see 275 

Appendix). In terms of (11),  and . More generally we can write 276 

and express (11) in terms of the sum of vorticity from solid body rotation and 277 

the excess shear in addition to the shear that is consistent with solid body rotation as 278 

follows 279 

 (13) 280 

where . 281 

In the appendix we show that for pure shear with no curvature, wave motion 282 

normal to the direction of shear gives , while wave motion along the 283 

direction of shear gives . When the wave motion approaches a direction 284 
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midway between these two extremes . This is to be compared with the result of 285 

Kunze (1985) where , irrespective of the direction of wave motion. Pure 286 

solid body rotation gives  in agreement with (4). Accordingly, for measurements 287 

made on a balloon drifting with the wind, we expect the spectra derived from an 288 

ensemble of waves with a range of directionality to show peak energy between 289 

 and  rather than near f.  290 

An example of the relative contribution from solid-body rotation and shear excess is 291 

presented for 20 October, 2005 in Figure 5. The total vorticity for this date was depicted 292 

previously in Figure 1.  The top two panels of Figure 5 show the curvature and shear 293 

vorticity,  and , respectively, as discussed earlier in this section.  The 294 

contribution from solid body rotation  is shown in the lower left panel of Figure 5 295 

and the excess shear vorticity in the lower right panel.  Clearly, on this 296 

date the dominant component of the relative vorticity is from solid body rotation, which 297 

suggests an effective inertial frequency near . 298 

The temporal change of the effective inertial frequency depicted in Figure 4 suggests 299 

that the relative contributions of solid body and shear vorticity change between the 300 

October and November observation periods. A statistical analysis of the ratio of the solid 301 

body to shear vorticity for each two week time period is presented in Figure 6.  Solid 302 

body and shear vorticity were calculated from MERRA data, and then interpolated to the 303 

balloon locations.  Figure 6 shows the percentage of balloon measurements having the 304 

indicated solid body to shear vorticity ratio.  The solid body component clearly dominates 305 

throughout October, where nearly 14% of the balloon observations showed dominant 306 
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solid body rotation, as compared to approximately 4% of observations for which the 307 

shear component of the vorticity dominates.  From this, it would be expected that the 308 

main peak in the occurrence frequency for the effective inertial frequency for October 309 

would be shifted only slightly off , as is shown in Figure 4.  The existence of two 310 

dominant peaks, one centered near zero and the other near -2, is informative. The first 311 

peak is consistent with large shear and negligible curvature. These conditions can exist 312 

near the boundaries of a vortex where, even though the curvature may not be small, the 313 

shear may be very large in comparison (see Figure 5). The second peak corresponds to 314 

negligible excess shear. These conditions are consistent with conditions that cover more 315 

extensive areas in the central part of the vortex.  316 

By the end of November, however, the relative contributions of solid body and shear 317 

vorticity are nearly equal, with the average value of the effective inertial frequency 318 

expected to be shifted away from  toward either  or  depending on 319 

wave directionality. The statistics presented in Figure 4 show that the former is favored. 320 

The results presented in Figure 4 suggest that a large fraction of the waves measured by 321 

the balloons are propagating in a direction not too different from that of the wind. The 322 

shift toward  is consistent with the wavenumber vector aligned with the wind in 323 

laterally sheared flow, such as near the boundaries of the vortex. An inspection of the 324 

balloon trajectories indicates that balloons tend to be found near the vortex boundary 325 

much of the time in late November. These comparisons show that the solid-body rotation 326 

component dominates the absolute vorticity for much of October, but by early November 327 

the excess shear component becomes stronger as the vortex deforms and weakens.   328 
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6. Summary and conclusions 329 

We have applied spectral methods to analyze wind fields from SPB measurements, and 330 

used vorticity fields from the MERRA analysis to identify and interpret spectral features 331 

of low-frequency inertial gravity waves recorded by VORCORE balloons in the Antarctic 332 

stratosphere. Balloon spectra were derived using both Fourier and wavelet analyses.  We 333 

have shown that the spectral peak of wind measurements made on balloons drifting with 334 

the wind is shifted to frequencies more than 25% higher than the local inertial frequency. 335 

Frequency shifts have been reported in other works but were either made in a non-336 

intrinsic frame (Mori et al., 1990) or showed significantly smaller shifts (Hertzog et al., 337 

2002).  The exceptionally strong Antarctic polar vortex allowed identification of the peak 338 

as that corresponding to a shift in the inertial frequency f (Coriolis parameter) by the 339 

relative vorticity . We interpret feff  as the inertial frequency in a coordinate frame 340 

moving with the basic flow.  341 

We study the case in which the flow locally can be written as the superposition of 342 

solid body rotation and simple shear. The solid body contribution gives  343 

independent of wave directionality. The shear contribution gives values 344 

 depending on wave direction. Our observations are consistent 345 

with a spectrum of waves contributing to a spread of , with the distribution broadly 346 

consistent with  during October and early November, but peaked closer to 347 

 in late November as the vortex weakened.  348 
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A possible source for a peak at frequencies higher than  is waves generated by 349 

fronts and jets. These waves have frequencies near 1.4  [O’Sullivan and Dunkerton, 350 

1995; Plougonven and Snyder 2005a,b]. However these frequencies are significantly 351 

higher than the inertial peak we observe. We have examined the possibility that the 0.1 352 

hr-1 peak is representative of the semidiurnal tide Doppler shifted by balloon motion, but 353 

found this effect to be too small to account for the observed shift. Nor do we find the 354 

large-scale coherency expected for a tide. Finally, we have examined pressure variations 355 

and find minimal power in the 0.08-0.12 hr-1 band (not shown here). This is a 356 

characteristic feature of inertial waves.  357 
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 366 

APPENDIX  367 

In this appendix we derive expressions for the inertial frequency in a flow combining 368 

rotation and linear shear. The latter should give a reasonable representation of the shear 369 

experienced by inertial gravity waves in a slowly spatially varying background wind 370 
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field. We show that depending on the flow configuration and wave directionality 371 

, where  and where  is the absolute vorticity. 372 

Before we proceed to consider inertia gravity waves in a stratified atmosphere we 373 

consider the simple case of solid body rotation for pure inertial waves in Cartesian 374 

geometry. 375 

1. Inertial waves in solid body rotation (Cartesian formulation) 376 

In Cartesian coordinates cyclonic solid body rotation is given by  and 377 

, where  is the basic horizontal flow. Pure inertial motion on a 378 

background state in solid body rotation is given by 379 

 (1.1) 380 

This generates the vorticity equation 381 

 (1.2) 382 

and the divergence equation 383 

 (1.3) 384 

where , ,  385 

 (1.4) 386 

and . Elimination of the divergence between (2) and (3) gives 387 
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 (1.5) 388 

whence 389 

 (1.6) 390 

or . 391 

This agrees with the results obtained in section 4.  392 

Note that in deriving (4) we assumed that the advective terms in (1.2) and (1.3) were 393 

locally constant.  This differs from assuming that the advective terms are locally constant 394 

from the onset (Kunze , 1985). It is instructive to look at the vorticity equation when the 395 

advective terms in (1.1) are forced to be constant.  One then obtains the incorrect result 396 

 (1.7) 397 

This example shows that when considering a system where rotational effects are 398 

important it is essential to work with equations that preserve the correct form of the 399 

vorticity equation. It also shows that assuming that the advection terms are locally 400 

constant in the divergence and vorticity equations (1.2) gives the correct result 401 

.  402 

2. Inertial gravity waves 403 

We work with the vorticity and divergence equations in lieu of the horizontal momentum 404 

equations for the reasons discussed in the previous section. The equations in the log-405 

pressure system are (Andrews et al., 1987).  406 
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 (2.1) 407 

 (2.2) 408 

 (2.3) 409 

 (2.4) 410 

where , , , and  and where  is the 411 

disturbance height of pressure surfaces. 412 

Let the velocity be written in terms of the stream function  and velocity 413 

potential , whence 414 

 (2.5) 415 

 (2.6) 416 

This gives 417 

 (2.7) 418 

 (2.8) 419 

 (2.9) 420 
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To transform out the exponential growth with altitude one defines a new set of 421 

variables 422 

 (2.10) 423 

where  is any dependent variable. Then (2.9) becomes 424 

 (2.11) 425 

and (2.4) becomes 426 

 (2.12) 427 

otherwise one simply replaces primes with carets in (2.7) and (2.8).  428 

To obtain a dispersion relation we eliminate in favor of  using (7), eliminate  429 

in favor of  using (2.11) and finally eliminate  in favor of  using (2.12). Assuming 430 

solutions of the form  431 

 (2.13) 432 

where m is the nondimensional vertical wavenumber in the log-pressure system gives the 433 

dispersion relation 434 

 (2.14) 435 

where . We have assumed that . For low-frequency waves for which 436 

, (2.14) may be written  437 
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 (2.15) 438 

The denominator in (2.14) and (2.15) 439 

 (2.16) 440 

is just the dispersion relation for pure inertial waves when . This justifies the 441 

simpler treatment when  is real. When  is complex we need the full dispersion 442 

relation to interpret what this means (it does not mean that is complex).  443 

3. Inertial gravity waves in linear shear 444 

As in section 4, we approximate the shear over the dimensions of a pure inertial wave in 445 

terms of linear shear. Let  and , where  and are constants, 446 

then 447 

 (3.1) 448 

The vorticity equation is  449 

 (3.2) 450 

The divergence equation is (Salmon, 1998) 451 

 (3.3) 452 

The linearized Jacobian is  453 
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 (3.4) 454 

Using (3.4) in (3.3) gives 455 

 (3.5) 456 

We consider three special cases, viz.,  corresponding to l=0, k=l and k=0.   457 

3.1. PROPAGATION NORMAL TO THE SHEARED DIRECTION 458 

With , , and (3.5) becomes 459 

 (3.6) 
460 

Eliminating the divergence between (3.2) and (3.6) gives 461 

 (3.7) 462 

This agrees with (2.16) with  and . 463 

3.2. PROPAGATION ALONG THE SHEARED DIRECTION 464 

With , (3.5) becomes 465 

 (3.8) 466 

Eliminating the divergence between (3.2) and (3.8) gives  467 

 (3.9) 468 

This agrees with (2.16) with  and . 469 
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3.3. PROPAGATION AT 45° TO THE SHEARED DIRECTION 470 

For this case we use the more general theory for inertial gravity waves for the same basic 471 

state linear shear. Equation (2.16) may be rewritten in terms of wave direction as 472 

 (3.10) 473 

where is the direction of propagation with respect to the x-axis (i.e., ). 474 

Propagation midway between propagation along and normal to the shear ( ) gives 475 

 (3.11) 476 

In this case there is no singularity (value of for which ), rather there is a 477 

minimum where the real part of  maximizes. The real part of  may be written as  478 

 (3.12) 479 

where  and the minus sign is chosen to give upward energy 480 

propagation. The maximum absolute value of occurs for  and  481 

 (3.13) 482 

For reasonable background values corresponding to very short vertical 483 

wavelengths (a small fraction of a scale height). Such short wavelength near inertial 484 

waves would almost certainly be absorbed by scale dependent diffusion (i.e., cutoff).  485 
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3.4. RELATION TO SOLID BODY ROTATION 486 

Solid body rotation gives wave propagation in flow that is simultaneously sheared along 487 

and normal to the direction of propagation. If one averages the contribution from each 488 

direction using (3.7) and (3.9) one obtains , in agreement with the known 489 

result (see (1.6)).  490 

3.5 RELATION TO APPROACH OF KUNZE (1985) 491 

Kunze (1985) considered inertial gravity waves in sheared flow and obtained the result 492 

.  The basic approach was to derive the dispersion relation by assuming at 493 

the onset that the advection terms were locally constant. We have seen that for solid body 494 

rotation this gives the result  when the known result is . For 495 

propagation normal to the shear the approach of Kunze (1985) gives 496 

 (3.10) 497 

Whence  in contrast to (3.7). For propagation along the shear 498 

the approach of Kunze (1985) also gives  in agreement with (3.9). As we 499 

have argued, solid body rotation is the average of the contributions from the shear in each 500 

direction. Thus the incorrect result for solid body rotation is consistent with the result 501 

 obtained independent of whether the direction of propagation is normal to 502 

or along the sheared direction.  503 

504 
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List of Figures 560 

Figure. 1. Relative and absolute vorticity at 52 hPa calculated using MERRA data for 561 

October 20, 2005. 562 

Figure 2. Average power spectra from Fourier analysis of zonal winds.  Each panel shows 563 

the average of individual balloon spectra in a 2-week period (black line).  The red-564 

hatched region shows the range of inertial frequencies f  for all balloons in flight during 565 

the 2-week window.  The black-hatched region shows the range of absolute vorticity  566 

in each two-week period. The green line indicates the semidiurnal tide, which appears in 567 

mid-November.    568 

Figure 3. Wavelet spectra for balloons 1, 2 and 8, released near 50 hPa.  Inertial 569 

frequency f (a function only of latitude) is shown in red for each balloon trajectory.  The 570 

absolute vorticity (a function of latitude and relative vorticity) is shown as a solid black 571 

line. 572 

Figure 4.  Statistical analysis of the occurrence frequency of inferred differences between 573 

the frequency of the measured spectral peak (fm) and the inertial frequency (f). Values are 574 

shown for successive two-week periods in October and November. Peaks are observed 575 

near  and between  and .  576 

Figure 5.  The top two panels show maps of the curvature and shear vorticity,  and 577 

, respectively (see text).  The contribution from solid body rotation  is 578 

shown in the lower left panel and the non-solid body shear vorticity  579 

defined in (13) is shown in the lower right panel.  580 

 581 
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Figure 6. Statistical analysis of the occurrence frequency of the solid body to shear ratio 582 

for each two-week period of balloon measurements (See Figure 4).   583 

584 
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 584 

Figure. 1. Relative and absolute vorticity at 52 hPa calculated using MERRA data for 585 

October 20, 2005. 586 

 587 
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 588 



34 

Figure 2. Average power spectra from Fourier analysis of zonal winds.  Each panel shows 589 

the average of individual balloon spectra in a 2-week period (black line).  The red-590 

hatched region shows the range of inertial frequencies f  for all balloons in flight during 591 

the 2-week window.  The black-hatched region shows the range of absolute vorticity  592 

in each two-week period. The green line indicates the semidiurnal tide, which appears in 593 

mid-November.    594 
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 595 

Figure 3. Wavelet spectra for balloons 1, 2 and 8, released near 50 hPa.  Inertial 596 

frequency f (a function only of latitude) is shown in red for each balloon trajectory.  The 597 
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absolute vorticity (a function of latitude and relative vorticity) is shown as a solid black 598 

line. 599 

 600 

Figure 4.  Statistical analysis of the occurrence frequency of inferred differences between 601 

the frequency of the measured spectral peak (fm) and the inertial frequency (f). Values are 602 

shown for successive two-week periods in October and November. Peaks are observed 603 

near  and between  and .  604 
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 605 

Figure 5.  The top two panels show maps of the curvature and shear vorticity,  and 606 

, respectively (see text).  The contribution from solid body rotation  is 607 

shown in the lower left panel and the non-solid body shear vorticity  608 

defined in (13) is shown in the lower right panel.  609 
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 610 

 611 

Figure 6. Statistical analysis of the occurrence frequency of the solid body to shear ratio 612 

for each two-week period of balloon measurements (See Figure 4).  613 


