


Over the past 50 years, there has been a remarkable
Increase in computing power, which has facilitated the
development of numerical models to study weather and
climate. We call these general circulation models (GCMs).
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Schematic diagram showing the components of a
general circulation model (GCM)
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Computational grid

of a general circulation model
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Grid spacing~3°x 3°

This Is the typical
resolution of a
climate model.
Note that there
are many
Important
processes for
climate (such as
cloud feedback),
that cannot be
resolved explicitly
on such a coarse
grid.
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Weather vs Climate

Weather is the short-time-scale (< a few days)
evolution of the of the atmosphere.

Climate iIs the statistics of weather. It refers to the
mean (or average) weather and the deviation from
the mean during a particular period (e.g., 30 yrs).

Weather prediction. The evolution of the state
variables of the atmosphere is governed by
nonlinear dynamics (referred to as “chaos”, or the
butterfly effects), and is inherently unpredictable
beyond a certain period of time, say about 2 weeks.

Climate prediction. It is possible to project the
statistics of weather in terms of mean and variance.



Polar
Hadley cells

Tropical
Hadley

W = westerlies
PE = polar easterlies

STH = subtropical highs

L=low
H = hi

h

On the Earth’s
surface, the
diagrams refer to
surface winds. The
transient highs (H)
and lows (L) we
see on daily
weather maps are
primarily lower
atmospheric
features, whereas
the Hadley
circulation can
extend vertically
as much as 20 km.



The west-to-east
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direction Is referred to as

the zonal direction.

The south-to-north

direction Is referred to as

the meridional direction
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(a) Polar and (b) geostationary orbits for NOAA satellites. The
polar orbit rotates one degree per day to make it synchronous with

the sun. The geostationary satellite stays continuously above one
spot on Earth.




Climate data
from satellites
temperature,
humidity,
clouds,
precipitation,
radiation
budget, ozone
aerosols, land
and ocean
surfaces, and
greenhouse
gases.




Projection to the future? (globe and regions)
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Global mean surface temperature change based on surface air measurements over land and
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Global Climate Models

J Because we do not have future data to
check and verify climate models, they must
be built solely on our knowledge of the
present historical climate conditions

[ temperature, precipitation, mean
circulation patterns (winds), cloud
distributions (cloud cover, type, particle
size), radiation budgets at the top of the
atmosphere, etc.], a process referred to as
tuning.

d 1t 1s essential that the computer models
for climate studies be based upon well-
established physical principles.




Climate Sensitivity and Feedback

d Climate forcing, AF, with units of W/m?=
(e.g., Increase In greenhouse gases)

J Climate change response (e.g, global
mean surface temperature), AT, In °C

J A measure of climate sensitivity

AT / AF = A,

J Feedback: A process that change the
sensitivity of the climate response




CLIMATE FEEDBACKS

If the climate’s response to an increase in
greenhouse gases were simply to increase its
temperature to compensate for the increase
IN greenhouse trapping of infrared radiation,
the climate change problem would be quite
simple. Unfortunately, there are climate
feedbacks that come into play, influencing the
climate’s response. The main climate
feedbacks are:

(1) Water vapor feedback
(2) Surface albedo feedback
(3) Cloud feedback



WATER VAPOR FEEDBACK

Water vapor feedback is
thought to be a positive
feedback mechanism.
Water vapor feedback might
amplify the climate’s
equilibrium response to
Increasing greenhouse

gases by as much as a
\ factor of two. It acts

globally.
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SURFACE ALBEDO FEEDBACK

\
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Surface albedo feedback
IS thought to be a
positive feedback
mechanism. Its effect is
strongest in mid to high
latitudes, where there is
significant coverage of
snow and sea ice.
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An illustration of the ice-albedo feedback due to the radiative

perturbations of the solar constant.
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Models predict both an
Increase and decrease

CLOUD FEEDBACK in cloudiness, and both

positive and negative
cloud feedbacks.
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< and how'clot
U have to underst nd
ouds:

(1) Clouds absorb radiatic 2 Infrared, @
erefore have a gree ( ot on the
climate. If you puf | gh In the
tmosphere, mﬁ Th '*’» rstronger greenhouse
effect than if you put it low in the atmosphere.

il

(2) Clouds reflect sunshine back to space. So
more clouds means less sunshine for earth. If
you put a cloud highin the atmosphere, it will
reflect about the same amount of sunshine as if
you put a cloud low in the atmosphere.



small droplets reflect more sunlight
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Transient vs Equilibrium climate response

Transient response refers to the evolution
of the climate system as it responds to
external forcing, such as an increase In
greenhouse gases.

Equilibrium response refers to the final
state of the climate system after it has
adjusted to the external forcing. The
magnitude of the equilibrium response
compared to the magnitude of the forcing
IS referred to as the climate sensitivity.
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Annual CO, Growth (ppm/year)
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Growth rate of atmospheric CO2 (ppm/year).
Source: Hansen and Sato, PNAS, 101, 16109, 2004.

IPCC: Intergovernmental Panel on Climate Change
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Climate Simulations for IPCC 2007 Report

» Climate Model Sensitivity ~ 2.7°C for 2xC0O2
(consistent with paleoclimate data & other models)
» Simulations Consistent with 1880-2003 Observations

(key test = ocean heat storage)

» Simulated Global Warming < 1°C in Alternative Scenario

Conclusion: Warming < 1°C if additional forcing ~ 1.5 W/m2

Source: Hansen et al., to be submitted to J. Geophys. Res.



When our best guess of the observed increase in

greenhouse gases and sulfate aerosols is imposed on a

~warming trend over century quite well. Note that
the warming trend over the next century is projected to
dwarf that of the past century. This particular model was

developed at the Hadley Centre in the U.K.
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temperature anomaly (deg C)
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In transient climate change experiments, we can examine not
only global mean temperature, but also the simulated
geographical distribution of the climate change (an example
from a simulation done with the Canadian Climate Model).

Projected temperature changes
1975-1995 average vs. 2080-2100 average
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Here is an example of the temperature increase projected
by the Hadley Centre model. On the regional scale,
climate models tend to differ significantly.

HADCM2Z GHG ensemble (2041-70)—(1961-90) Annual Mean Temperature (“C)
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predicted by current GCM simulations.

This range Is
due to two
factors: (1)
uncertainty in
emissions
scenarios and
(2) different
model
sensitivities
(i.e. different
simulations of
climate
feedbacks).



Another |mportant ISsue: The
sification of the nhydrologic cycle
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Precipitation for the 2050s
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Precipitation change (mm day-1)
The projected change in annual precipistabion for the 20505 compared with the present day, when the
climate model i driven with an increase in greenhouse gas concentrations equivalent to about a 194
increase per year in CO4

The Met Office - Hadley Centre for Chimate Predichion and Research
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Uncertainties (understanding and
reduction of)

J Model vs Model

" Models for the understanding of physical
processes (feedbacks, physical
parameterizations)

" Models for the projection of future climates
(due to increases In greenhouse gases and
aerosols)

J Model vs Observation

" Required data to assist the construction of
climate models

" Long term observations of key climate
parameters



