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a b s t r a c t

Based on the principles of geometric optics, the ray-tracing technique has been

extensively used to compute the single-scattering properties of particles whose sizes are

much larger than the wavelength of the incident wave. However, the inhomogeneity

characteristics of internal waves within an absorbing particle, which stem from a

complex index of refraction, have not been fully taken into consideration in the

geometric ray-tracing approaches reported in the literature for computing the scattering

properties of absorbing particles. In this paper, we first demonstrate that electro-

magnetic fields associated with an absorbing particle can be decomposed into the TE

and TM modes. Subsequently, on the basis of Maxwell’s equations and electromagnetic

boundary conditions for the TE-mode electric field and the TM-mode magnetic field, we

derive generalized Fresnel reflection and refraction coefficients, which differ from

conventional formulae and do not involve complex angles. Additionally, a recurrence

formulism is developed for the computation of the scattering phase matrix of an

absorbing particle within the framework of the conventional geometric ray-tracing

method. We further present pertinent numerical examples for the phase function and

the degree of linear polarization in conjunction with light scattering by individual

absorbing spheres, and discuss the deviation of the geometric optics solutions from the

exact Lorenz–Mie results with respect to size parameter and complex refractive index.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The single-scattering properties of nonspherical particles are fundamental to various applications in remote sensing
research and climate radiative forcing analysis involving aerosols and clouds containing ice crystals [1,2]. In the last three
decades, the conventional geometric ray-tracing technique [3–9] and its improved forms [10,11] have been extensively used
to compute the optical properties of nonspherical dielectric particles much larger than the wavelength of the incident
wave. However, in the geometric ray-tracing methods reported in the literature for computing the single-scattering
properties of absorbing dielectric particles, a unique physical property of localized waves within an absorbing particle,
referred to as wave inhomogeneity, has not been fully considered.

The inhomogeneity of an electromagnetic wave is related to the wave characteristics such that the planes of constant
phase are not parallel to those of constant amplitude [12–16]. This wave feature leads to complex angles in the
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conventional Snell law that defines the incident, reflection and refraction directions. However, a complex angle involving
an imaginary number does not have a straightforward geometric meaning within the context of ray-tracing calculations in
the real-number domain for the propagation directions of geometric optics rays. Moreover, an inhomogeneous
electromagnetic wave does not satisfy a simple transverse-wave condition that requires the corresponding electric and
magnetic field vectors to be perpendicular to the propagation direction of constant phase or amplitude. For a non-
absorbing particle, electromagnetic waves within the particle are transverse waves for which the three directions along the
electric field vector, magnetic field vector and wave propagation are orthogonal. However, in the case of an absorbing
particle, an internal electromagnetic wave can be decomposed into a transverse electric (TE) component and a transverse
magnetic (TM) component. The electric vector is perpendicular to the direction of wave propagation in the TE mode,
whereas the magnetic vector is perpendicular to the direction of wave propagation in the TM mode.

In this study, we derive the generalized Fresnel formulas for the TE-mode and TM-mode field components for various
orders of reflection–refraction events associated with an absorbing particle. In the generalized Fresnel formulas for the
calculations of the electric and magnetic field amplitudes associated with the reflected and transmitted rays, we follow the
effective refractive index concept [17] to circumvent the difficulty that stems from the complex angles in the conventional
Snell law for absorbing particles. We also formulate a geometric ray-tracing approach in terms of the generalized Fresnel
formulas coupled with various transformation matrices to fully account for the wave inhomogeneity effects on the
reflection and refraction of a localized wave characterized as a geometric ray. Furthermore, we present some pertinent
numerical examples and compare the geometric optics solutions to the Lorenz–Mie results for the phase function and the
degree of linear polarization in conjunction with light scattering by individual absorbing spheres for size parameters in the
geometric optics regime.

2. Generalized Fresnel formulas for inhomogeneous waves

In this section, we derive the Fresnel formulas for the electric and magnetic fields in the TE and TM modes, respectively,
on the basis of the general electromagnetic boundary conditions for two adjacent media with a plane interface and the two
Maxwell curl equations [18] given by
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where m and e are permeability and permittivity, respectively. For our purpose, we should consider a non-ferromagnetic
particle such that m ¼ 1. In this case, the permittivity is then given by

� ¼ m2, (3)

where m is the index of refraction which is 1 outside the particle and a complex quantity within the particle. We further
assume that the time-dependence of the waves is harmonic and can be expressed in the form of e�ikoct , where ko ¼ 2p=l
and l is the wavelength in a vacuum. For formulation simplicity, in the following discussions we will only consider the
spatial components of the electromagnetic fields. Thus, for the spatial domain outside the particle, we have
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But for the spatial domain inside the particle, the two curl equations are given by
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Fig. 1 defines the geometric configuration for the first-order reflection–refraction event when the transmission of an
incident ray is from air into the particle. The unit vectors êi;1, êr;1 and êt;1 represent the directions of the incident, reflected
and refracted rays, respectively; b̂1 is a unit vector with the direction pointing onto the paper; êf ;1 is a unit vector on the
incident plane, a plane containing the incident, reflected and refracted rays and parallel to the particle surface; n̂1 is a local
unit vector normal to the particle surface; the unit vectors âi;1, âr;1 and ât;1 are defined by the following relations:

âi;1 ¼ êi;1 � b̂1, (8)

âr;1 ¼ êr;1 � b̂1, (9)
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ât;1 ¼ êt;1 � b̂1. (10)

Following Ref. [17], the electric and magnetic vectors associated with the incident, reflected and refracted rays with respect
to the incident point P1 can be expressed as follows:
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where r
*

1 is the position vector of point P1, and Nr;1 and Nn;1 are the effective refractive indices defined in Yang and Liou
[17]. Note that, for simplicity, N�n;j in Ref. [17], where j ¼ 1,2,3y, is denoted as Nn;j in the present formulation. In Eq. (11),
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oi;1 are defined by

E
*

oi;1

H
*

oi;1

2
64

3
75 ¼ E

*

0

H
*

0

2
4

3
5 expðikoêi;1 � r
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where E
*

0 and H
*

0 are the amplitude vectors of the incident electric and magnetic fields, respectively.
The reflected and refracted field vectors in Eqs. (12) and (13) can be determined from the electromagnetic boundary

conditions [14,15] at the particle surface. For the TE mode, we have from Eqs. (11)–(13) the following expressions:
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The electromagnetic boundary conditions at r
*
¼ r

*
1 for the TE mode require that
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which lead to the following relations:

Eoi;1? þ Eor;1? ¼ Eot;1?, (23)

Eoi;1? cos yi;1 � Eor;1? cos yr;1 ¼ Eot;1?ðNr;1 cos yt;1 þ iNn;1Þ, (24)

where yi;1, yr;1 and yt;1 are the angles of incidence, reflection and refraction, respectively, as defined in Fig. 1. These are real
quantities that can be related in terms of an effective refractive index Nr;1 via a generalized form of Snell’s law [17].
Consequently, this approach alleviates the difficulty associated with the complex refraction angle that results from the
conventional formulism. On the basis of Eqs. (23) and (24), we obtain the coefficients of transmission and reflection for the
TE-mode electric fields as follows:
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For the TM mode, we have
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The boundary conditions at r
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¼ r
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1 for the TM mode require the following relations:
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As a result of these two boundary conditions, we have the following two equations:

Hoi;1? þ Hor;1? ¼ Hot;1?, (35)

Hoi;1? cos yi;1 � Hor;1? cos yr;1 ¼
1
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ðNr;1 cos yt;1 þ iNn;1ÞHot;1?. (36)

From Eqs. (35) and (36), we obtain the transmission and reflection coefficients for the TM-mode magnetic field as follows:
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RM;1 ¼
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Fig. 2 shows the geometric configuration for the jth ðjX2Þ reflection–refraction event when the refraction of an incident
ray is from the particle to air. All the unit vectors defined in Fig. 2 have the same meanings as those displayed in Fig. 1. Note
that the unit vector n̂j in Fig. 2 has the direction pointing into the particle. For the jth-order reflection–refraction event, the
electric and magnetic fields for the incident ray can be expressed in the form
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For j ¼ 2, the amplitude vectors of the second-order incident ray are as follows:
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For jX3, the amplitude vectors of the jth-order incident ray are as follows:
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The jth-order reflected and refracted electric and magnetic field vectors are given by
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where the effective refractive indices, Nr;j and Nn;j, can be determined by the recurrence formulae derived by Yang and Liou
[17].

For the jth-order TE mode, we have
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Þ ¼ ½Nr;j�1âi;j þ iNn;j�1ðn̂j�1 � b̂jÞ�Eoi;j? exp½ikoðêi;jNr;j�1 þ in̂j�1Nn;j�1Þð r
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The electromagnetic boundary conditions at point Pj require the following relationships:
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Eqs. (50) and (51) can be simplified as follows:
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After some algebraic manipulations, we can obtain from Eqs. (52) and (53) the transmission and reflection coefficients for
the jth-order TM-mode electric fields as follows:

TE;j ¼
Eot;j?

Eoi;j?
¼

Nr;j cos yr;j þ iNn;j þ Nr;j�1 cos yi;j � iNn;j�1n̂j�1 � n̂j

Nr;j cos yr;j þ iNn;j þ cos yt;j
, (54)

RE;j ¼
Eor;j?

Eoi;j?
¼

Nr;j�1 cos yi;j � iNn;j�1n̂j�1 � n̂j � cos yt;j

Nr;j cos y r;j þ iNn;j þ cos yt;j
. (55)

For the TM mode associated with the jth-order reflection–refraction events, we have
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The boundary conditions at point Pj are as follows:
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jÞ ¼ êf ;j � E
*

t;jð r
*

jÞ. (63)

Eqs. (62) and (63) can be written in more explicit forms as follows:

Hoi;j? þ Hor;j? ¼ Hot;j?, (64)

ðNr;j�1 cos yi;j � iNn;j�1n̂j�1 � n̂jÞHoi;j? � ðNr;j cos yr;j þ iNn;jÞHor;j? ¼ Hot;j?m2 cos yt;j. (65)
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From Eqs. (64) and (65), the transmission and reflection coefficients for the TM-mode magnetic fields are
given by

TH;j ¼
Hot;j?
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Eqs. (25), (26), (54), and (55) represent the generalized Fresnel coefficients for the electric fields in the TE mode for a
general dielectric particle with absorption, whereas Eqs. (37), (38), (66), and (67) are their counterparts for the magnetic
fields in the TM mode. Evidently, unlike the conventional Fresnel formulae, the present formulation of the reflection and
refraction coefficients does not involve complex angles in the case of a complex refractive index. In the case when the
imaginary refractive index mi ¼ 0, it is straightforward to convert the reflection and refraction coefficients for the TM mode
magnetic field components to their counterparts for the corresponding electric field components parallel to the incident
plane. After the conversion, the generalized Fresnel formulae for the electric field components reduce to the conventional
Fresnel formulae presented in many texts [18,19]. Note that an alternative approach has been suggested by Chang et al. [16]
to calculate the Fresnel coefficients and ray propagation associated with an absorbing medium.

3. An ‘‘exact’’ ray-tracing approach for an absorbing particle

Fig. 3 schematically illustrates the incident and scattering configurations associated with the jth-order scattered ray.
Note that the first-order scattered rays represent external reflections, while higher-order scattered rays denote ray
transmissions. In Fig. 3, the unit vector ês;j denotes the direction of the jth-order scattered ray and the term b̂s;j is a unit
vector normal to the scattering plane, which can be determined by

b̂s;j ¼
ês;j � ẑ

jês;j � ẑj
, (68)
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Fig. 3. The incident and scattering geometries involved in the ray-tracing computation.
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where ẑ denotes a unit vector pointing along the z-axis. In Eq. (68), this term cannot be determined in the exact forward or
backward direction, i.e. ês:j ¼ �ẑ. In this case, we define

b̂s;j ¼ x̂, (69)

where x̂ is a unit vector pointing along the x-axis. In Fig. 3, âout;j and âin;j are defined as follows:

âout;j ¼ ês;j � b̂s;j, (70)

âin;j ¼ êi;1 � b̂s;j. (71)

The scattered electric field associated with the jth-order scattered rays can be expressed in the form

Es;j==

Es;j?

" #
¼

A2;j A3;j

A4;j A1;j

" #
E0;j==

E0;j?

" #
expðik0rÞ, (72)

where E0;j== and E0;j? are the parallel and perpendicular components of the incident electric amplitude vector, respectively,
defined in reference to the scattering plane. A1;j, A2;j, A3;j, and A4;j are the four elements of the scattering matrix associated
with the jth-order scattered rays. The present notation convention for the scattering matrix associated with an individual
scattered ray is similar to that for the scattering matrix defined by van de Hulst [19]. The key step in ray-tracing
calculations is to determine the scattering matrix defined in Eq. (72) in terms of recurrence formulae.

Referring to the geometry defined in Fig. 1 and using Eqs. (4)–(7), we can express the first-order incident electric field as
follows:

E
*

i;1 ¼ Ei;1?b̂1 � ðêi;1 � b̂1ÞHi;1? ¼ Ei;1?b̂1 � âi;1Hi;1?, (73)

H
*

i;1 ¼ Hi;1?b̂1 þ ðêi;1 � b̂1ÞEi;1? ¼ Hi;1?b̂1 þ âi;1Ei;1?. (74)

The corresponding reflected and refracted electric fields, decomposed with respect to the incident plane, can be expressed
in the forms

Hr;1?

Er;1?

" #
¼

RH;1 0

0 RE;1

" #
Hi;1?

Ei;1?

" #
exp½ikoêr;jð r

*
� r
*

1Þ�, (75)

Ht;1?

Et;1?

" #
¼

TH;1 0

0 TE;1

" #
Hi;1?

Ei;1?

" #
exp½ikoðêr;jNr;1 þ iNn;1n̂1Þð r

*
� r
*

1Þ�. (76)

Furthermore, the externally reflected electric field vector can be written as follows:

E
*

r;1 ¼ Er;1?b̂1 � ðêr;1 � b̂1ÞHr;1? ¼ Er;1?b̂1 � âr;1Hr;1? ¼ Er;1?b̂1 þ Er;1==âr;1, (77)

where Er;1k ¼ �Hr;1? and the refracted electric and magnetic vectors can be expressed by the following equations:

E
*

t;1 ¼ Et;1?b̂1 þ �
ðNr;1êt;1 þ iNn;1n̂1Þ � b̂1

m2

" #
Ht;1?

¼ Et;1?b̂1 þ �
Nr;1ât;1 þ iNn;1êf ;1

m2

� �
Ht;1?, (78)

H
*

t;1 ¼ Ht;1?b̂1 þ ðNr;1êt;1 þ iNn;1n̂1Þ � b̂1Et;1? ¼ Ht;1?b̂1 þ ðNr;1ât;1 þ iNn;1êf ;1ÞEt;1?. (79)

The first-order scattered electric field vector, decomposed in reference to the scattering plane shown in Fig. 3, can be
expressed as follows:

Es;1==

Es;1?

" #
¼

âout;1 � âr;1 âout;1 � b̂1

b̂s;1 � âr;1 b̂s;1 � b̂1

2
4

3
5 Er;1==

Er;1?

" #
¼

âout;1 � âr;1 âout;1 � b̂1

b̂s;1 � âr;1 b̂s;1 � b̂1

2
4

3
5 �1 0

0 1

" #
Hr;1?

Er;1?

" #

¼

âout;1 � âr;1 âout;1 � b̂1

b̂s;1 � âr;1 b̂s;1 � b̂1

2
4

3
5 �1 0

0 1

" #
RH;1 0

0 RE;1

" #
Hi;1?ð r

*
1Þ

Ei;1?ð r
*

1Þ

2
64

3
75 exp½ikoêr;1ð r

*
� r
*

1Þ�, (80)

where the last term can be expressed by

Hi;1?ð r
*

1Þ

Ei;1?ð r
*

1Þ

2
4

3
5 ¼ �Ei;1==ð r

*
1Þ

Ei;1?ð r
*

1Þ

2
4

3
5 ¼ �1 0

0 1

� � âi;1 � âin;1 âi;1 � b̂s;1

b̂1 � âin;1 b̂1 � b̂s;1

2
4

3
5 E0;1==

E0;1?

" #
expðikoêi;1 � r

*
1Þ. (81)
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Thus, the scattering matrix for externally reflected rays can be written as

A2;1 A3;1

A4;1 A1;1

" #
¼

M2;1 M3;1

M4;1 M1;1

" #
exp½ikoðêi;1 � r

*
1 � êr;1 � r

*
1Þ�, (82)

M2;1 M3;1

M4;1 M1;1

" #
¼

âout;1 � âr;1 âout;1 � b̂1

b̂s;1 � âr;1 b̂s;1 � b̂1

2
4

3
5 �1 0

0 1

� � RH;1 0

0 RE;1

" #
�1 0

0 1

� � âi;1 � âin;1 âi;1 � b̂s;1

b̂1 � âin;1 b̂s;1 � b̂1

2
4

3
5. (83)

For second-order reflection–refraction events, the perpendicular components of the electric and magnetic fields, defined
with respect to the incident plan, can be written as follows:

Ei;2?ð r
*

2Þ ¼ E
*

t;1ð r
*

2Þb̂2 ¼ b̂1Et;1?ð r
*

2Þ �
ðNr;1êt;1 þ iNn;1n̂1Þ � b̂1

m2
Ht;1?ð r

*
2Þ

" #
b̂2

¼ ðb̂1 � b̂2ÞEt;1?ð r
*

2Þ �
Nr;1ðb̂2 � ât;1Þ þ iNn;1ðêf ;1 � b̂2Þ

m2
Ht;1?ð r

*
2Þ, (84)

Hi;2?ð r
*

2Þ ¼ H
*

t;2ð r
*

2Þb̂2 ¼ ½b̂1Ht;1?ð r
*

2Þ þ ðNr;1êt;1 þ iNn;1n̂1Þ � b̂1Et;1?ð r
*

2Þ�b̂2

¼ ðb̂1 � b̂2ÞHt;1?ð r
*

2Þ þ ½Nr;1ðât;1 � b̂2Þ þ iNn;1ðb̂2 � êf ;1Þ�Et;1?ð r
*

2Þ. (85)

Alternatively, we may express Eqs. (84) and (85) in a compact matrix form as follows:

Hi;2?ð r
*

2Þ

Ei;2?ð r
*

2Þ

2
4

3
5 ¼ b̂1 � b̂2 Nr;1ðât;1 � b̂2Þ þ iNn;1ðb̂1 � êf ;1Þ

�
Nr;1ðât;1 � b̂2Þ þ iNn;1ðb̂2 � êf ;1Þ

m2
b̂1 � b̂2

2
664

3
775 Ht;1?ð r

*
2Þ

Et;1?ð r
*

2Þ

2
4

3
5. (86)

The corresponding second-order reflected and refracted field vectors can be written in the forms

Hr;2?ð r
*
Þ

Er;2?ð r
*
Þ

2
4

3
5 ¼ RH;2 0

0 RE;2

" #
Hi;2?ð r

*
2Þ

Ei;2?ð r
*

2Þ

2
4

3
5 exp½ikoðNr;2êr;1 þ iNn;2n̂2Þð r

*
� r
*

2Þ�, (87)

Ht;2?ð r
*
Þ

Et;2?ð r
*
Þ

2
4

3
5 ¼ TH;2 0

0 TE;2

" #
Hi;2?ð r

*
2Þ

Ei;2?ð r
*

2Þ

2
4

3
5 exp½ikoêt;2ð r

*
� r
*

2Þ�. (88)

Based on Eq. (88) and some algebraic manipulations similar to the case of j ¼ 1, the scattering matrix for the second-order
scattered rays can be written as follows:

A2;2 A3;2

A4;2 A1;2

" #
¼

M2;2 M3;2

M4;2 M1;2

" #
expfiko½êi;1 � r

*
1 þ ðNr;1êt;1 þ iNn;1n̂1Þð r

*
2 � r

*
1Þ � êt;2 � r

*
2�g, (89)

M2;2 M3;2

M4;2 M1;2

" #
¼

cos yt;2 cos yt;1

cos yi;2 cos yi;1

� �1=2 âout;2 � ât;2 âout;2 � b̂2

b̂s;2 � ât;2 b̂s;2 � b̂2

2
4

3
5 �1 0

0 1

" #
TH;2 0

0 TE;2

" #

�

b̂2 � b̂1 Nr;1ðât;1 � b̂2Þ þ iNn;1ðb̂2 � êf ;1Þ

�
Nr;1ðât;1 � b̂2Þ þ iNn;1ðb̂2 � êf ;1Þ

m2
b̂2 � b̂1

2
664

3
775

�

TH;1 0

0 TE;1

" #
�1 0

0 1

" # âi;1 � âin;2 âi;1 � b̂s;2

b̂2 � âin;2 b̂s;2 � b̂2

2
4

3
5. (90)

In a strong absorption case, the value of the exponential function in Eq. (89) is quite small for a size parameter in the
geometric optics regime such that only external reflections essentially dominate the scattered field. The term
½ðcos yt;2 cos yt;1Þ=ðcos yi;2 cos yi;1Þ�

1=2 in Eq. (90) is included to satisfy the law of conservation of energy [12]. Similarly,
for the jth (jX3) order, the scattering matrix can be given as follows:

A2;j A3;j

A4;j A1;j

" #
¼

M2;j M3;j

M4;j M1;j

" #
expfiko½êi;1 � r

*
1 þ ðNr;1êt;1 þ iNn;1n̂1Þð r

*
2 � r

*
1Þ

þ ðNr;2êr;2 þ iNn;2n̂2Þð r
*

3 � r
*

2Þ . . . ðNr;j�1êr;j�1 þ iNn;j�1n̂j�1Þð r
*

j � r
*

j�1Þ � êt;j � r
*

j�g, (91)
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M2;j M3;j

M4;j M1;j

" #
¼

cos yt;j cos yr;j�1 . . . cos yr;2 cos yt;1

cos yi;j cos yi;j�1 . . . cos yi;2 cos yi;1

� �1=2 âout;j � ât;j âout;j � b̂j

b̂s;j � ât;j b̂s;j � b̂j

2
64

3
75 �1 0

0 1

" #
TH;j 0

0 TE;j

" #

�

b̂j � b̂j�1 Nr;j�1ðâr;j�1 � b̂jÞ þ iNn;j�1ðêf ;j�1 � b̂jÞ

�
Nr;j�1ðâr;j�1 � b̂jÞ þ iNn;j�1ðêf ;j�1 � b̂jÞ

m2
b̂j � b̂j�1

2
664

3
775

�

RH;j�1 0

0 RE;j�1

" #

�

b̂j�1 � b̂j�2 Nr;j�2ðâr;j�2 � b̂j�1Þ þ iNn;j�2ðêf ;j�2 � b̂j�1Þ

�
Nr;j�2ðâr;j�2 � b̂j�1Þ þ iNn;j�2ðêf ;j�2 � b̂j�1Þ

m2
b̂j�1 � b̂j�2

2
664

3
775

�

RH;j�2 0

0 RE;j�2

" #
� � �

TH;1 0

0 TE;1

" #
�1 0

0 1

" # âi;1 � âin;j âi;1 � b̂s;j

b̂j � âin;j b̂j � b̂s;j

2
64

3
75, (92)

where the term ½ðcos yt;j cos yr;j�1 . . . cos yr;2 cos yt;1Þ=ðcos yi;j cos yi;j�1 . . . cos yi;2 cos yi;1Þ�
1=2 is introduced for the

conservation of energy, similar to the case presented in Eq. (90). Note that within an absorbing particle, the angle of
incidence can differ from the angle of reflection for a geometric optics ray, as shown by Yang and Liou [17].

Following van de Hulst [19], we express the scattered electric field in terms of the scattering matrix and the incident
electric field as follows:

Es;==

Es;?

" #
¼

eikr

�ikr

S2 S3

S4 S1

" #
E0;==

E0;?

" #
. (93)

In the framework of the conventional ray-tracing technique, the scattering matrix can be decomposed into contributions
from geometric reflection and refraction (denoted by subscript ray) and diffraction (denoted by subscript dif) in the form

S2 S3

S4 S1

" #
¼

S2 S3

S4 S1

" #
ray

þ
S2 S3

S4 S1

" #
dif

. (94)

In the conventional ray-tracing calculation for the single-scattering properties of a dielectric particle, the 4p directional
space is discretized in terms of a number of small solid angle elements given by

DOu;v ¼ sin
yuþ1 þ yu

2

� �
ðyuþ1 � yuÞðjvþ1 �jvÞ, (95)

where yu and jv denote discretization nodes of the scattering zenith and azimuthal angles, respectively. In the direction
specified by a scattering zenith angle ys and an azimuth angle js, the contribution of geometric optics rays to the scattering
matrix can be written as follows:

S2 S3

S4 S1

" #
ray

¼
X

p

X
j

S2 S3

S4 S1

" #
ray;p;j

¼
X

p

X
j

�ik
Dsp;j

DOu;v

� �1=2

Wu;v

A2;j A3;j

A4;j A1;j

" #
p

for
ys ¼ ðyu þ yuþ1Þ=2;

js ¼ ðjv þjvþ1Þ=2;

(
(96)

where the subscript p denotes an incident ray within the particle projected area on a plane normal to the incident direction,
the subscript j denotes the jth-order scattered ray whose cross section is Dsp;j, which is associated with the pth-incident
ray, and Wu,v is a weight given by

Wu;v ¼
1 if ys;j 2 ½yu; yuþ1� and js;j 2 ½ju;juþ1�;

0 if ys;je½yu;yuþ1� or js;je½ju;juþ1�:

(
(97)

In Eq. (97), ys,j and js,j represent, respectively, the zenith and azimuthal angles of the direction corresponding to the jth-
order outgoing ray specified by the unit vector ês;j defined in Fig. 3. The contribution of diffraction to the scattering matrix
in Eq. (94) can be calculated via the following formula [20]:

S2 S3

S4 S1

" #
diff

¼
k2

0

4p

Z Z
expð�ik0r̂ � p

*
Þd2 p

* cos ysð1þ cos ysÞ 0

0 cos ys

" #
, (98)

where the integration domain is the particle projected area on a plane perpendicular to the incident rays.
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After the scattering matrix has been determined, computing the scattering phase matrix that relates the scattered
Stokes parameters to their incident counterparts is straightforward. Eq. (94) fully accounts for the phase interferences
among geometric optics rays and diffraction. In practice, however, the effect of phase inferences on scattering patterns can
be neglected, particularly for a polydisperse system consisting of randomly oriented nonspherical particles, because of the
required averaging processes relevant to particle orientations and sizes. The phase matrix subject to this simplification can
be expressed by

P ¼
s� sa

2s� sa
Pray þ

s
2s� sa

Pdif , (99)

where Pray and Pdif are the contributions from geometric optics rays and diffraction, respectively. Note that both Pray and
Pdif in Eq. (99) are normalized such that

1

2

Z p

0
PrayðysÞ sin ys dys ¼ 1 and

1

2

Z p

0
Pdif ðysÞ sin ys dys ¼ 1. (100)

In Eq. (99), the quantity Pray can be written as follows:

Pray ¼
X

p

X
j

Pray;p;j, (101)

where Pray;p;j can be directly computed from the first term on the right-hand side in Eq. (96), along with the normalization
condition defined in Eq. (100). Likewise, the term Pdif ðysÞ can be directly computed from the diffraction component of the
scattering matrix defined in Eq. (98). The quantity s, in Eq. (99), is the particle projected area, while sa is the particle
absorption cross-section. In Eq. (99), it is noted, in accordance with the geometric optics approximation within the context
of the optical theorem, that the extinction cross-section of a scattering particle is twice its projected area. In the ray-tracing
computation, the total absorption of a scattering particle is the sum of the absorption of individual rays given by

sa ¼ s� 2�1
X

p

sp;1ðjM1;1j
2 þ jM2;1j

2 þ jM3;1j
2 þ jM4;1j

2Þ

� 2�1
X

p

X
j¼2

sp;jðjM1;jj
2 þ jM2;jj

2 þ jM3;jj
2 þ jM4;jj

2Þ exp �2ko

Xj�1

q¼1

Nn;qn̂qð r
*

qþ1 � r
*

qÞ

" #
. (102)

Eqs. (99)–(102) provide a practical ray-tracing scheme for computing the single-scattering properties of an absorbing
particle within the context of the conventional geometric ray-tracing framework.

4. Some numerical examples

To illustrate the applicability of the present ray-tracing scheme, we apply this scheme to compute the angular
distributions of the scattered energy and degree of linear polarization in conjunction with light scattering by water droplets
at infrared and far-infrared wavelengths at which water is considerably absorptive. A comparison of the geometric optics
solutions and their Lorenz–Mie counterparts for the single-scattering properties of an ensemble (referred to as
polydispersion) of non-absorbing spheres with sizes specified in terms of a gamma function has been reported by Liou and
Hansen [21]. Unlike the previous study, however, the present computations have been made for individual spheres
(referred to as monodispersion) to match more precisely with Lorenz–Mie results. The formulation of the scattering phase
function and the degree of linear polarization within the framework of the conventional geometric optics method for
spheres is given in Appendix A.

Fig. 4 shows the angular variations of P11 and DLP for spheres with size parameters of 25, 50, 100 and 500. The index of
refraction used in the computation is m ¼ 1.218+i0.0508, corresponding to the refractive index of water at the 10mm
wavelength [22]. In each panel in Fig. 4, a sub-panel shows the zoom-in of the phase function in the range of scattering
angles from 01 to 101. For a size parameter of 25, the ray-tracing solutions for both the phase function and DLP deviate
substantially from the exact Lorenz–Mie results because of the breakdown of the principles of geometric optics for small
particles. However, the accuracies of the ray-tracing solutions are systematically improved with an increase in size
parameter. In the case of x ¼ 500, the Lorenz–Mie and geometric ray-tracing results are essentially the same, except for
several minor differences for DLP in forward directions. Note that surface wave and the so-called above- and below-edge
effects [23], which are related to some physical processes beyond the applicability domain of the geometric optics method,
are not considered in the present ray-tracing computation. Furthermore, the cases considered in this study correspond to
strong absorption and many features such as caustics [24,25] associated with resonances [26,27] are substantially
diminished.

Fig. 5 is similar to Fig. 4, except for a refractive index of 1.48+i0.393, which is for water at a far-infrared wavelength of
20mm [22]. In this case, the imaginary part of the refractive index for the results shown in Fig. 5 is almost one order of
magnitude larger than that used for Fig. 4. It is evident from comparison of Figs. 4 and 5 for the case of x ¼ 25 that the
accuracy of ray-tracing calculations is improved with increasing particle absorption. In Fig. 5, the oscillation patterns in
both the phase function and DLP are similar for the Lorenz–Mie and geometric optics solutions even for x ¼ 25, although
the angular locations of the oscillation maxima and minima shifted between the two solutions for scattering angles larger
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than about 301. From Figs. 4 and 5, it can be concluded, with reasonable accuracy, that the geometric-optics method can be
applied to a strongly absorbing sphere with a size parameter larger than approximately 50.

5. Summary

When a scattering particle is absorptive, the waves within it are not homogeneous such that the electromagnetic field
vectors are not perpendicular to the propagation direction of such waves. However, the electric and magnetic vectors in the
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Fig. 4. The angular distributions of phase function and degree of linear polarization for spheres. The refractive index used is 1.218+i0.0508 for water at a

wavelength of 10mm.
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TE and TM modes, respectively, are transverse with respect to the wave propagation. Based on Maxwell’s equations and the
electromagnetic boundary conditions, we have derived the generalized Fresnel formulas for reflection and refraction of
the TE-mode electric field and the TM-mode magnetic field. In these formulas, we have employed the concept of effective
refractive indices to circumvent the difficulties associated with the complex angles involved in the conventional Snell law
in the limit of geometric optics. Furthermore, we have also derived the recurrence equations that are required for
computing the scattering matrix of an absorbing particle within the framework of the conventional geometric optics
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Fig. 5. The angular distributions of phase function and degree of linear polarization for spheres. The refractive index used is 1.48+i0.393 for water at a
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approach. Subject to this framework, the present formulation provides an ‘‘exact’’ ray-tracing scheme that fully accounts for
the inhomogeneity of internal waves within an absorbing particle. We applied the present ray-tracing scheme to compute
the angular distributions of phase function and the degree of linear polarization associated with the scattering of infrared
and far-infrared radiation by individual spheres. We illustrated that the accuracy of the conventional geometric optics
method is improved with increasing size parameter and particle absorption.
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Appendix A. Phase function and degree of linear polarization formulated in a ray-tracing method for spheres

Following van de Hulst [19] and Liou and Hansen [21], the scattered field can be decomposed into the contributions
from Fraunhofer diffraction and geometric optics rays of various orders. Thus, the phase matrix for a sphere within the
context of the geometric optics method can be written as follows:

PðyÞ ¼
XN

n¼0

½PðnÞTMðyÞ þ PðnÞTE ðyÞ�, (103)

where the subscripts TM and TE indicate the TM and TE modes, respectively, in the case of an absorbing sphere,. In
Eq. (103), n ¼ 0 indicates the contribution from Fraunhofer diffraction, n ¼ 1 indicates the contribution from externally
reflected rays, and nX2 indicates the contributions from the rays that undergo n�2 internal reflections and two refractions.
In practice, the upper limit of the summation in Eq. (103) can be set to be in the order of 10 because the energy carried by
higher-order rays is quite small, particularly for an absorbing particle. In the case of a sphere, the scattered Stokes vector
can be expressed in the form [28]

IsðyÞ
QsðyÞ
UsðyÞ
VsðyÞ

2
66664

3
77775 ¼

qsx
2

4k2
or2

P11ðyÞ P12ðyÞ 0 0

P12ðyÞ P11ðyÞ 0 0

0 0 P33ðyÞ �P43ðyÞ
0 0 P43ðyÞ P33ðyÞ

2
66664

3
77775

Ii

Q i

Ui

Vi

2
66664

3
77775, (104)

where I, Q, U, and V are the four elements of the Stokes vector; the subscripts s and i in Eq. (104) indicate scattered and
incident quantities, respectively; x is the size parameter; qs is the scattering efficiency; P11 is the phase function, which
satisfies

1

2

Z p

0
P11ðyÞ sin ydy ¼ 1. (105)

The quantity qs in Eq. (104) can be given in terms of the difference between the extinction and absorption efficiencies. In the
conventional geometric optics method, the extinction efficiency is assumed to be 2, and the absorption cross-section can be
computed from Eq. (102).

We focus on P11 and P12 so that the contributions of diffraction to the TM and TE components of the phase function from
Eqs. (98) and (104) can be expressed in the forms [29]

Pð0Þ11;TMðyÞ ¼
x2

8qs

2J1ðx sin yÞ
x sin y

� �2

ðcos yþ cos2 yÞ2, (106)

Pð0Þ11;TEðyÞ ¼
x2

8qs

2J1ðx sin yÞ
x sin y

� �2

ð1þ cos yÞ2, (107)

where J1 is the Bessel function of the first kind.
Following van de Hulst [19] and referring to the incidence-scattering configuration in Fig. 6a, we can express the

contribution of externally reflected rays to the phase function in the form

Pð1Þ11;TMðyÞ ¼
2jRH;1j

2

qs

D, (108)

Pð1Þ11;TEðyÞ ¼
2jRE;1j

2

qs

D, (109)

ARTICLE IN PRESS

P. Yang, K.N. Liou / Journal of Quantitative Spectroscopy & Radiative Transfer 110 (2009) 1162–1177 1175



where the generalized Fresnel reflection coefficients RE,1 and RH,1 can be computed from Eqs. (26) and (38). The term D is
the so-called ‘‘divergence’’ that was first introduced by van de Hulst [19] and it is given by

D ¼
cos yi sin yi

sin yðdy=dyiÞ

����
����. (110)

In van de Hulst’s formulation, the complement of yi is used. For external reflection, D ¼ 1
4 because y ¼ p�2yi.

For a large sphere with strong absorption, the waves refracted into the particle are essentially absorbed and the
scattered field is primarily contributed from diffraction and external reflection. In this case, the geometric optics solutions
for the phase function and the degree of linear polarization have been presented by Yang et al. [29]. However, the
contributions from transmitted rays must be taken into account if particle absorption or size parameter is moderate.
Referring to Fig. 6b and following the procedure of van de Hulst [19] and Liou and Hansen [21], we obtain the contribution
of the nth-order rays to the phase function as follows:

PðnÞ11;TEðyÞ ¼
2D

qs

ð1� jRE;1j
2Þ

cos yr;2

cos yi;2
jRE;2j

2 . . .
cos yr;n�1

cos yi;n�1
jRE;n�1j

2

� 1�
cos yr;n

cosyi;n
jRE;nj

2

� �
exp½�4pð ~Ni;1d1 þ

~Ni;2d2 þ � � � þ
~Ni;n�1dn�1Þ=l�, (111)

PðnÞ11;TMðyÞ ¼
2D

qs

ð1� jRM;1j
2Þ

cos yr;2

cos yi;2
jRM;2j

2 � � �
cos yr;n�1

cos yi;n�1
jRM;n�1j

2

� 1�
cos yr;n

cos yi;n
jRM;nj

2

� �
exp½�4pð ~Ni;1d1 þ

~Ni;2d2 þ � � � þ
~Ni;n�1dn�1Þ=l�, (112)

where the terms ~Ni;1 and ~Ni;j (for j41) are given by Nn;1 cos yt;1 and Nn;j cos yr;j, respectively [17]. The terms cos yr;j= cos yi;j

(for j ¼ 2;3 . . .n� 1) in Eqs. (111) and (112), which are unity in the case of a non-absorbing sphere, are included for the
conservation of energy associated with variations in ray cross-sections in the corresponding reflection–refraction events.
The quantity dj is the distance between the jth-order incident point an the (j+1)th-order incident point, as shown in Fig. 6b.

The P12 element of the phase matrix is given by

P12 ¼
XN

n¼0

½PðnÞ11;TMðyÞ � PðnÞ11;TEðyÞ�. (113)

The degree of linear polarization (DLP) is defined in terms of the negative ratio of the second element (Q) to the first
element (I) in the Stokes vector [30], i.e.

DLP ¼ �
Qs

Is
. (114)

For non-polarized incident light, it can be shown that DLP for a sphere is given by

DLP ¼ �
P12

P11
¼ �

PN
n¼0½P

ðnÞ
11;TMðyÞ � PðnÞ11;TEðyÞ�PN

n¼0½P
ðnÞ
11;TMðyÞ þ PðnÞ11;TEðyÞ�

. (115)
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