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a b s t r a c t

The ray-tracing technique can be employed to simulate the scattering of light by a

dielectric particle whose characteristic dimension is much larger than the incident

wavelength. When a scattering particle is absorptive, a localized electromagnetic wave

refracted into the scatterer is inhomogeneous, which requires the use of an effective

refractive index to determine the propagation direction of the refracted ray. The

effective refractive index for the first-order reflection–refraction event (i.e., the case for

the ray-transmission from air into a particle) has been previously derived by the

authors. In this study, we further develop recurrence formulae for the effective

refractive indices associated with higher-order reflection–refraction events when the

ray-transmission is from a particle to air. It is shown from the new formulae that

effective refractive indices in this case depend upon ray history. Numerical results

indicate that the real and imaginary parts of the effective refractive index are larger and

smaller, respectively, than the real and imaginary parts of the inherent complex

refractive index of an absorbing particle. Furthermore, if the particle faces associated

with two sequential internal reflections are parallel to each other, the corresponding

effective refractive indices are the same.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A number of methods have been developed to solve for the single-scattering properties of micron-sized nonspherical
particles that are present in nature (e.g., ice crystals within cirrus clouds) [1]. When a particle is much larger than the
incident wavelength, the ray-tracing technique based on the principles of geometric optics can be applied to solve for its
optical properties. In particular, the conventional ray-tracing technique and its modification and improvement have been
extensively used to investigate the single-scattering properties, including the scattering phase matrix, extinction
cross section, and single-scattering albedo of nonspherical and irregular ice crystals [2–10] as well as coarse-mode dust
particles [11,12].

When a scattering particle is absorptive for which the index of refraction is a complex quantity, electromagnetic waves
refracted into a particle are inhomogeneous such that the planes of constant phase deviate from those of constant
amplitude [13]. In this case, Snell’s law, if expressed in terms of a complex refractive index, would involve a complex angle
that does not have a simple geometric meaning and cannot be applied to ray-tracing analysis. To circumvent this difficulty,
ll rights reserved.
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Yang and Liou [14] introduced an effective refractive index and formulated Snell’s law in such a manner that complex
quantities are not required. However, the previous study was limited to the first-order reflection–refraction event when the
transmission of a ray is from air into a particle. For higher-order reflection–refraction events when the transmission of a ray
is from a particle to air, the effective refractive index associated with the first-order reflection–refraction event was used as
an approximation. In this study, we revisit this issue and derive effective refractive indices for higher-order
reflection–refraction events.

2. Recurrence formulae for effective refractive indices

We assume the time-dependence of the incident electromagnetic wave in the form exp(�iot), where o is the angular
frequency, t is time, and i ¼ (�1)1/2. This definition of the time-dependent factor leads to a positive imaginary part of the
index of refraction [13] such that m ¼ mr+imi where mr and mi are the real and imaginary parts, respectively.

Fig. 1 schematically illustrates reflected and refracted ray paths associated with a certain incident ray. The terms Pj

(j ¼ 1,2,3,y) indicate sequential incident points. If the refractive index for a particle is a real quantity (i.e., no absorption is
involved), the directions of high-order reflected and refracted rays can be determined on the basis of the conventional
Snell’s law. However, if the refractive index of a particle is a complex quantity, Snell’s law as a result of the phase continuity
of the first-order incident and refractive waves in conjunction with wave transmission from air into the particle is given by

sin yt ¼ sin yi=m, (1)

where yi and yt are the incident and refractive angles, respectively. Clearly, yt is a complex quantity if the imaginary part of
m is nonzero. In this case, yt does not have a simple geometric meaning in the context of geometric optics [13]. To carry out
ray-tracing calculations in the case of an absorbing dielectric particle, Yang and Liou [14] defined an effective refractive
index and expressed Snell’s law in a real domain for the first-order reflection–refraction event. For self-completeness of the
formulation in this study, we should briefly recapture the approach developed in [14], followed by deriving recurrence
formulae for the effective refractive indices in the case of higher-order reflection–refraction events.

As shown in Fig. 2, the directions of the incident, reflected, and refracted rays for the first-order reflection–refraction
event are denoted by unit vectors êi;1, êr;1, and êt;1, respectively. n̂1 is a unit vector normal locally to the particle surface at
point P1 with its direction pointed into the particle. With the preceding definitions, the incident, reflected, and refracted
electric field vectors can be expressed, respectively, via the following expressions [14]:
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where the spatial components of the electric field vectors are given by
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Fig. 1. A schematic illustration of the ray paths associated with an incident ray.
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Fig. 2. Geometric configuration for the first-order reflection–refraction event when the ray transmission is from air into a scattering particle.
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Fig. 3. Geometric configuration for the second-order reflection–refraction event when the ray transmission is from a scattering particle into air.
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For a concise formulation, in the following discussions we will just consider the spatial components of the electric field
vectors. In Eqs. (5)–(7), k0 ¼ 2p/l0, l0 is the incident wavelength, r

*

p;1 is the position vector of point P1, and E
*

0i;1 ¼

E
*

0 expðik0êi;1 � r
*

p;1Þ is the incident electric field vector at point P1, where E
*

0 is the incident field electric amplitude vector. In
Eq. (7), the terms Nr,1 and N�n;1 are the effective refractive indices given by [14,15]
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On the basis of this approach, Snell’s law can be expressed as follows:

yr;1 ¼ yi;1, (10)

sin yt;1 ¼ sin yi;1=Nr;1. (11)

Fig. 3 shows the directions of the incident, reflected, and refracted rays for the second-order reflection–refraction event,
which are denoted by unit vectors êi;2, êr;2, and êt;2, respectively. Note that êi;2 ¼ êt;1, n̂2 is a unit vector normal to the
particle surface at point P2 with its direction pointed into the particle, and êf ;2 is a unit vector parallel to both the incident
plane and the particle surface at point P2. The incident electric vector can then be written as follows:
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In the ray-tracing calculation, tracing the propagation of the reflected or reflected ray is confined to the incident
plane on which the position vector r

*
� r
*

p;2 is confined. With this constraint, this position vector can be decomposed
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Fig. 4. Decomposition of a position vector r
*
� r
*

p;2 in terms of unit vectors êf ;2 and êt;2. The position vector is confined to the incident plane.
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in the form

r
*
� r
*

p;2 ¼ lêr;2 þ dêf ;2, (14)

where l and d are defined in Fig. 4. The reflected electric field vector at a location on the incident plane can be expressed as
follows:

E
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where d2 is a phase factor to be determined on the basis of the local phase continuity condition at the particle surface.
Along the interface line (on the incident plane) between the particle and air, i.e., l ¼ 0, the phase of the incident wave must
be the same as that of the reflected wave, which leads to the following phase continuity condition:

ðNr;1êi;2 þ iN�n;1n̂1Þ � êf ;2d ¼ ðNr;2êr;2 þ iN�n;2n̂2Þ � êf ;2dþ d2. (16)

It is evident from Fig. 3 that n̂2 � êf ;2 ¼ 0. Thus, if the particle face through point P1 is locally parallel to the particle face
through point P2 (i.e., n̂1 ¼ �n̂2), Eq. (16) reduces to

Nr;1êi;2 � êf ;2d ¼ Nr;2êr;2 � êf ;2dþ d2. (17)

Evidently, d2 in Eq. (17) reduces to zero if the following relation holds:

Nr;1êi;2 � êf ;2d ¼ Nr;2êr;2 � êf ;2d. (18)

Eq. (18) leads to a relationship between the incident and reflection angles, given by

Nr;1 sin yi;2 ¼ Nr;2 sin yr;2. (19)

If n̂1 is not parallel to n̂2, Eqs. (16) and (18) lead to the following relationship:

d2 ¼ iN�n;1n̂1 � êf ;2d. (20)

Thus, the electric vector associated with the reflected ray, if observed on the incident plane, is given by

E
*

r;2ð r
*
Þ ¼ E

*
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The inhomogeneity properties of the electric vector given in Eq. (21) are quite complicated. For example, for a given k0,
the phase of the wave is determined by l, d, Nr,2, êf ;2 and êr;2, whereas the decay of the amplitude of the wave is essentially
determined by N�n;1, n̂1, N�n;2, n̂2, êf ;2, l, and d. Despite the intricacy of geometric vectors associated with phase and
amplitude, tracing of the reflected ray is along the ray path in the direction specified by êr;2. For this reason, we have an
expression in the vicinity of the reflected ray path under the condition given by Eq. (19), which is locally equivalent to
Eq. (21) when d ¼ 0, in the form:
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The electric vector in Eq. (22) must satisfy the wave equation within the particle medium given by
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Substituting Eq. (22) into Eq. (23), we have

N2
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Nr;2N�n;2 cos yr;2 ¼ mrmi. (25)

Combing Eq. (19) with Eqs. (24) and (25), we obtain the following solutions:
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Furthermore, the refractive angle can be determined by the following expression:

sin yt;2 ¼ Nr;1 sin yi;2 ¼ Nr;2 sin yr;2. (28)

Note that the total reflection occurs if Nr;1 sin yi;241.
Following the same procedure, the effective refractive indices for higher-order reflection–refraction events can be

determined analytically and are given by

Nr;jþ1 ¼ 2�1=2
fm2

r �m2
i þ N2

r;j sin2 yi;jþ1 þ ½ðm
2
r �m2

i � N2
r;j sin2 yi;jþ1Þ

2
þ 4m2

r m2
i �

1=2g1=2, (29)

N�n;jþ1 ¼ 2�1=2
f�ðm2

r �m2
i � N2

r;j sin2 yi;jþ1Þ þ ½ðm
2
r �m2

i � N2
r;j sin2 yi;jþ1Þ

2
þ 4m2

r m2
i �

1=2g1=2, (30)

where the subscript j (jX2) represents the order of reflection–refraction events. Subsequently, Snell’s law, expressed in
terms of the effective refractive indices, can be rewritten as follows:

Nr;j sin yi;jþ1 ¼ Nr;jþ1 sin yr;jþ1, (31)

Nr;j sin yi;jþ1 ¼ sin yt;jþ1. (32)

Along the ray path within an absorbing particle, the electric field vectors can then be expressed by
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It is evident from Eqs. (33) and (34) that Nr,j (j ¼ 1,2,3y) determines the phase of the wave, while N�n;1 cos yt;1 and
N�n;j cos yr;j denote the absorption along ray propagation. Thus, the former is the real part of the effective index of refraction,
while the latter two parameters represent its imaginary part. We denote the imaginary part (Nn,j, j ¼ 1,2,3,y) of the
effective refractive index as follows:

Nn;1 ¼ N�n;1 cos yt;1, (35)

Nn;j ¼ N�n;j cos yr;j; j ¼ 2;3;4 . . . . (36)

3. Numerical results

In the numerical calculation involved in the ray-tracing procedure, it is convenient to trace the directions of reflected
and refracted rays via vector equations that are independent of a specific coordinate system. From Eqs. (10), (11), (31) and
(32) as well as the geometrical configurations shown in Figs. 2 and 3, we obtain

êr;1 ¼ êi;1 � ðcos yi;1 þ cos yr;1Þn̂1, (37)

êt;1 ¼ êi;1=Nr;1 � ðcos yi;1=Nr;1 � cos yt;1Þn̂1, (38)

êr;j ¼
Nr;j�1

Nr;j
êi;j � cos yr;j þ

Nr;j�1

Nr;j
cos yi;j

� �
n̂j; j ¼ 2;3;4 . . . (39)

êt;j ¼ Nr;j�1êi;j � ðNr;j�1 cos yi;j � cos yt;jÞn̂j; j ¼ 2;3;4 . . . ðif total reflection does not occurÞ. (40)

To illustrate the effect of using the effective refractive index on the determination of a ray path, panel (a) in Fig. 5 shows a
two-dimensional (2D) case concerning the propagation of an incident ray that impinges on a hexagon. The complex index
of refraction of the 2D particle is assumed to be 1.3857+i0.422, the refractive index of ice at a wavelength of 12.5mm [16].
Panel (b) is similar to panel (a) except that the complex index of refraction of the 2D particle is assumed to be
1.0925+i0.248, the refractive index of ice at a wavelength of 11.0mm [16]. For the computation, the incident angle for the
first-order reflection–refraction event is assumed to be 651 and 551 (i.e., yi,1+yr,1 ¼ 1301 and 1101, as shown in Fig. 5) for
panels (a) and (b), respectively. In Fig. 5, the solid lines denote the results computed by using the effective refractive indices
for corresponding orders of reflection–refraction events. The dotted lines indicate the results computed from simplified
Snell’s law given by

yi;j ¼ yr;j; j ¼ 1;2;3 . . .

sin yt;1 ¼ sin yi;1=mr , (41)
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Fig. 5. The solid lines are calculated on the basis of the effective refractive indices and the dotted lines are based on simplified Snell’s law given by

sin yt;1 ¼ sin yi;1=mr and sin yt;j ¼ mr sin yi;j , j ¼ 2,3,4y . In the calculation, the inherent complex index of refraction of the particle is assumed to be

1.3857+i0.422 and 1.0925+i0.248 for panels (a) and (b), respectively.

Table 1
The real and imaginary parts of the effective index of refraction for various orders of the reflection-refraction events illustrated in Fig. 5. Cases 1 and 2 in

the table correspond to panels a and b in Fig. 5, respectively.

Order of reflection–refraction events Case 1 Case 2

mr ¼ 1.3857 and mi ¼ 0.422 mr ¼ 1.0925 and mi ¼ 0.248

yi,1 ¼ 651 yi,1 ¼ 551

Nr,j Nn,j Nr,j Nr,j

1 1.4234 0.41083 1.1213 0.24163

2 1.3942 0.41944 1.0940 0.24766

3 1.3942 0.41944 1.0940 0.24766

4 1.4202 0.41175 1.0940 0.24766

5 1.3953 0.41910 1.1183 0.24227
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sin yt;j ¼ mr sin yi;j; j ¼ 2;3;4 . . . ðif total reflection does not occurÞ: (42)

It is evident from Fig. 5 that the effect of wave inhomogeneity on the propagation of a localized wave (or a ray) is quite
substantial for higher-order reflection–refraction events. However, the effect of the wave inhomogeneity on the scattering
properties of the particle may be small. This is because the wave inhomogeneity is significant only when the absorption of
the particle is substantial. For a strongly absorbing particle, the energy carried by a higher-order ray is much less than the
carried by a lower-order ray. In this case, diffraction and external reflection processes dominate the scattered field.

Table 1 lists the real and imaginary parts of the effective index of refraction for two cases. Cases 1 and 2 in the table
correspond to panels (a) and (b) in Fig. 5, respectively. We note from Table 1 that the Nr,j and Nn,j are larger and smaller than
mr and mi, respectively. The dependence of the effective index of refraction on ray history is also evident from the results
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listed in Table 1. There is no systematic change in Nr,j and Nn,j as a function of the order of reflection–refraction events. By
matching the order of reflection–refraction events for the results in Table 1 with the geometries defined in Fig. 5, it is
noticed that the effective refractive indices for two sequential internal reflections are the same if the two particle faces for
these reflections are parallel. Evidently, the effective refractive indices depend on both ray history and particle shape.

4. Summary

The electromagnetic waves refracted into an absorbing medium are inhomogeneous under which the conventional
Snell’s law will involve a complex refractive angle that does not have a general geometric meaning in the context of
geometric optics. As a follow-up to our previous work [14], we derived recurrence formulae for the effective refractive
index to account for ray propagation within an absorption particle. Although the inhomogeneous electromagnetic wave
associated with an internally reflected ray is quite complicated, the mathematical expression of this wave in the vicinity of
the corresponding ray path confined to the incident plane can be simplified. Using the concept of effective refractive index,
Snell’s law can be expressed in a real form and is suitable for ray-tracing calculations. The present numerical results show
that the effective index of refraction can be quite different from the inherent index of refraction of a strongly absorbing
particle. If the particles faces for two sequential internal reflections are parallel to each other, the corresponding effective
refractive indices are the same. The effective refractive index associated with an internal ray depends on both the history of
this ray and the geometry of the corresponding scattering particle. To fully understand the wave inhomogeneity effect on
the single-scattering properties of an absorbing particle, we need to consider the effects of wave inhomogeneity on both
ray propagation and Fresnel coefficients in the ray-tracing calculation, an involved subject requiring future studies.
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