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I. INTRODUCTION

The finite difference time domain (FDTD) technique has been demonstrated
to be one of the most robust and efficient computational methods to solve for
the interaction of electromagnetic waves with scatterers, particularly those with
complicated geometries and inhomogeneous compositions. In this method, the
space containing a scattering particle is discretized by using a grid mesh and the
existence of the particle is represented by assigning suitable electromagnetic con-
stants in terms of permittivity, permeability, and conductivity over the grid points.
Because it is not necessary to impose the electromagnetic boundary conditions
at the particle surface, the FDTD approach with appropriate and minor modifi-
cations can be applied to the solution of light scattering by various nonspherical
and inhomogeneous particles such as irregular ice crystals and aerosols with in-
clusions.

Conventional numerical methods for light scattering solve the electromagnetic
wave equations in the frequency domain. However, the FDTD approach directly
seeks numerical solutions of Maxwell’s equations in the time domain. Mathemat-
ically, Maxwell’s equations in the frequency domain are elliptic and the solution
of the scattering problem for an incident electromagnetic wave is carried out as a
boundary value problem. On the other hand, Maxwell’s equations are hyperbolic
if they are expressed in the time domain and the scattering process is described
as an initial value problem whose solution is relatively simpler, particularly when
a complicated particle geometry is involved. Moreover, it has been recognized
that the time domain approach can be more efficient in the numerical modeling of
electromagnetic interactions (Holland et al., 1991).

The FDTD method was developed and pioneered by Yee (1966), but it did not
receive significant recognition until high-quality absorbing boundary conditions
were derived in the 1980s. Through the persistent efforts of a number of electrical
engineers and computational physicists (Taflove, 1980, 1995; Kunz and Luebbers,
1993; Holland et al., 1980), several advantages of the FDTD method have become
widely recognized. In recent years, the FDTD technique has been applied to solve
for the interactions between targets and electromagnetic waves involving such
problems as antenna scattering, numerical modeling of microstrip structures, and
electromagnetic absorption by human tissues (Andrew et al., 1997; Sheen et al.,
'1990; Sullivan et al., 1987). Applications of this method to the solutions of the
scattering and polarization properties of atmospheric nonspherical particles have
also been carried out recently by Yang and Liou (1995, 1996a, 1998b) and Tang
and Aydin (1995).

This chapter is organized as follows. In Section II, the physical basis of the
FDTD technique is reviewed. In Section III, we recapitulate the FDTD algorithm
involving the computation of the near field. Six numerical schemes for the dis-
cretization of Maxwell’s equations in time and space are presented. In Section IV,
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we review the three algorithms for the absorbing boundary condition that have
been used to suppress the artificial reflection from the boundary of the compu-
tational domain. Presented in Section V is the transformation of the near field
from the time domain to the frequency domain. In Section VI, we present the
fundamental integral equations for the mapping of the near field to the far field.
The amplitude matrix is explicitly formulated with respect to the two incident
polarization configurations parallel and perpendicular to the scattering plane. In
Section VII, we discuss the scattering and polarization properties of nonspherical
ice crystals and aerosols that are computed using the FDTD technique. Finally,
conclusions are given in Section VIII.

II. CONCEPTUAL BASIS OF THE FINITE
DIFFERENCE TIME DOMAIN METHOD

The FDTD technique is a direct implementation of Maxwell’s time-dependent
curl equations to solve for the temporal variation of electromagnetic waves within
a finite space that contains the scattering object. In practice, this space is dis-
cretized by a number of rectangular cells of which a grid mesh is composed.
Variations of the electromagnetic properties as functions of the spatial location
are specified by defining the permittivity, permeability, and conductivity at each
grid point, as shown in the conceptual diagram in Fig.la. The time-dependent
Maxwell’s curl equations are subsequently discretized by using the finite differ-
ence approximation in both time and space. At the initial time # = 0, a plane wave
source, not necessarily harmonic, is turned on. The excited wave then propagates
toward the particle and eventually interacts with it, thereby causing a scattering
event. The spatial and temporal variations of the electromagnetic field are sim-
ulated by directly applying the discretized Maxwell’s equations in a manner of
time-marching iterations over the entire computational domain. Information on
the convergent scattered field can be obtained when a steady-state field is estab-
lished at each grid point if a sinusoidal source is used or when the electric and
magnetic fields in the computational domain have reduced to significantly small
values if a pulse source is implemented. The second approach is more popular in
practical computations because a time domain pulse can provide a wide frequency
range.

The conventional FDTD numerical algorithm is based on Cartesian grid
meshes. When a scattering particle with a nonrectangular surface is discretized
over a Cartesian grid mesh, a staircasing effect is inherent because of the step-
by-step approximation of the particle shape. In recent years, significant efforts
have been focused on various FDTD algorithms associated with global curvilin-
ear and obliquely Cartesian grids (Fusco, 1990; Fusco et al., 1991; Jurgens et
al., 1992; Lee, 1993) and local target-conforming grids (Holland e al., 1991;



176 Ping Yang and K. N. Liou
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Figure 1 (a) Conceptual diagram for the computation of the near field by the FDTD technique.
(b) Locations of various field components on a cubic cell.
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Yee et al., 1992). These endeavors are employed to avoid the staircasing approx-
imation of an oblique or curved surface in a rectangular Cartesian mesh. In ad-
dition, numerical schemes based on computational fluid dynamics have received
considerable attention of late for some special electromagnetic problems, such as
the propagation of a pulse in which a steep gradient appears (Vinh et al., 1992;
Omick and Castillo, 1993). To economize the computer memory and central pro-
cessing unit (CPU) time demands, FDTD algorithms that allow a coarse grid
size and the subgridding technique are also subjects of active research (Kunz and
Simpson, 1981; Cole, 1995). Although the curvilinear grid and target-conforming
schemes are more accurate, they are usually derived for some special geometries
and are relatively inflexible when the scatterers have various sizes and shapes. In
addition, the cells in a globally irregular mesh usually differ in size so much that
one must use a small time increment in order to obtain a stable solution. Further,
irregular schemes are inherently more complicated and tedious than rectangular
Cartesian schemes. In particular, the implementation of absorbing boundary con-
ditions for the truncation of the computational domain is not as straightforward
for a curvilinear grid mesh as for a Cartesian one. It has been shown that the stair-
casing effect is not a serious problem for the FDTD technique when it is applied
to the computation of light scattering by nonferromagnetic and nonconducting ice
crystals and aerosols, once a proper method is developed to evaluate the dielectric
constants over the grid points (Yang and Liou, 1995, 1996a).

Although the actual process of scattering of an electromagnetic wave by a
particle occurs in unbounded space, it must be truncated by imposing artificial
boundaries in practical applications of the FDTD technique. In order for the sim-
ulated field within the truncated region to be the same as in the unbounded case,
an artificial boundary must be imposed with a property known as the absorbing
or transmitting boundary condition. Otherwise, the spurious reflections off the
boundary would contaminate the near field within the truncated domain. The con-
struction of an efficient absorbing boundary condition is an important aspect of
the FDTD technique. An inappropriate boundary condition may lead to numerical
instability. In addition, an absorbing boundary condition with poor performance
may require a substantially large free space between a modeled scatterer and the
boundary, thereby wasting computer memory and CPU time.

~ Values of the near field computed by the finite difference analog of Maxwell’s
equations are in the time domain. To obtain the frequency response of the scatter-
ing particle, one must transform the field from the time domain to the frequency
domain. If we use a Gaussian pulse as an initial excitation, the discrete Fourier
transform technique can be employed to obtain the frequency spectrum of the
time-dependent signal. This procedure, however, is not so straightforward. In or-
der to avoid numerical aliasing and dispersion, one must correctly select the width
of the pulse in the time domain and properly consider the available frequency
spectrum provided by the pulse.
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To obtain the particle scattering and polarization properties involving the phase
and extinction matrices, one must make the transformation of the frequency re-
sponse from the near field to the far field. To do that, a common approach has
been used that invokes a surface-integration technique on the basis of the elec-
tromagnetic equivalence principle (Umashankar and Taflove, 1982; Britt, 1989;
Yang and Liou, 1995) associated with the tangential components of the electric
and magnetic fields on a surface enclosing the particle. Because it is equivalent
in electrodynamics to define either the field everywhere on the particle surface
or the field everywhere inside the particle in the case of nonconducting object, a
volume-integration technique can also be used to obtain the far field solution, as
formulated by Yang and Liou (1996a).

On the basis of the preceding discussions, the major steps required in the ap-
plication of the FDTD technique to the solution of light scattering by a particle
can be summarized as follows:

1. Discretize the finite space containing the particle by a grid mesh and
simulate the field in this region by the finite difference analog of
Maxwell’s time-dependent curl equations.

2. Apply an absorbing boundary condition to suppress the spurious reflection
from the boundary of the computational domain.

3. Transform the near field from the time domain to the frequency domain.

4. Transform the near field in the frequency domain to the corresponding far
field based on a rigorous electromagnetic integral method.

III. FINITE DIFFERENCE EQUATIONS FOR
THE NEAR FIELD

As stated in the preceding section, the advantage of the FDTD technique is that
the electromagnetic wave is simulated in the time domain so that its interaction
with a target is formulated as an initial value problem. The well-known time-
dependent Maxwell’s curl equations are given by

V x H(r,t) = @m, (1a)
c at

1 9H(r, ¢
VxE@, 1) = — ;‘;)
C

where ¢ is the permittivity of the dielectric medium, usually a complex variable,
and c is the speed of light in vacuum. In Eq. (1b), the permeability has been as-
sumed to be unity because cloud and aerosol particles in the atmosphere and many
other scattering targets are mostly nonferromagnetic materials. When a particle is
absorptive, the imaginary part of the permittivity is nonzero. In this case, effec-

; (1b)
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tive values can be introduced (Yang and Liou, 1996a) to circumvent the complex
calculations required in Eq. (1a). The two effective parameters are defined by &,
and kcs;/4m, respectively, where ¢; and &, are the imaginary and real parts of the
permittivity, k = 27 /A is the wavenumber of the incident radiation, and A is the
wavelength. Based on the effective dielectric constants, Eq. (1a) can be expressed
equivalently as follows:

& (r) dE(r, 1)
at

In the formulation, we select a harmonic time-dependent factor of exp(—ikct) for
the electromagnetic wave in the frequency domain. The permittivity can then be
related to the refractive index m as

V x H(r, t) = + kei(m)E(r, t). 2)

& = mr2 — miz, (3a)
& = 2mmi, (3b)

where m; and m; are the real and imaginary parts of the refractive index, re-
spectively. Note that the imaginary part of the refractive index is negative if the
harmonic time-dependent factor is selected as exp(jkct) (see Section IV of Chap-
ter 1).

We can now use Eqgs. (1b) and (2) to construct the finite difference analog of
Maxwell’s equations. We first discretize the computational space that contains
the particle by using a number of small rectangular cells. A spatial location in the
discretized space is denoted by the indices (/, J, K) = (IAx, JAy, KAz) and
any variable as a function of space and time is defined as

F"(I,J,K) = FAx, JAy, KAz, nAt),

in which Ax, Ay, and Az are the cell dimensions along the x, y, and z axes,
respectively, and At is the time increment. The permittivity must be homogeneous
within each cell. For a given cell with its center located at a lattice index (I, J, K),
the mean permittivity can be evaluated on the basis of the Maxwell-Garnett (1904)
rule via

51, J,K) — 1 1 v —1
ELLK) -1 /// £yl vdn @
el,J,K)+2 AxAyAz cel(1,J,K) E(X, ¥, 2) + 2

Using the mean permittivity produces smaller staircasing errors than using a sharp
step-by-step approximation for a nonspherical geometry (Yang and Liou, 1996a).

Following Yee (1966), we select components of the magnetic field at the cen-
ter of cell faces and the electric field counterparts at the cell edges, as shown in
Fig. 1b. Such an arrangement ensures that the tangential components of the E
field and the normal components of the H field are continuous at the cell inter-
faces. In reference to Fig. 1b, the general form of the finite difference analog of
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Egs. (1b) and (2) can be written for each Cartesian component as follows:

1 1
E;‘H(I, J+ 5, K+ E)

=a IJ—f—1 K—f—1 E?} IJ+1 K+l —I—bIJ—i—lK-i-1
- * 27 2 X ’ 27 2 ’ 2’ 2

At 1 1
x {C—[HZ"+1/2<I,J+ 1,K+—> H"H/Z(I I K + )}
Ay 2 2
oA A, J+i k) w2+l k1) | 6w
AZ 2 y b 2’ )

2
I+1JK+1E”I+1JK+1+bI+1JK+
=a PR ~ PR - ~r Y A
2 2/ 2 2 2 2
At 1 1
x {C—[Hz”“/z(l, I K+ 5) H”+1/2(1+1 LK+ 2)]

Ax
At 1 1
C—[H;’“/Z(I + 5.0 K+ 1) - H;’H/Z(I + 5. K)]} (5b)

Az

1 1
+1
E} (1+—,J,K+§>

1 1
ErMtY I+, 7+=.K
(13 3K)

I SR V% § S SULN 0 TN DL L e
=a ~° ~ ~ ~ ~ )
2 2 : 2 2 2773
At 1 1
g il 7 SVEY I DN B @ W Lo ntEd I DL SRR ¢
Ay 2 2

At 1
+%—[H”+1/2<1+1 T+ 5, K) H"+1/2<I,J+ ,K>]},(5c)
X

1
H;’+1/2<1 +50 7. K)
n—1/2 1
= H! I+5.J,K
J

At 1 1 1 1
E'I+%,J-2,K)—EI+2,J+,K
Az -28)-r(iepsopx))

cAt 1 1 1 1
B+, 0, K+5)—E 1+, 0, K2 )|}, &d
a B ar)ma (g rg)f) oo
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1
H;'“/z(l, T+ K)

_ 1
=H} 1/2<1, I+, K)

L YT SIS SRR DT 2 R G
Az |\ TR T L R
cAt 1 1 1 1
Clen(r+z 7+ k)= (1= T+, ,
+Ax[ z( +3509+3 ) z( 2 d+ 5 K)]} (5¢)

1
H;’“/2<1, I, K+ E)

_ 1
= H' 1/2(1, J,K+§)
cAt 1 1 1 1
—E1-= I K+-)—E{I+=,1K+=
S Bz rmeg) (i)

cAt[ 1 1 " 1 1
(s b d)-m(ns- L 2)]) o
It can be proven that the truncation errors of this finite difference analog of
Mazxwell’s curl equations are of second order both in time and in space. Other
schemes with truncation errors of high order have been suggested (Shlager et al.,
1993), but they are less practical. From Eqs. (5a)—(5f) we see that the E and
H fields are interlaced both in time and in space. These equations are in explicit
forms that can be applied to the time-marching iteration directly, provided that the
initial values of the electric and magnetic fields are given. The propagation of the
wave can then be simulated by updating the E and H fields in a straightforward
manner without imposing the electromagnetic boundary condition at the parti-
cle surface. Because this finite difference iterative scheme is completely explicit
without the requirement of revision of the coefficient matrix of a set of linear equa-
tions, the FDTD technique is simple in concept and is also efficient in numerical
computations. It should be pointed out that the location of the spatial and tempo-
ral increments Ax, Ay, Az, and At cannot be specified arbitrarily. To circumvent
numerical instability, the cell dimensions and time increments must satisfy the
Courant—Friedrichs—Levy (CFL) condition (Taflove and Brodwin, 1975) in the
form

1
< .
T V1A +1/Ay2 +1/AZ2

In addition to the preceding CFL condition, the spatial increments, Ax, Ay, and
Az, should also be smaller than approximately 1/20 of the incident wavelength so

cAt

(6
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that the phase variation of the electromagnetic wave is negligible over the distance
of the cell dimensions. Determination of the coefficients a and b in Egs. (5a)-
(5¢) depends on the scheme that is used to discretize the temporal and spatial
derivatives. Based on various integral approximations, six schemes are presented
in the following.

A. SCHEME 1

Consider the equation for the E,; component as an example. Integration of the
z component on the right-hand side of Eq. (2) over a rectangular region enclosed
by four apices with grid indices (Z, J, K), (I,J +1,K), I +1,J,K),and (I +
1, J + 1, K) leads to the following:

(I+1)Ax p(J+1)Ay 9E t
/ f [Er(r) 0 | emEC, t)] dx dy
JA at 1=K Az

N l:sr(l +1/2,J+1/2, K)3E, (I +1/2,J +1/2,K)
c at

1 1 1 1
T = — K)E/(I+= ~ A
+k81(1+2,1+2, ) z( +2,J+2,K)}Ax y, @)

where z is the unit vector along the z axis of the Cartesian coordinate system, and
the mean values of the real and imaginary parts of the permittivity at the location
indicated by lattice index (I 4+ 1/2, J 4 1/2, K) are determined by the averages
of those associated with four adjacent cells as follows:

1 1 1
EI<I+§,J+§,K) = Z[Er(l, LK)+, J+1,K)+5UI+1,J,K)
+&5( +1,7+1,K)], (8a)
_ 1 1 1. _ _
&i I+§7]+§9K = Z[sl(la J,K)+€1(17J+1’K)+81(1+1yJ$K)
+&5UI + 1,7 +1,K)]. (8b)

By applying the Stokes theorem to the integration of the z component on the left-
hand side of Eq. (2) over the same integral domain as in Eq. (7), we obtain

(I+D)Ax p(J+HD)AY
/ / V x H(r, 1) -z]ZZKAde dy
IA JA

1 1
~Ax[ ”“/2( E,J,K)—H;’“/Z(I+§,J+1,K)]
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1 1
+ Ay[H;l“/2<1 +1J+ 3, K) ~ H;’“/z(l, T+, K)} ©)

It follows from Egs. (2), (7), and (9) that

eI +1/2,J+1/2,K)3E,(I1+1/2,J +1/2,K)
c at

1 1 1 1
+ka<1+ S+ —,K)Ez(1+ S+ —,K)

2 2 2 2

1 1
~ [H;l+l/2(1 +5. 7, K) —~ HJ:“/Z(I +5. 0 +1, K)]/Ay

1 1
+ [H;"H/Z(I + 1,7+, K) - H;“/z(l, I+, K)]/Ax.

(10a)

Equation (10a) can also be written in a more compact form as follows:

& +1/2,7 +1/2,K)
C

xa ex ?I+1J+1KtE I+1J+1K
a1 | =P 27Ty AfrylTy
(142742 K)
~ T ~? ~?
exp 5 )
1 1
x {[H;‘“/Z(1+ 5o J. K) - H;’H/Z(I +5. 0+, K)]/Ay
1 1
+ |:H§’+1/2(I + 1.7+ 5, K) - H;’+1/2<1, T+, K)]/Ax},

(10b)

where 7(1 + 1/2,J +1/2,K) = keei(I +1/2,J + 172, K)/&:(I + 1/2,J +
1/2, K). For the present scheme, the temporal derivatives in Eq. (10a) are dis-
cretized according to the following expressions:

(n+1)Ar 9E
f —2dt = EM1 - EP, (11a)
nAt ot

(n+1)At At
/ E.dt ~ ME]TV? » - (EI + EY), (11b)
nit

(n+1)At
/ Hyydt ~ AtHP Y2, (11c)
nAt
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Based on Eqgs. (10a) and (11a)—(11c), it can be shown that the coefficients of the
finite difference analog of Maxwell’s equations are given by

11 L =T +1/2, 7 +1/2, K)At/2
[+ 7+~ K)=-——2L , 12
“( Tyt ) 17 +1/2,7 +1/2, K)At)2 (122)
11
b(1+2, 742K
1
(12b)

TO+TUd 12, T+ 12, K)A25d + /2, T +1/2,K)°

B. SCHEME 2

In this scheme, discretizations of two exponential integrals are applied to
Eq. (10b) for the difference approximation of the temporal derivatives given by

/‘”“W d[exp(T) E;]
n

dt
At at

expl(n + DTAHEM™ — exp(nTANE?,  (13a)

(1+1)At Ly [0
/ exp(TH Hy ydt ~ H)?,-;— / / exp(Tt) dt
nAt nAt

172expl(n + DTAf][1 — exp(—TA?)]
T

= Hy'} .(13b)

Thus, after some algebraic manipulations we can obtain the coefficients g and b
in Eqgs. (5a)-(5¢) as follows:

1 1 _ 1 1
a(1+5’J+§’K> —exp[—r(l+E,J+§,K>At], (14a)
1 1 1- T 2 1/2
w1+l 74l k) = xpI=TU +1/2,J +1/2,K)A]
2 2 Tl +1/2,J+1/2, K)Ate (1 +1/2,J +1/2,K)
(14b)

C. SCHEME 3

This scheme is similar to scheme 2, except that a different approximation is
used to replace Eq. (13b) for the temporal discretization associated with the mag-
netic field in the form

(n+1)At 1 12
/ exp(Tt) Hy,y dt ~ At exp[(n + §>?At] HIH2, (15)
nAt
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The coefficients a and b in Egs. (5a)~(5¢) can then be obtained from
I+1J+1K e _I+lJ+1KAt (16a)
it Z = expl| — Z Z
a 2 L] 2 ’ p 14 2 s 2 ’ k) a

1 1 —T( +1/2,J +1/2, K)At/2
e J+_,K)=exp[_r<+/f+/ )A1/2]
& +1/2,J +1/2,K)

= 1
+t5 2 (16b)

D. SCHEMES 4, 5, AND 6

Different from schemes 1-3, the present three schemes first discretize the
temporal derivatives. Using the algorithms of schemes 1-3 for the integration
over the time increment nAr to (n + 1) At, we obtain the following three time-
difference/space-differential equations for schemes 4, 5, and 6, respectively:

1—1tAt/2 cAt

Tearat T arcae B, (172)

[1 —exp(—TAf)]cAt
TAte;

exp(—tAt/2)cAt
Er

En+1

E"t! = exp(—tANE" + vV x 172 (17b)

E'! = exp(—tADE" + V x H"t1/2, (17¢)

Further, we use one of the preceding equations to carry out the spatial discretiza-
tion based on the same procedure described in Egs. (7) and (9). For example, for
scheme 6 represented by Eq. (17¢), the coefficients a and b in Eqs. (5a)—~(5c¢) are
obtained based on the following averaging procedure:

1 1
I+-,J4+-,K
a( + 2 + 2 )
(+DHAx p(J+DAy
/I /; exp —t(x y, z)At]lzzKAzdxdy

4{exp[—?(1, J, K)At] +exp[—T(I, ] + 1, K)At]
+exp[—T( + 1,71, K)At] +exp[—t(I + 1,7 + 1, K)At]}, (18a)
1 1
b(I-I-E,J-l-E,K)

/(1+1)Ax/(J+I)A)’ expl—t(x, y,2)At/2]
A A er(x,y,2) =K Az

dxdy
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_ l[exp[—?(l, J,K)At/2]  expl-T(,J + 1, K)At/2]

T4 5, J, K) &, J+1,K)
exp[—T(I +1,J, K)At/2})  exp[-T(I+2,J+1,K)At/2]
5 +1,7,K) (I +1,J+1,K) }
(18b)

For the nonabsorptive case, that is, &; = 0, schemes 1-3 and 4-6 reduce to two
schemes (hereafter referred to as schemes A and B). The only difference between
schemes A and B is that the spatial discretization is applied first in the former,
whereas the temporal discretization is carried out first in the latter. In other words,
for the former scheme a mean permittivity is evaluated first based on four adja-
cent homogeneous grid cells and is then used to calculate the coefficients a and b
in Egs. (5a) and (5b). For scheme B, the coefficients @ and b are calculated first
for the four cells based on their homogeneous permittivities. Then the averages
of the coefficient values are taken in the time-marching iteration of the electro-
magnetic field using the finite difference analog of Maxwell’s equations. After
the coefficients are determined, the updating iterations of electromagnetic waves
are straightforward.

To compare the accuracy of the six schemes, we have carried out the phase
function computations for an ice sphere with size parameters x = kR of 5 at 0.5-
and 10-um wavelengths, where R is the sphere radius. In the computations, the
perfectly matched layer (PML) absorbing boundary condition (Berenger, 1994) is
used and the cell size is selected as 1/25 of the incident wavelength. The relative
errors are determined from a comparison with the Lorenz—Mie solution. As shown
in the left panel of Fig. 2, schemes 1-3 produce essentially the same results and
the error patterns of the three schemes are indistinguishable even for the case of
strong absorption (A = 10 pm). Schemes 4-6 produce the same accuracy for
the computed phase functions (not shown in the diagram). However, the accuracy
of schemes 1-3 differs from that of schemes 4-6. As stated previously, the six
schemes reduce to two schemes for nonabsorptive cases. From the computational
perspective, the six schemes also reduce to two schemes for strong absorption
cases. The middle and right panels in Fig. 2 show the phase functions computed
using schemes A and B for the same 0.5- and 10-pum wavelengths. Scheme A
is more accurate than scheme B, particularly for side scattering. The difference
between these two schemes increases if the grid size increases. Thus, in order to
discretize Maxwell’s equations, permittivity should first be averaged over space.
The calculation of the coefficients can then be performed by using the discretized
electromagnetic difference equations.

The electromagnetic fields involved in Eqgs. (5a)-(5f) represent the total
(incident + scattered) field. However, the absorbing boundary condition at the ar-
tificial boundary, as discussed in Section IV, is applicable only to the induced
or scattered field produced by the existence of the particle. To overcome this
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difficulty, two approaches can be used. First, a connecting surface (also called the
Huygens surface) located between the scatterer and the boundary is introduced
in the computational domain. Inside and on the connecting surface the total field
is computed, but outside the surface only the scattered field is evaluated. Because
the fields computed in these two regions are not consistent, a connecting condition
must be imposed at the surface. Let the cells enclosed by the connecting surface
be defined by the indices I € [[A,IB] and J € [JA, JB]. The connecting con-
ditions can be derived for each electric and magnetic field component. For the
E.(I,J +1/2, K + 1/2) connecting condition, I € [[A, I B], we have

. 1 1 1 1
E;;H(I, JA-3 K+ —) = E,';H(I, JA— -, K+ —)

2 2 2
cAt _ui1p2 1
———H, I,LJA—-1,K+ -
Ay ot + 2
rn+1 1 1 n+1 1 1 ’
Ex I7JB+53K+§ =Ex I,JB+§,K+5
At 1
+55H5’,§”2<1, JB+1,K+§)
K e [KA—-1,KB], (19a)

8 1 1
E;+1(1,J+— KA———) = E;+1<1,J+

1
’ _1KA__
2 2 2)

1
2
cAt n+1/2
—H, 1,J KA -1
+ Az + 2’

2 2
At 1
—C—H;’jl”(n J+3 KB+ 1)
Z

JelJA-1,JB] (19b)

" 1 1 1 1 ’
E;;+1<1, J+ =, KB+ 5) = E;;H(I, J+ -, KB+ 5)

For the Ey(I +1/2, J, K + 1/2) connecting condition, J € [J A, J B], we have

5 1 1 1 1
+1 — +1
£ (IA—E,J,K-f——)—E;’ (IA—E,J,K+—>

2 2
cAt n+1/2 1
“H! JA-1,7,K+ =
+Ax +2
Entl IB+11K+1 = gntl IB+1JK+l ’
y 2’ 9 2 y 2’ ’ 2

cAt mH1/2 1
——H,; IB+1,J,K+ —-
Ax + + 2
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Kel[KA-1,KB] (19¢)

- 1 1 1 1
+1 — +1 —
E;’ (I—l—E,J,KA———)_E;’ <I+—,J,KA 2)

2 2
CAt _uii/2 1
- I+, J,KA—1
N ( *3
4
Entl 1+1JKB+l = Entl 1+111<B+l ’
y 2! 9 2 y 21 b 2
At 1
+ g2 (4 2 1 KB+
Az 2’
Ie[lIA-1,IB]. (19d)

Forthe E (I +1/2,J +1/2, K) connecting condition, K € [K A, K B], we have

~ 1 1 1 1
En 1 I —_— En 1 I oy A K
Z+( +5. 74 2,1()— I+ 5, 7A- 5,

CAt _pi1)2 1
—H, I+-,JA-1,K
+Ay o ( +2
Entl 1+113+1K = Ert! 1+1 JB+1K ’
z 2’ 2’ 2’
cAt 112 1
——H, I+—-,JB+1,K
Ay o + 2 *
Iel[lA—-1,1B], (19¢)

. 1 1 1 1
E;H(IA— 5+ —,K) = EQH(IA— 5+ —,K)

2 2
cAt n+1/2 1
———H] IA-1,J+~=,K
Ax *3
Entl IB+lJ+lK = Ertl IB+11+1K ,
z 2’ 2’ z 2’ 2’
cAt n+1/2
—H] IB+1,J K
+ + +2

Jel[JA—=1,JB]. (196)
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For the H, (I + 1/2, J, K) connecting condition, I € [IA — 1, I B], we have

- 1
H;'H/z(l +5. JA- 1, K)

- 1
H;’+1/2<I+5,

K €[KA,KB],

- 1
H;’“/Z(I +=,J, KA — 1)

. 1
H;"H/Z(I +5.J. KB+ 1)

JelJA, JB].

1
(i

JB+1,K) =

L JA-1K
s tx)

1 1
I+=,JA- =,
<+2 2

At
+ g
Ay

1
(i

,JB+1,K
/B4 1K)

Ay

1
"“/2(1 +5. 0, KA~ 1)
_C_A’En

1
I ~
Az ( +2

1
"“/2(1 +5. /. KB+ 1)

J, KA —

At 1
+CA E"+1/2(1+— J, KB+
Z

2’

At 1 1
- E”“/Z(I +5.JB+ 2,

¥)

K
2

2)

1
2

)

)

(19¢)

(1%9h)

For the Hy(I, J + 1/2, K) connecting condition, J € [JA — 1, J B], we have

- 1
H;’H/Z(IA ~LJ+5, K)

H"+1/2(1B+1 J—l—; K)

K € [KA,KB],

1
= H;’“/z(m —1,J+ z,K)
cAt 1
——Er (1A-2,7+=
Ax < 2773

H”+1/2<IB +1,J+ ; K)

At 1
+5—E{,’fg”2(13 TR gt

Ax 2

)
, K

1

- K
2

)

(191)
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~ 1 1
H;’“/z(l, J+5.KA- 1) = H;’+1/2(1, J+5.KA- 1)

cAt 1 1
—E" (LLJ+ -, KA—=
+AZ o,x( +2 2)

i 1 !
H;+1/2(1, J+5. KB+ 1) = H;‘+‘/2(1, J+3. KB+ 1)

Bpn (1743 kB+2
Az 7\ 2’ 2) )

I €[IA,IB]. (199

For the H,(I, J, K + 1/2) connecting condition, K € [KA — 1, K B], we have
- 1 1
HZ”“/Z(I, JA-1,K + E) = HZ"+1/2<I, JA-1,K + 5)

Dpn (17a-2 k41
Ay T\ 22
o~ 1 1 ,
Hg’+1/2(1, JB+1,K+ 5) = HZ"“/Z(I, JB+1,K+ 5)
2% n (1UB+1,K + 2
Ay ox\t ’ 2
I €[IA,IB], (199

H;+1/2(1A—1,19K+§> = H;+1/2(1A—1,J,K+’2')

+ 8% (1ot r k4]
Ax %Y 277 2
4
3 1 ! ’
HZ"+1/2(IB+1,J,K+§> = H;+1/2(IB+1,J,K+§)
cAt 1 1
e (1B, 1K+ -
o o,y( + 3.0, +2)
Jel[JA,JB]. (19

On the right-hand sides of Eqgs. (19a)-(191), the second terms with the subscript
o are the incident fields, whereas the first terms are evaluated by finite difference
equations (5a)—(5f). In this way (hereafter referred to as the total-field FDTD algo-
rithm), the governing equations are the same for both the scattered- and the total-
field regions, except that the connecting conditions are imposed at the surface. The
previous connecting conditions, in principle, are an application of Schelkunoff’s
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electromagnetic equivalence theorem (Schelkunoff, 1943). As pointed out by
Merewether et al. (1980), for the region inside the connecting surface the exis-
tence of the incident field can be substituted by specifying the equivalent electric
and magnetic currents on the surface.

Unlike the total-field algorithm, other approaches construct a global scattered-
field formulation within the entire computational domain. Because the electric/
properties of the medium in our consideration are linear, the total field is the
superposition of the incident and scattered fields. Therefore, the pure scattered
field is given by

E(r,t) = E/(x,t) — E,(r, 1), (20a)
H(r,t) = Hy(r,t) — Hy(r, 1), (20b)

where the subscripts s, ¢ and o denote the scattered, total, and incident fields,
respectively. Note that Egs. (1b) and (2) can also be applied to the incident field
except that the permittivity is set at unity. A set of equations similar to Egs. (5a)-
(5%) can then be derived for the scattered-field algorithm. It should be pointed
out that the total-field algorithm is more accurate than the pure scattered-field
algorithm for metal objects or heavily shielded cavities (Mur, 1981; Umashankar
and Taflove, 1982). The total field algorithm is also more efficient in terms of
numerical computations because specification of the incident field is only required
at the layer associated with the connecting conditions.

To demonstrate the difference between the near fields computed by the total-
and scattered-field algorithms, we have simulated the scattering of a sinusoidal
wave propagating along the z direction with the x-polarized E field by a sphere
with a refractive index of (m, m;) = (3,0) and a size parameter of 3.35. The
cell dimensions along the three coordinate axes are selected to be equal, that is,
Ax = Ay = Az = As. The wavelength of the sinusoidal wave and the radius
of the sphere are selected to be 30As and 16As, respectively. The second-order
modified Liao transmitting boundary condition (Yang and Liou, 1998b) is used
with a “white space” of 15 cells between the target and the boundary. The left
panel in Fig. 3 shows the snapshot of E, contours on the xy plane through the
center of the sphere, which is computed by the scattered-field algorithm at the
time step n = 600. The existence of the scattering particle is clear as the contour
gradient is much larger inside than outside the particle because the wavelength
inside the sphere decreases by a factor of m;,. The right panel in Fig. 3 is the result
computed by the total-field algorithm, where the square in the right diagram is the
connecting surface. It can be seen that the results by the two algorithms have the
same patterns outside the connecting surface, but some differences are noted for
the region inside the boxes.



50

40

30

20

10

60

50

40

30

20

10

INDEX |

INDEX |

rithms for the scattering by a

= 600.

the time step n

of the sphere at

tour plots computed by the scattered- (left panel) and total-field (right panel) algo:
ugh the center

sphere. The results are observed in the xy plane thro

Figure 3 E; con



194 Ping Yang and K. N. Liou

IV. ABSORBING BOUNDARY CONDITION

The numerical implementation of the FDTD technique requires the imposition
of an appropriate absorbing boundary condition, which is critical for the stability
of numerical computations and the reliability of results. In addition, the “white
space” between the boundary and the scatterer required by a specific boundary
condition is an important factor determining the computational effort.

The earliest implementation of the absorbing boundary condition in the appli-
cation of the FDTD technique to electromagnetic scattering problems used the
average space—time extrapolating method (Taflove and Brodwin, 1975). Other
approaches such as the mode-annihilating operator (Bayliss and Turkel, 1980)
and the extrapolating scheme based on the Poynting vector of the scattered wave
(Britt, 1989) have also been developed to suppress the reflectivity of the arti-
ficial boundary. In the 1980s, the absorbing boundary conditions derived from
the one-way wave equation (OWWE) were extensively applied in FDTD imple-
mentations. As reviewed by Moore ef al. (1988) and Blaschak and Kriegsmann
(1988), various approximations of the pseudo-differential operator in OWWE
can be used to derive numerical schemes for the boundary conditions. Among
them, the algorithm developed by Mur (1981) has been widely used. The second-
order or higher Mur’s absorbing boundary condition involves the wave values
at the intersections of boundary faces. However, the corresponding boundary
equations cannot be posed in a self-closing form; that is, a less accurate first-
order boundary equation or an extrapolating scheme must be used at the inter-
sections. Moreover, Mur’s algorithm is rather tedious, especially in the three-
dimensional (3D) higher order formulation. The field values at the intersections
are not required for updating the field values at interior grid points in the com-
putation of the scattering of electromagnetic waves. This disadvantage of Mur’s
absorbing boundary condition can be avoided by using the transmitting bound-
ary condition developed by Liao et al. (1984) because only the wave values
at the interior grid points along the direction normal to the boundary are in-
volved.

Most recently, Berenger (1994, 1996) has developed a novel numerical tech-
nique called the perfectly matched layer (PML) boundary condition for the ab-
sorption of outgoing waves. With this technique, an absorbing medium is assigned
to the outermost layers of the computational domain backed by a perfectly con-
ducting surface. The absorbing medium is specified such that it absorbs the out-
going wave impinging on it without reflecting it back. Theoretically, the PML
medium has a null reflection factor for a plane wave striking at the interface be-
tween the free space and the PML layers at any frequency and at any incident
angle, as shown by Berenger (1994). Numerical experiments have shown that the
spurious reflection produced by the PML boundary condition is about 1/3000 of
that generated by the analytical absorbing boundary condition derived from the
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wave equation (Katz et al., 1994). In this section, we recapitulate the physical ba-
sis and numerical implementation for three commonly used absorbing boundary
conditions.

A. MUR’S ABSORBING BOUNDARY CONDITION

To review the conceptual basis of this boundary condition, we begin with the
governing equation for a scalar wave or any Cartesian component of the vector
electromagnetic field given by

L2 U-ViU=0 Q1)
c2 a2 7
where U denotes the scalar wave displacement or the component of an electro-
magnetic field vector. This wave equation can be expressed in an operator form
/
as follows (Moore et al., 1988):

LYL,U =0, (22)

where L} and L} are the OWWE operators for the wave propagation along pos-
itive and negative directions of the x axis, respectively, given by

D cX(D% + D2)
+ _ 2 y 4
_ D, ¢2(D% + D2)
Ly =Dxi—— 1——Tt2—. (23b)

In Eqgs. (23a) and (23b), Dy, Dy, and D; stand for 9/0x, 3/3dy, and 8/0¢, respec-
tively. For a boundary at, say, x = 0, it is completely reflectionless if the following
OWWE is satisfied (Blaschak and Kriegsmann, 1988):

L;Uly—0 =0. (24)

The operator L, however, is a pseudo-differential operator resulting from the
existence of the radical. Thus, Eq. (24) cannot be discretized as a finite difference
equation. To obtain the discrete form of OWWE, a rational function should be
used to approximate the OWWE operator. The most common approach is the
expansion of the radical in terms of the Taylor series, as presented by Engquist
and Majda (1977) and Mur (1981). Keeping the first or the first two terms in the
Taylor expansion will lead to the first- and second-order Mur absorbing boundary
conditions, respectively. For the second-order Mur absorbing boundary condition,
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the pseudo-differential operator is expanded in the form

D/ _ (D2 + D?) zﬂ_lc(Dg“LDzZ)_

25
c D? c 2 D; 25

Based on Eqgs. (24) and (25), a second-order approximation of OWWE can be
defined explicitly as follows:

1 9?2 182 1/9* 92
———— 4+ —=+—=}|lu=0. 26
[c ox  2ar T 2(3y2 + 3z2)i| (26)

As suggested by Mur (1981), Eq. (26) can be discretized by using a central dif-
ference scheme for the differentials in time and space such that

Urtl, J,K) = —U" (1, J,K)
As — ¢cAt

T Ast el
2As n
+ AT T A [U©,J,K)+U"(1,J,K)]
(cA1)?
2As(cAt + As)
+U™0,J -1, K)+U"(1,J +1,K)—4U"(1, J,K)
+U"(1,J -1, K)+U"0,J,K+1)+U"0,J,K — 1)

+ U1, J, K+ 1)+ U"1,J, K - 1], @7

[U"©, 7, k) + U™ (1, 7, K)]

[U"(0,J +1,K)—4U™©, J, K)

where equal cell dimensions along the three coordinate axes are used, that is,
Ax = Ay = Az = As. Equation (27) cannot be applied to the corners and edges
of the computational boundary. For these locations, an extrapolation scheme or
the first-order Mur absorbing boundary condition must be used. The continuous
form of the first-order Mur absorbing boundary condition equation is given by

19 0
-— -~ |U=0. 2
[cat ax:lU 0 8)

The discrete form of this equation can also be obtained by using a central differ-
encing scheme in both time and space given by

As — cAt

vrtlho, 7, k) =U0"Q1,J,K) - ————
( ) ( ) As + cAt

[U"1©, 7, k) + U™ (1, 1, K)).
(29)
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B. L1A0’S TRANSMITTING BOUNDARY CONDITION

This numerical scheme, in principle, is based on the propagation of a wave
in the time domain; that is, the wave values at the boundary are the arrivals of
those located at interior grid points at earlier time steps. In the construction of this
transmitting boundary condition, it is assumed that the outgoing scattered wave
can be locally approximated as a plane wave (not necessarily a time-harmonic
plane wave) in the vicinity of the boundary. Under such an approximation, the
boundary values for normal incidence or the one-dimensional (1D) case can be
easily obtained by using an extrapolation scheme in time or space, as noted by
Taflove and Brodwin (1975). However, in the two-dimensional (2D) or 3D case
with oblique incidence, the interior points cannot be located because of the un-
known incident angle of outgoing waves. To overcome this difficulty, Liao et al.
(1984) have developed a multitransmitting method to define the boundary values
in terms of the interior values equally spaced along the directions normal to the
boundary faces.

The fundamental postulation of the multitransmitting method is that the orig-
inal outgoing or scattered wave can be transmitted through the boundary along
the direction normal to the boundary face in an artificial transmitting speed with
a remaining error wave that can also be transmitted in the same manner. Conse-
quently, a second-order error wave is produced. After this procedure is carried out
sequentially, the outgoing wave can be eventually transmitted through the bound-
ary regardless of the incident angle. Based on this principle and the plane wave
condition for the outgoing wave, the wave values at a boundary, say, the right-side
boundary (x = xp), can be expressed as follows:

N
U(t+At,xb)=Z(—1)L+1 W M Ut —(L—1)At, xy— Lcg At], (30)

— IF A
= L)L

where U is the wave value, ¢, is an artificial transmitting speed, which may differ
from that of the corresponding real physical wave, and At is the temporal incre-
ment. Because the ratio of the temporal increment to the spatial increment in the
finite difference computation is subject to the CFL condition given by Eq. (6),
the wave values on the right-hand side of Eq. (30) are usually not located at grid
points. To circumvent this shortcoming, Liao et al. (1984) used a quadratic inter-
polation to obtain the wave values and developed the following algorithm:

N
N!
Ut + At, xp) = -t _— 1,0, 31
(t + At, xp) ;< T ST AR (31a)
Ty, =[Tey Trz2 -+ Troop+1ls (31b)

Uy =01 Usr - Uspt1ilhs (31c)
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where the superscript T denotes the transpose of the matrix and U; ; = U[r —
(j — DAL, xp — (i — 1)As] in which As is the spatial increment. The matrix T,
can be calculated from a recursive equation given by

TL=T
Tpy Tp1p --- - Tp_q12041 0 0
X l: 0 Tp—11 Tp1p --- Tp—120-1 0 :|
0 0 Tp—11 T2 e e Tr—120-1
for L > 2, (31d)

in which the three elements of Ty are 71,1 = 2 — 8)(1 — 8)/2, T12 = B2 — B),
and 71,3 = B(B8 — 1)/2, where B = ¢, At/As. The preceding algorithm is not
stable, and double-precision arithmetic must be used in numerical computations.
To stabilize the transmitting boundary condition algorithm, one can introduce ar-
tificial diffusive coefficients to suppress the amplification of the wave magnitude
in the FDTD time-marching iteration calculations (Moghaddam and Chew, 1991;
Yang and Liou, 1998b).

The original explanation of the transmitting boundary equation given by the
multitransmitting theory is somewhat misleading because fictitious waves, which
may propagate faster than real physical waves, are assumed. It has been shown
that Eq. (30) can be directly derived from the extrapolation of boundary values in
terms of wave values located at interior grid points at earlier steps using the coef-
ficients that minimize the extrapolation errors (Yang and Liou, 1998b). Modified
versions of the transmitting boundary condition equations have been suggested
to produce multiple reflection minima so that the transparency of the boundary
of the computational domain is enhanced for large incident angles (Chew and
Wagner, 1992; Yang and Liou, 1998b). Steich ef al. (1993) have compared the
performance of Liao’s boundary condition with that of Mur’s absorbing bound-
ary algorithm and noted that the latter approach requires a larger “white space”
between a modeled scatterer and the boundary to achieve a convergent scattering
solution.

C. PERFECTLY MATCHED LAYER ABSORBING
BOUNDARY CONDITION

Absorption of the outgoing wave by the PML method is based on the absorp-
tion by a medium located at the outermost layers in the computational domain.
The conventional technique based on an absorbing medium is to specifically de-
fine the wave impedance of the medium so that it matches that of the free space.
Such a simple matching approach produces substantial nonzero reflections when
a scattered wave impinges on the absorbing medium obliquely. To overcome the



Chapter 7 Finite Difference Time Domain Method for Light Scattering 199

disadvantage of the conventional method, Berenger (1994) has developed a per-
fectly matched layer method, in which the absorbing medium is selected such
that the wave decay due to absorption is imposed on the field components par-
allel to boundary layers. To achieve this goal, each Cartesian component of the
electromagnetic field is split into two parts as follows:

(Ex., Ey, Ez) = [(Ex2 + Ex3), (Eyl + EyS), (Ezl + EzZ)], (32a)
(Hx, Hy, H) = [(Hx2 + Hx3), (Hy1 + Hy3), (H; + Hp)],  (32b)

where the subscripts 1, 2, or 3 denote the component of the electric (or magnetic)
field that is associated with the spatial differential of the magnetic (or electric)
field component along the x, y, and z directions, respectively. With the split field
components, the six scalar equations expressed in a discrete form in Egs. (5a)—(5f)
that govern the propagation of electromagnetic waves are replaced by 12 equa-
tions. The exponential wave decay factors for these equations can be expressed
by

exp[—11(x)t] 8 d(H;1 + Hy)

: - —[explti(x)t1Ey} = T E— (33a)
TN exptrr (or1 ) = ST, (336)
?‘_l’_[_c’_%(_”_]a {explr()t]Exa} = ?ﬂ—%{{—@ (330)
9‘2—[——0’@3 {explra(N1Ez) = MIE—;FHQ (33d)
Ma {explr3(2)t]1Ex3} = 8(11}11871‘}1}13) (33¢)
Lcm(z)t]a {explr3(2)1E,3} = a(Hﬁa—jHﬁ) (331)
e"l’[cﬂa {explri(x)t1Hy1} = a(E“—;rEZZ) (33g)
expl crl(x)t]; {explzi (01 Hy | = a(E_ylax*’_EXi), (33h)
Ma {exple2(n 1 Hyz} = a(E“a—;LEZ) (33D
expl— sz(y) ]8 {explra ()1 Hy2) = ?@1%_15)6_3) , (33j)
expl crs(z)t] ; (exples@1sa) = @%@2 (33K)
expl crs(z)tla (explrs@r1Hys] = _?ﬁﬂ%@ (331)
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where 71(x), ©2(y), and 13(z) are zero, except in boundary layers perpendicular
to the x, y, and z axes. It can be shown that these 12 equations are equivalent
to those given by Berenger (1996) and Chew and Weedon (1994). In practical
computations, the parameters 71(x), 72(y), and 73(z) can be specified from zero
at the interface of the free space and PML medium to their maximum values at
the outermost layer. For example, 71 (x) can be defined as

_ p
nx) = n,max(" D"”) , (34)

where (x — x,) is the distance of a grid point from the interface of the free space
and PML medium, D = L Ax is the thickness of the PML medium for the bound-
ary perpendicular to the x axis, and p is usually selected between 2 and 2.5. The
parameter T1,max can be specified by the reflectance of the boundary with normal
incidence as follows:

p+1
2D
where R(0°) is the boundary reflection factor. The mean absorption must be taken
into account for each cell distance in discrete computations. Thus, the following
two mean values for the electric and magnetic fields can be used:
1 U+1/DAx

i) = — T1(x) dx
Ax Ja—1/2Ax

I+1/2)pH — (1 = 1/2)p+!
_ Tma 4+ 1/2) d-1/2) for the E field, (36a)

7]1,max —

In[R(0°)]c, (35)

n+1 LP+l
1 1 (I+DAx Ttmax (I + 1)p+1 - (1)p+1
T I — _— — dx = d
”( +2> Ax i, A= 0 LPH
for the H field. (36b)

The discretization of Eqs. (33a)—(331) can be carried out in a manner similar
to that described in Section III. To economize on computer memory usage, one
uses the preceding 12 equations, Eqgs. (33a)—(331), for the boundary layers, while
the six conventional governing equations given by Eqgs. (5a)—(5f) are employed in
the interior domain inside the boundary layers. A number of comparison studies
of the boundary reflection (Berenger, 1994; Katz et al., 1994; Lazzi and Gandhi,
1996) have been made between the PML method and the analytical boundary
condition such as Mur’s absorbing condition (Mur, 1981) and the retarded time
boundary condition (Berntsen and Hornsleth, 1994). The reflection produced by
the PML boundary condition is three orders smaller in magnitude than that ob-
tained by using the analytical boundary equations.
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V. FIELD IN FREQUENCY DOMAIN

The values of the near field computed by the preceding FDTD algorithm are in
the time domain. A transformation of the time-dependent field values to their cor-
responding counterparts in the frequency domain is required to obtain the single-
scattering properties. The transformation algorithm depends on what kind of ini-
tial wave is used. If the input is a continuous sinusoidal wave, the magnitude and
phase information of the final steady-state field can be obtained by determining
the peak positive- and negative-going excursions of the field over a complete cy-
cle of the incident wave (Umashankar and Taflove, 1982). Three successive data
sets in the time sequence of the field can be compared to determine if a peak
has been reached. When the peak is detected, these data sets can then be used
to determine the amplitude and phase of the steady-state field. The positive- and
negative-going peak transitions, however, usually do not occur at the exact peak
of the wave. For this reason, the magnitude and phase obtained by this algorithm
may produce numerical errors. A longer time is also required to obtain a conver-
gent solution by using a sinusoidal wave as the initial excitation, especially for
lower frequencies (Furse ef al., 1990). Further, if a continuous sinusoidal wave is
used, each individual run of the FDTD code can also provide just one frequency
response. However, with a pulse excitation each individual run of the FDTD code
will provide various frequency responses.

In FDTD simulations of scattering phenomena, the shape and size of the par-
ticle are fixed for a given execution and the dielectric constants are independent
of the wave frequency if the particle is nonabsorptive. Thus, the FDTD method
with an incident pulse can provide the results for a number of size parameters si-
multaneously. For this reason, a Gaussian pulse will be used as the initial excita-
tion in the computations presented in this chapter. The width of the pulse must be
properly selected to avoid numerical dispersion caused by the finite difference ap-
proximation. To illustrate the dispersion problem, let us consider the x’-polarized
wave propagating along the z” direction in the incident coordinate system ox’y’z’.
The finite difference equations governing the field variation can be expressed by

At 1 n 1
ENTN Iy = En(D + = [H;/H/Z(I - 5) - Hy+1/2<1 + 2)] (37a)

w172 _ 12 CALrrn 1y _ g
Hy) <1+2) H) <1+2)+ = [EL(I)— EXL(I+1)]. (37b)

Consider a harmonic solution given by

EL(I) = E,exp[ik(IAs — c* nAD)], (38a)

H;’H/z(l + ;) = H, exp{ik[(l + %)As - c*(n + %)At:” (38b)
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where ¢ and ¢* are the physical and computational phase speeds, respectively,
which are different because of the numerical dispersion. From the preceding equa-
tions, we obtain

c kcAt

* in—1 i
c*_ 2sin"'[cAt sm(kAs/Z)/AS]. (39)

Equation (39) implies that the waves with higher frequencies (shorter wave-
lengths) suffer a larger numerical dispersion. The dispersion relationships in
the 2D and 3D cases have been discussed by Taflove and Umashankar (1990).
In these cases, the numerical dispersion depends not only on frequency, but
also on the propagation direction of the wave in the grid mesh. Because var-
ious frequencies are contained in a pulse, progressive pulse distortion can be
produced as higher frequency components propagate slower than lower fre-
quency components. The frequency spectrum of a pulse is determined by
the pulse width in the time domain. Thus, the width of an input pulse
should be properly selected to reduce numerical dispersion. The input Gaus-
sian pulse at the time step n can be represented in a discrete form as fol-

lows:
n 2
G, = Aexp[—(— — 5) i|, (40)
w

where A is a constant and w is a parameter controlling the width of the pulse. The
center of a Gaussian pulse is shifted by Sw so that the pulse can start with a very
small value (~10~11) at the initial time.

As stated in Section III, the incident wave is required at the connecting sur-
face when using the total-field algorithm or over the global grid mesh when
using the scattered-field algorithm. The incident pulse at these locations at the
time step n should not be specified analytically in terms of the exact pulse
values given by Eq. (40), because the numerical solution of Egs. (5a)—(5f)
coupled with an analytical specification of the incident wave may cause in-
consistent dispersion and aliasing, leading to numerical instability. The 1D
FDTD scheme given by Egs. (37a) and (37b) can be applied to the simula-
tion of the propagation of the incident pulse, which is subsequently interpo-
lated to the required locations by using a natural spline or a linear algorithm.
These two interpolation algorithms produce similar results because the grid sizes
smaller than approximately 1/20 of the incident wavelength are usually re-
quired.

The frequency or wavenumber spectrum of the simulated field can be obtained
by the discrete Fourier transform if a pulse is employed as the initial excitation.
Let f be a component of the field and its value at the time step n be f,. Then, the
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time variation of f can be written as

N
FO =) f28¢ —nav), (41)

n=0

where § is the Dirac delta function and the maximum time step N is chosen such
that the field in the time domain is reduced to a small value. The corresponding
spectrum in the wavenumber domain is given by

00 N N
F(k) = f [Z fad(t — nm)] exp(iker) dt = Z faexplikenAr), (42)

— L a=0 n=0

where k is the wavenumber in vacuum. To avoid aliasing and numerical disper-
sion and to obtain a correct frequency spectrum, one must band the maximum
wavenumber or the minimum wavelength for the region within which the fre-
quency response of the scattering is evaluated. In any finite difference equation,
it is required that the wavelength of a simulated wave be larger than the grid size.
Therefore, if we let kgig = 27/Ad where Ad is the minimum among Ax, Ay,
and Az, the permitted wavenumber is

In practice, the frequency response obtained by the discrete Fourier transform
technique would be inaccurate if the selected parameter ¢ in Eq. (43) were
larger than 0.1 because of significant computational wave dispersion and alias-
ing. For light scattering by a nonspherical particle, the effective permittivity and
conductivity described in Section III can be specified to be independent of the
wavenumber used in the Fourier transform. Thus, by selecting various g val-
ues for the frequency spectrum given by Eq. (42), we can obtain the scatter-
ing properties for various size parameters by carrying out near field compu-
tations. This procedure has been discussed in more detail in Yang and Liou
(1995). ’

The field values in the frequency domain obtained by this procedure must be
normalized by the Fourier transform of the incident wave at the center of the
grid mesh so that the frequency response of the scattering particle will return to a
unit incident harmonic wave. The discrete Fourier transform given by Eq. (42) is
different from that developed by other researchers (e.g., Furse et al., 1990) by a
constant. However, this constant will eventually be canceled in the procedure of
normalization.
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VI. TRANSFORMATION OF NEAR FIELD TO
FAR FIELD

To obtain the scattered far field, either a surface- or a volume-integration ap-
proach can be used. In the former, a regular enclosing surface that contains the
particle is selected. The far field is then given by the integration of the near field
over the surface. In the latter, the integration of the near field is carried out over
the entire domain inside the particle surface. In the following we review the basic
electromagnetic relationship between the near field and the far field.

A. SCATTERED FAR FIELD

Owing to the electromagnetic equivalence theorem, the field detected by an
observer outside the surface would be the same if the scatterer were removed and
replaced by the equivalent electric and magnetic currents given by

J =ng xH, (44a)
M=Ex ng, (44b)

where the electric field E and the magnetic field H are the total fields that include
the incident and the scattered fields produced by the scatterer and ng is the out-
ward unit vector normal to the surface. The Hertz vectors or potentials given by
the equivalent currents are

im(®) = / fs M@)G(r, ) dr, (452)
je = [ [ 300w vy e, (45b)

where G(r, ') is the Green’s function in free space, which is defined by
G(r,r) = % (46)

In the preceding equations, r is the position vector of the observation point; r’
is the position vector of the source point. The electric field induced by the Hertz
vectors can be written in the form

E;(r) = =V X ju(®) + i—V X V X je(1). A7

For the radiation zone or far field region, that is, kr — oo, Eq. (47) reduces to

jkr) k?
E;(Dltroo00 = %En X //S{ns x E(r') —n x [ng x H@)]}

x exp(—ikn - ') d?r, (48)
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where n = r/r is a unit vector in the scattering direction. It is evident that the
far field can be obtained exactly if the tangential components of the electric and
magnetic fields on the surface § are precisely known.

Equation (48) involves both electric and magnetic fields. An equivalent coun-
terpart of Eq. (46), which involves only the electric field, can also be derived.
Based on the vector algebra, it can be proven that the following relationships hold
for two arbitrary vectors P and Q and a scalar function ¢:

f/ V(Q-VxVxP—P-VxVxQ)dV

=/ff(p.v2Q—Q~v2P)dv+ffns-(QV-P—PV-Q>ds,<49a)

f / (¢V?P — PV2¢)dV = / / ( )dS (49b)
ans ans

where S is an arbitrary surface enclosing the volume domain V. Further, we let
P=a'G, Q:‘E, ¢=Gv (50)

where a is an arbitrary constant vector, G is the Green’s function, and G is the
dyadic Green’s function given by

G, ) = <I + kle v, )G(r, r), ShH

where I is a unit dyad (Tai, 1971). The volume domain V is selected to be the re-
gion outside S and S, but bounded by S, where S, encloses the source that gen-
erates the incident wave (active source), S encloses the scatterer (passive source),
and S, denotes a surface infinitely far away. The distance between S, and S must
be large enough so that the impact of the scattered field on the source inside S, can
be neglected. Using Eqs. (49)—(51), we obtain the electric field inside the region
of V as follows:

v = v o[ [[ [+ ]

[E( )aG(r r) G(r,r)aE(r)]dz Y, reV, (52
ns ong

where the integral over S, is associated with the incident or initial wave. There
will be no contribution from the integral over Sy if the following Sommerfeld’s
radiation condition (Sommerfeld, 1952) is applied:

lim r[V x G —ikn x G] = 0. 63

r—0o00
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It follows that the scattered or induced field resulting from the presence of a scat-
terer is

Es(r)=]:_zvaXffs[E(r')%‘:‘J)_G(r, )8E(r)]d2’ rev.

(54)
Instead of using the macroelectrodynamics, the preceding expression can also
be obtained from the molecular optics (Oseen, 1915). For the far field region,
Eq. (54) reduces to

, 2 /
Es(0)|kr>00 = exp(.lkr) —If—n X [n X /f I}IS nE(r') + iaE(r)]
N

—ikr 4m ik on

x exp(—ikn - 1) dzr’}. (55)

Equation (55) is equivalent to Eq. (48), but it contains only the FE field and is also
simpler for numerical computations.

To derive the far field given by the integration of the near field over the par-
ticle volume, we begin with the electromagnetic wave equation in the frequency
domain written for a dielectric medium in the source-dependent form (Goedecke
and O’Brien,1988) as follows:

(V2 + k?)E(r) = —4n (kI + VV) - P(r), (56)

where P(r) is the polarization vector given by

P(r) = E(r)

E( )- (57

The material medium here is the scattering particle, thereby making the polariza-
tion vector nonzero only within the finite region inside the particle. The solution
for Eq. (56) is given by an integral equation as follows:

E(r) =Eo(r) + 47 f f f G, Y)(k*1+V, V) - Pa)d,  (58)
1

where the first term on the right-hand side is the incident wave. The domain of
the integration, V, is the region inside the dielectric particle. For the far field,
k(|r — r']) = o0, it can be proven by using Eq. (58) that the scattered or induced
far field caused by the presence of the particle is

E(r) = ——PX) exP(’kr) fff r)— 1]{E() —n[n-Ex)]} exp(—ikn -r) &°F.
(59



Chapter 7 Finite Difference Time Domain Method for Light Scattering 207

Equation (59) is not applicable if a conducting scatterer is involved. In this case,
either Eq. (49) or Eq. (55) can be employed to obtain the scattered far field by
carrying out the involved integration over a regular surface enclosing the scatterer.

To compute the scattering matrix, the scattered field given by Eq. (48), (55),
or (59) must be expressed in terms of the amplitude matrix (Chapter 1). We will
present the required formulation based on the volume integration technique given
by Eq. (59). Similar expressions can be derived for the surface-integration tech-
niques based on Eqs. (48) and (55). Because the scattered field is a transverse
wave with respect to the scattering direction, it can be decomposed into the com-
ponents parallel and perpendicular to the scattering plane in the form

Es(r) = aE; o(r) + BEs (1), (60)

where a and B are the unit vectors parallel and perpendicular to the scattering
plane, respectively, and satisty

n=g4xa. 61

Writing Eq. (60) in matrix form, we obtain

k? ik .
(£atn) = = [[ [ leer=11(5 5ty ) eotcisn-mrae

_ exp(zkr)S (EQO[) , 62)
r Eo,ﬂ

where S is a 2 x 2 amplitude scattering matrix and E, ; and E, g are the incident
E-field components defined with respect to the scattering plane. In the FDTD
method, the incident wave is defined with respect to the incident coordinate sys-
tem given by E, » and E, y. Based on the geometry implied by Eqgs. (60) and

(61), we have
Eg,a _ ﬂ - X _ﬁ -y EO,y)
(Eo,ﬁ) <ﬁ~y ﬁ-x)(E,,,x ’ (63)

where x and y are the unit vectors along the x and y axes, respectively. To obtain
the scattering properties of the particle with complete polarization information,
we can select two incident cases: (a) E, » = 1 and E,,, = O and (b) E,, = 0
and E, , = 1, and define the following quantities:

Fot,x _ k2 / a-E(r’)
(Fﬂ,x) = E///J“”‘”(ﬁ-mr'))

x exp(—ikn - ') d3r ,  (64a)

Eor=1, Egy=0
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Fuy) _ K " (a-E(r’))
(Fm) = I /f/v[g(” I{ . Ew)

x exp(—ikn - ') d’r (64b)

Eox=0, Eoy=1
Using Egs. (62)—(64) along with some algebraic manipulations, it can be proven

that
F, F, B-x B-y
s= (B B ) .
(Fﬂ,y FgxJ\—-B-y B-x ©63)
The amplitude matrix defined in Chapter 1 is obtained by changing the sign of the
off-diagonal elements of the matrix S given by Eq. (65). After defining the am-
plitude matrix, the scattering matrix F can be determined and numerically com-
puted based on the formulas given in Chapter 1. For nonspherical ice crystals
and aerosols oriented randomly in space, the scattering matrix normally has a
block-diagonal structure with eight nonzero elements among which only six are
independent (Section XI of Chapter 1; van de Hulst, 1957).

B. EXTINCTION AND ABSORPTION CROSS SECTIONS

To derive the integral equations for the absorption and extinction cross sec-
tions, we start from Maxwell’s equations. For a nonferromagnetic dielectric
medium with an incident harmonic wave whose time dependence is given by
exp(—ikct), Maxwell’s curl equations in the frequency domain can be written as

cVxH=—iw(e +ig)E, (66a)
¢V XE =ioH, (66b)

where w = kc. Using the preceding equations along with vector algebra, we have

iw wej
_V.s = —(eE-E*—H.H*) + —E . E*, 67
s 4 (er )+ 4r 672)
s = —E x H, (67b)
4x

where s is the complex Poynting vector and the asterisk denotes the complex
conjugate. Taking the real part of Eq. (67a) and integrating it over the region

inside the scattering particle lead to
~Re [ f / ns - s(r') d2r’]
N

—Re[/// V-s(r’)d3r’]

14
2/ / / e (EQX) - E*()d’, (68)
4 v
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where ng is the outward-pointing unit vector normal to the particle surface. Based
on the physical meaning of the Poynting vector (Jackson,1975), the surface inte-
gration term in Eq. (68) is the net rate at which electromagnetic energy intersects
with the particle surface, that is, the energy absorbed by the particle. Further, the
incident electromagnetic flux is given by

C C
F,= —E, E = —|E,|*. 69
o=71-Eo-E, 47T|o| (69)

It follows that the absorption cross section of the particle is given by

—Re[ [fsns - s(') d*r']

Fo
|E—k|5 / / fv s(@)E®X) -E*(r) d°r. (70)

In conjunction with the derivation of the extinction cross section, we note that the
Poynting vector can be decomposed into the incident, scattered, and extinction
components as follows:

Cabs =

S =8, + 85 + S.. 71D

The complex extinction component of the Poynting vector is given by
Se = 4i(Eo x H* + E* x H,). (72)
14

Using Eqgs. (71) and (72), we can prove that the electromagnetic energy associated
with extinction is defined by

ﬁReU f s Se(r) dzr/] =i ImU f f [e0)—1]E@) E; ) d3r’}- (73)
s 4n v

Consequently, the extinction cross section is given by

@ Im{[[[, le(r)) — 1IE(r) - EX(r") d°r'}

4n F
Im[ﬁ / / /V [¢0) — 1]E() - EX() d3r/}. (74)

For scattering by a nonspherical particle, the absorption and extinction cross
sections depend on the polarization of the incident wave (see Section VII of Chap-
ter 1). However, if the mean values of a cross section (the average of the cross
sections computed with respect to two perpendicularly polarized incident waves)
are considered, they are independent of the plane on which the polarization of the
incident wave is defined. Using Egs. (62) and (74) along with integration by parts,

Cext =




210 Ping Yang and K. N. Liou

it can be proven that the mean extinction cross section is

M - 2_7[ Im[SH(ninc) + Szz(ninc)], (75)

Et:xt = ) 4

where n™ is a unit vector indicating the incident direction (Chapter 1). The previ-
ous equation is actually a particular form of the optical or extinction theorem. The
mean absorption cross section can be computed from Eq. (70) using the preceding
two incident cases.

The amplitude matrix and the absorption and extinction cross sections given by
Egs. (64a), (64b), (65), (70), and (74) are presented in continuous integral form.
In practical computations, these equations must be discretized so that the near
field values at the grid points can be summed. Consider the computation of the
extinction cross section as an example. We first normalize the near field values
obtained by the discrete Fourier transform with respect to the Fourier spectrum of
the incident wave calculated at the center of the computational grid lattice. The
Cartesian component of the electric field at a cell center is given by the average
of the field component at four cell edges. Thus, we obtain

Cext = glmz >3 (e, 1K) —1]
K

1 J

ELJ L K ! +Ex\I,J 1 K+1
X ’ — N — A5 ’ ) ~
* 2 2 * 2 2

1 1 1 1
Ex(1,J+=,K = - =
+ x<,J+2, 2)+EX(I,J+2,K+2):|ex

1 1 1 1
Ef(1-2,0, K== )+E(1—= JK+=
+[y( 2 2)+ y( 2 +2>

1 1 1 1\]
EjNl+-,J,K—— ENTI+-,J,K+ =
By (1450 k=3 )+ B (1450843

11 11
E(l=%J—2K)+E(I-% 745K

1 1 1 1\
E(I+-,J—Z,K)+E(I+-,J+-.K
+ z< +57 =5 )+ Z<+2J+2 )z}

x exp(—ik I Ax — ik, I Ay — ik, IAz), (76)

o
~

3

where e, ey, and e; are the three coordinate components of a unit vector pointing
along the polarization direction of the incident electric field and &y, ky, and k,
are the components of the incident wavenumber vector projected on the three
coordinate axes. The discrete expressions can also be obtained for the amplitude
matrix and the absorption cross section.
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VII. SCATTERING PROPERTIES OF AEROSOLS
AND ICE CRYSTALS

In this section we apply the FDTD technique to compute the scattering prop-
erties of ice crystals and aerosols with various geometries and compositions. The
numerical results shown in this chapter are intended to be representative rather
than extensive. It should be pointed out that we have carried out comprehensive
validations regarding the accuracy of the FDTD method using infinite circular
cylinders and spheres for which the exact solutions are available (Yang and Liou,
1995, 1996a). Because the FDTD technique does not pose a preferential treat-
ment to any specific geometry (with a possible exception of rectangular targets
in a Cartesian grid mesh), these canonical comparison studies constitute a repre-
sentative test of the accuracy of the FDTD method. In general, when the size of
the grid cells is on the order of 1/20 of the incident wavelength, the FDTD solu-
tions are in good agreement with their corresponding analytical counterparts. The
relative errors of the scattered energy are smaller than 3%. The accuracy of the
FDTD solution is improved when the ratio of the grid size to the incident wave- -
length decreases. For size parameters larger than about 15, its accuracy in terms
of the relative errors for the phase matrix elements in some scattering directions,
for example, at backscattering, can reach 40%, although the errors in total scat-
tered energy are small. The time-marching iterative steps should be sufficiently
small in order to obtain a convergent solution in the near field computation when
size parameters are larger than 10-20. Through numerical experiments we have
found that errors in the FDTD solution can be reduced to less than 1% if the grid
size used is on the order of 1/40 of the incident wavelength and sufficiently small
time steps are employed in the time-marching iteration. Our previous validation
efforts demonstrated that the FDTD method can achieve reliable results for size
parameters smaller than about 15-20.

It is well recognized that the approximation of nonspherical particles by using
spheres is physically inadequate and often misleading (Liou and Takano, 1994;
Mishchenko ef al., 1996c). Figure 4 shows the FDTD solution for the extinction
efficiency (the ratio of the extinction cross section to the projected area of parti-
cle) of hexagonal ice columns randomly oriented in space, along with results for
equivalent-volume and equivalent-surface spheres for comparison. Both spheri-
cal solutions overestimate the extinction efficiency. This overestimation increases
with increasing size parameter. The equivalent-volume spherical approximation
produces smaller overestimation because the induced dipoles inside the particle,
whose number is proportional to the particle volume, contribute significantly to
the attenuation of incident radiation.
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Figure4 Extinction efficiencies of randomly oriented hexagonal ice crystals computed by the FDTD
method and the results for equivalent-volume and -surface spheres computed by the Lorenz-Mie
theory. L and a are crystal length and hexagonal diameter, respectively. The refractive index is
1.311 + 3.11 x 107%i.

A. AEROSOLS

Acrosols in the atmosphere exhibit a variety of shapes ranging from quasi-
spheres to highly irregular geometries (e.g., Hill et al., 1984; Nakajima et al.,
1989; Okada et al., 1987). In addition, aerosols usually appear as a mixed product
of different compositions involving dustlike, water-soluble, soot, oceanic, sulfate,
mineral, water, and organic materials. The refractive indices for these components
have been compiled by d’ Almeida ez al. (1991). To understand the scattering char-
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acteristics of aerosols, we have defined various representative aerosol geometries
and inhomogeneous compositions for light-scattering computations based on the
FDTD method.

The left panels of Fig. 5 show the phase function (i.e., the F11 element of the
scattering matrix; see Section XI of Chapter 1) and the degree of linear polariza-
tion (DLP) —Fj3/F11 at A = 0.5 um for two randomly oriented dustlike aerosol
shapes with 10 and 6 faces. The size parameters of these irregular aerosols are
specified in terms of the dimensions of their peripheral spheres. Although the two
polyhedrons have the same size parameters, the particle with 10 faces scatters
more energy in the forward direction than its 6-face counterpart. This is because
the volume of the former is larger. The ratio of the extinction cross sections for
these two aerosol shapes is 3.92. Dustlike aerosols are absorptive in the visible
wavelength as indicated by the single-scattering albedos of 0.9656 and 0.9626
for the two polyhedral geometries with 10 and 6 faces, respectively. The mid-
dle panels of Fig. 5 show the other scattering matrix elements associated with
the polarization state of the scattered wave. The detailed structures of aerosol
geometry show a substantial impact on the polarization configuration. From the
results, it appears inadequate to characterize irregular aerosols in terms of periph-
eral spheres.

Black carbon or soot aerosols generated from the incomplete combustion of
fossil fuel and biomass burning can serve as condensation nuclei or become out-
side attachments to water droplets, a potential possibility perhaps relevant for
anomalous cloud absorption (Chylek et al., 1984a). The right panels of Fig. 5
show the phase function and DLP values for water droplets containing irregular
soot inclusions as compared with the Lorenz—Mie result for a homogeneous water
sphere. The water droplets with inclusions scatter more light in the side directions
between 40° and 100° than the corresponding homogeneous spheres. Further-
more, the single-scattering properties of these aerosols are also dependent on the
detailed structure of inclusions. The single-scattering albedos of water droplets
with black carbon inclusions are substantially less than 1 for the visible wave-
length. They are 0.9510 and 0.8852 for the shapes with 10 and 6 faces, respec-
tively.

Figure 6 shows the phase functions and PDLs at a visible wavelength for four
aerosol models. In the diagram the prime and double prime denote that the as-
sociated parameters are for mineral/dustlike and soot components, respectively,
whereas the corresponding unprimed parameters are for water parts of the com-
pounded particles. Polyhedral particles and sphere clusters produce smoother an-
gular scattering patterns in comparison with the cases involving spheres with in-
clusions and/or attachments. For the latter, the spherical parts of the compounded
aerosols dominate the scattering properties. From Figs. 5 and 6 it is evident that
the phase functions of polyhedral and cluster aerosols are substantially different
from those of homogeneous spheres.
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Figure 6 Phase function and degree of linear polarization for four aerosol geometries at A = 0.5 pm.
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B. SMALL ICE CRYSTALS

The scattering characteristics of nonspherical ice crystals with small size pa-
rameters have been investigated previously based on the FDTD technique (Yang
and Liou, 1995, 1996a). We demonstrated that the size parameter and aspect ratio
of ice crystals are critical to their scattering behaviors. For example, the phase
functions for ice plates and long columns are distinctly different, particularly in
the scattering angle region larger than approximately 120°. Long columns pro-
duce a broad scattering maximum at about 150° and a weak backscattering, but
both are absent in the plate case.

Figure 7 illustrates the effects of air bubble and soot inclusions and a cavity
on the phase function and DLP for ice crystals at the 0.5- and 10-um wave-
lengths. The refractive index of ice for the two wavelengths is (m.,m;) =
(1.313,1.91 x 107%) and (1.1991, 5.1 x 10~2). For A = 0.5 wm, the effect of
the inclusion does not appear to be significant for the phase function but it sub-
stantially affects the DLP patterns. The air bubble and soot inclusions as well as
the cavity structures have a substantial impact on the extinction cross sections.
For A = 0.5 um the extinction efficiencies are 3.966, 3.289, 2.768, and 3.782 for
ice crystals with an air bubble, a soot inclusion, a cavity, and for a solid hexagon
(note that the projected areas are the same for these shapes with the geometry
parameters specified in Fig. 7), respectively. Moreover, the soot inclusion signif-
icantly affects absorption for ice crystals at 4 = 0.5 um. The single-scattering
albedo in this case is 0.7904. For A = 10 um the extinction efficiencies are 2.357,
2.310, 1.892, and 2.729 for the four cases, whereas the corresponding single-
scattering albedo values are 0.6833, 0.5710, 0.6802, and 0.6931. The inclusion
of soot clearly enhances the absorption of ice crystals at A = 10 um. For the ice
crystal size parameters presented in Fig. 7, the distinct scattering peaks associated
with halos are absent. The phase interference of the scattered waves produces fluc-
tuations in the phase functions, which are more pronounced for ice crystals with
cavities at A = 10 pm. The fluctuations and scattering maxima in the ice crystal
phase functions are due to the interference pattern of the scattered wave associ-
ated with the specific geometries that cannot be completely smoothed out by the
random orientation average.

To understand the size parameter values required for the production of halo
peaks, we perform computations for infinitely long hexagons with size parameters
(with reference to their cross-sectional dimension) of 10 and 60 for two specific
incidence configurations, as shown in Fig. 8. For ka = 10, fluctuations due to
phase interference dominate the phase function pattern. When ka = 60, a pro-
nounced peak around 20° is noted for both incidence configurations. In Fig. 8a,
a strong scattering peak at about 120° associated with the 120° parhelia is also
evident. For hexagonal ice crystals to produce halo patterns, we find that the size
parameters must be greater than about 50.
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Figure 7 Phase function and degree of linear polarization for hexagonal ice crystals with air bubble
and soot inclusions and cavity in comparison with the results for solid columns at A = 0.5 pm. The
cavity depth of a hollow column is indicated by dc.
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Figure 9 illustrates the scattering features for ice bullet rosettes and aggre-
gates at A = 0.5 and 10 um. The aggregates consist of eight hexagonal elements
whose geometries and relative spatial positions are defined following Yang and
Liou (1998a). The definition of bullet rosettes follows Takano and Liou (1995).
The lengths of the pyramidal tips of bullet branches are assumed to be equal in
the present computation. It is evident from Fig. 9 that bullet rosettes produce sim-
ilar phase functions as aggregates at A = 0.5 pum, except that the phase functions
for the former display some fluctuations. In addition, aggregates generate weaker
backscattering. For A = 10 um, substantial differences between the phase func-
tions for bullet rosettes and aggregates are noted in the scattering region around
140°. From Fig. 9 it is also evident that the polarization properties depend on the
detailed particle geometry. Because the present results are for ice crystals with
small size parameters, the phase functions shown in Fig. 9 differ from those ob-
tained for large ice crystals based on the geometric ray-tracing technique. For
a large ice crystal, the scattered wave with respect to different substructures is
essentially incoherent. Thus, the phase function for aggregates with hexagonal
elements is similar to that associated with a single ice hexagon, as illustrated in
Yang and Liou (1998a).

From the computed scattering matrix elements shown in Figs. 5-7 and 9 for
complicated ice crystals and compounded aerosols including ice crystal aggre-
gates, aerosols with irregular inclusions, and aerosol clusters, it is clear that the
detailed particle structures are important in the determination of their scattering
and polarization properties for size parameters in the resonant regime. The scatter-
ing properties of nonspherical ice crystals for small size parameters are substan-
tially different from those for large size parameters in the applicable regime of
geometric optics. The effect of small ice crystals in remote-sensing applications
and radiative transfer calculation deserves future study.

VIII. CONCLUSIONS

In this chapter, we have reviewed the physical basis and numerical implemen-
tation of the FDTD technique for light-scattering calculations involving dielec-
tric particles. We discuss four aspects of the methodology including (1) the time-
marching iteration for the near field, (2) the absorbing boundary condition for the
truncation of the computational domain, (3) the field transformation from the time
domain to the frequency domain, and (4) mapping the near field to the far field.
For the discretization of Maxwell’s equations in both space and time, we show
that the best approach is to carry out the spatial discretization first by averaging
the permittivity based on the values of four adjacent cells and then performing
the temporal discretization. Further, the mathematical formulations of the FDTD

G
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method for specific applications to the solutions of phase matrix and extinction
and absorption cross sections are presented for computational purposes.

To demonstrate the capability and flexibility of the FDTD technique in dealing
with nonspherical and inhomogeneous particles, the single-scattering and polar-
ization properties of aerosols and ice crystals commonly occurring in the atmo-
sphere are presented. New results are illustrated for complicated ice crystals and
compounded aerosols including ice crystal aggregates, aerosols with irregular in-
clusions, and aerosol clusters. It is shown that the detailed particle structures are
important in the determination of their scattering and polarization properties for
size parameters in the resonant regime.
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