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omparison of Cartesian grid configurations for
pplication of the finite-difference time-domain
ethod to electromagnetic scattering by

ielectric particles

ing Yang, George W. Kattawar, Kuo-Nan Liou, and Jun Q. Lu

Two grid configurations can be employed to implement the finite-difference time-domain �FDTD� tech-
nique in a Cartesian system. One configuration defines the electric and magnetic field components at
the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two
grid configurations differ in terms of implication on the electromagnetic boundary conditions if the
scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at
the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the
discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms
of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles
to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions
for the two Cartesian grid configurations. We also present an empirical approach to accelerate the
convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a
new application of the FDTD method, we investigate the scattering properties of multibranched bullet-
rosette ice crystals at both visible and thermal infrared wavelengths. © 2004 Optical Society of America

OCIS codes: 010.1290, 010.3920, 010.1310, 290.5850, 290.1310, 280.1310.
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. Introduction

he scattering and absorption properties of small di-
lectric nonspherical particles are essential elements
or the implementation of various passive and active
emote sensing techniques for atmospheric applica-
ions and for the simulation of radiative transfer in
he coupled Earth–atmosphere system.1,2 A num-
er of rigorous and approximate methods have been
eveloped to investigate physical processes associ-
ted with the electromagnetic scattering by non-
pherical and inhomogeneous particles; the strengths
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nd weaknesses of these methods have recently been
eviewed by Mishchenko et al.2 and Kahnert.3

The finite-difference time-domain �FDTD� method
ioneered by Yee4 in 1966 and subsequently devel-
ped by numerous electrical engineers and computa-
ional physicists �e.g., Taflove and colleagues,5,6 Kunz
nd Luebbers7� has been shown to be flexible and
obust in electromagnetic scattering problems. It
as been widely applied to problems as diverse as the
nalysis of antenna performance and the assessment
f bioelectromagnetic hazards.5 The FDTD method
as also been used to compute the scattering proper-
ies of nonspherical and inhomogeneous ice crystals
nd aerosols in the terrestrial atmosphere.8–14 The
opularity of this method can be recognized from the
ealth of relevant publications, as recently surveyed
y Shlager and Schneider.15

Although substantial theoretical developments
nd modeling efforts have been focused on the imple-
entation of the FDTD method in various curvilinear

oordinate systems,6,16 the most straightforward im-
lementation of this method has been use of the Car-
esian grid meshes. When the time-dependent
axwell’s curl equations are discretized in a Carte-

ian system by use of the leapfrog difference �or the
10 August 2004 � Vol. 43, No. 23 � APPLIED OPTICS 4611
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entral-difference� technique, there are two numeri-
al schemes used to specify the spatial location of the
lectric and magnetic fields. In one of the two
chemes the Cartesian components of the electric
eld are defined at the centers of the cell faces,
hereas the corresponding components of the mag-
etic field are defined at the cell edges. In the other
cheme, one simply interchanges the electric and
agnetic fields. These two schemes differ in terms

f their implication on the electromagnetic boundary
onditions if the dielectric characteristics of adjacent
ells are not identical �e.g., in the case in which the
ells are located at the particle surface�.

The objective of this study is first to derive appro-
riate FDTD schemes associated with the above-
entioned Cartesian grid configurations to

ircumvent the indeterminate nature of the permit-
ivity and field values at the location where the me-
ium dielectric properties are discontinuous.
econd, on the basis of the present FDTD schemes,
he scattering computations are carried out to assess
he numerical accuracy associated with the two dif-
erent Cartesian grid configurations. Third, we
resent a simple and yet efficient numerical method
o improve the convergence of the electric field in the
requency domain. Finally, as a new application, we
se the FDTD method to study the effect of the multi-
ranches of bullet-rosette ice crystals on the optical
haracteristics of these particles. Note that the
cattering and absorption properties of bullet-rosette
ce crystals are important in the study of the radia-
ive properties of cirrus clouds in the atmosphere.

This paper is organized as follows. In Section 2
e provide the theoretical basis for the two Cartesian
DTD schemes that can be applied to the case involv-

ng a discontinuity of dielectric properties. In Sec-
ion 3 we illustrate that the convergence of near-field
ignals in the frequency domain is generally slow,
nd we present a method to improve the rate of con-
ergence. In Section 4 we show the performance
omparison of the two FDTD schemes developed in
ection 2, including cases for cubes and spherical
articles with moderate and large complex refractive
ndices. Presented in Section 4 are also the phase

atrices of various types of bullet-rosette ice crystals.
inally, conclusions are given in Section 5.

. Cartesian Grid for the Implementation of the
inite-Difference Time-Domain Method

or the implementation of the FDTD technique in a
artesian system, Yee’s scheme4 involving the
econd-order finite-difference analog of Maxwell’s
url equations has been most popular, although sev-
ral higher-order schemes have also been suggested.5
igure 1�a� shows Yee’s original grid configuration for

he location of the electric and magnetic field vector
omponents on a cubic cell. Figure 1�b� shows an
lternative of Yee’s grid configuration. Note that
he grid configuration in Fig. 1�b� is also referred to as
ee’s scheme in the literature.6 It is evident from
ig. 1 that these two grid configurations differ by a
patial shift of ��x, �y, �z� � ��s�2, �s�2, �s�2�, as-
612 APPLIED OPTICS � Vol. 43, No. 23 � 10 August 2004
uming a uniform grid size along the x, y, and z axes.
ecause of a half-step spatial shift, the two grid con-
gurations, if applied to the electromagnetic scatter-

ng by a dielectric particle, are different in terms of
heir implication on the electromagnetic boundary
onditions. For the cells intersecting with the par-
icle surface �i.e., the dielectric properties of adjacent
ells are different�, these two grid configurations lead
o two versions of the finite-difference equations
hen we are dealing with the discontinuity of me-
ium dielectric properties, as discussed below.
Consider the electromagnetic scattering by a non-

erromagnetic dielectric particle. The Maxwell curl
quations for the physical process are given as fol-
ows:

�E�r, t�
�t

�
c
ε

� � H�r, t� , (1)

�H�r, t�
�t

� � c� � E�r, t� , (2)

here ε is the complex permittivity of the dielectric
edium of which the particle is composed and c is the

peed of light in vacuum. To avoid complex vari-
bles in the FDTD numerical computation, Eq. �1�
an be transformed to a form given by8

��exp��tεi�εr�E�r, t�	
�t

� exp��tεi�εr�
c
εr

� � H , (3)

here εr and εi are the real and imaginary parts of the
ermittivity, respectively, and � is the angular fre-
uency of the incident wave. We can use the leap-
rog finite-difference scheme to discretize Eqs. �2� and
3� with respect to time in a straightforward manner
s follows:

Hn
1�2�r� � Hn�1�2�r� � c�t� � En�r� , (4)

En
1�r� � exp����r��t	En�r�

� exp����r��t�2	
c�t
εr

� � Hn
1�2�r� ,

(5)

ig. 1. Two Cartesian grid configurations used to implement the
DTD method. The configuration in �a� was originally reported
y Yee in 1966.
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here ��r� � �εi�r��εr�r� and the superscripts in Eqs.
4� and �5� denote the time steps. The temporal dis-
retization from Eqs. �2� and �3� to Eqs. �4� and �5� does
ot pose any difficulty in practice because the electric
nd magnetic fields are continuous functions in time.
owever, a careful consideration is required to dis-

retize Eqs. �4� and �5� with respect to the spatial de-
endence of the electric and magnetic fields.
As an example, let us consider the z component of

q. �5� and apply the leapfrog difference scheme to
iscretize the corresponding differential equation.
mploying the grid configuration in Fig. 1�b�, we ob-

ain the following finite-difference equation:

Ez
n
1�i, j, k � 1�2� � exp� � ��i, j,k � 1�2��t	

� Ez
n�i, j, k � 1�2�

� exp� � ��i, j, k � 1�2��t�2	

�
c�t

εr�i, j, k � 1�2��s

� �Hx
n
1�2�i, j � 1�2, k � 1�2�

� Hx
n
1�2�i, j � 1�2, k � 1�2�

� Hy
n
1�2�i � 1�2, j, k � 1�2�

� Hy
n
1�2�i � 1�2, j, k � 1�2�	 ,

(6)

here ��i, j, k 
 1�2� � �εi�i, j, k 
 1�2��εr�i, j, k 

�2�. The quantities εr�i, j, k 
 1�2� and εi�i, j, k 

�2� are the values of the real and imaginary parts of
he permittivity at the location �x, y, z� � �i, j, k 

�2��s. If two grid cells with an interface at �x, y, z�

�i, j, k 
 1�2��s are different, the permittivity is
ndefined. This can be well illustrated for the case

n which the scattering particle is a cube that con-
orms to a Cartesian FDTD grid mesh. Figure 2
hows a side view �along the x-axis direction� of a
ubic particle embedded in a Cartesian grid mesh.
n the particle surface, the Ez and Ey components are

pecified at the locations marked as X and O, respec-
ively. Evidently, the permittivity is not continuous
t these locations. If the local values of the permit-
ivity are used by a brute force approach, then it is not
ertain whether the permittivity of the surroundings
i.e., vacuum in the present case� or that of the par-
icle should be used at the particle surface. In ad-
ition to the difficulty associated with how to
niquely define the permittivity at the particle sur-

ace, the electric field vector components cannot be
efined on the particle surface either if the grid con-
guration specified in Fig. 1�b� is employed. This is
ecause an electric field component normal to the
article surface is discontinuous. Therefore there is
need to address the issue regarding the discretiza-

ion of the Maxwell equations with respect to space
or the FDTD application in the case in which the
catterer of interest is a dielectric particle. It should
e pointed out that a previous study by Pregla and
ascher17 already addressed the issue concerning the
pecification of the dielectric constants in discrete
umerical computation �specifically, the method of
ines in their study� at a location where an abrupt
ransition of medium dielectric properties is present.

According to the nature of discrete numerical com-
utation, the basic spatial unit in the finite-difference
cheme is the grid cell. It is unlikely to resolve any
ubcell-scale variation of a variable in the FDTD cal-
ulation. Thus a scattering particle in the Cartesian
DTD implementation must be approximated by a
umber of grid cells. For example, a pseudosphere
omposed of a number of cubic cells is used as a
urrogate to approximate a sphere in the FDTD com-
utation. The dielectric properties of these cells in
he FDTD grid mesh can be different, i.e., one can
ave colored cells in terms of their permittivities.
owever, for a given cell, the dielectric properties
ust be homogeneous throughout the cell. This ap-

roximation leads to the well-known staircasing ef-
ect in the Cartesian FDTD implementation. Many
pproaches have been suggested to reduce the stair-
asing effect �e.g., Taflove and Hagness6 and the ref-
rences cited therein�.
Under the condition that a particle is approxi-
ated by a number of homogeneous cells in the
DTD calculation, we can derive two appropriate
DTD numerical schemes associated with the grid
onfigurations in Figs. 1�a� and 1�b�. First, let us
onsider the general electromagnetic boundary con-
itions given by18

n � �E
 � E�� � 0 , (7a)

n � �H
 � H�� � K , (7b)

n � �D
 � D�� �  , (7c)

ig. 2. Side view of a cubic particle that is embedded in a Carte-
ian FDTD grid mesh. The electric field components normal to
he particle surface cannot be defined at the locations marked X
nd O in the diagram because of the discontinuity of the field
omponents at these locations.
s

10 August 2004 � Vol. 43, No. 23 � APPLIED OPTICS 4613
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4

here n is a unit vector normal to the interface, D
s the electric displacement vector given by εE in
hich ε is the permittivity, K is the surface current
ensity, and s is the surface density of free charge.
or the electromagnetic scattering by a dielectric
article, we have K � 0 because a finite conductiv-
ty cannot sustain K.19 In addition, we have s � 0
or a dielectric particle. Thus the tangential com-
onents of the electric and magnetic fields are con-
inuous across the cell interface whereas the
ormal component of electric displacement is con-
inuous at the cell interface. Evidently the grid
onfiguration in Fig. 1�a� implicitly satisfies the
lectromagnetic boundary condition because the
lectric and magnetic components involved in this
rid configuration are continuous, although a dis-
ontinuity of permittivity may exist at cell faces or
dges. On the contrary, for the grid configuration
n Fig. 1�b�, the normal components of the electric
eld vectors at the centers of cell faces have abrupt
ransitions, although the corresponding compo-
ents of the electric displacement vectors are con-
inuous at these locations if the dielectric constants
f adjacent cells are not identical.
Consider two adjacent homogeneous cells with

eld locations given by the configuration shown in
ig. 3. The permittivity for the upper cell centered
t �x, y, z� � �i, j, k 
 1��s is denoted as εi,j,k
1,
hereas the permittivity for the lower cell is given

ig. 3. Electric and magnetic fields associated with two adjacent
ells that are not identical in terms of their dielectric constants.
614 APPLIED OPTICS � Vol. 43, No. 23 � 10 August 2004
y εi,j,k. Consider the Ez component at the cell in-
erface. At the plane of z � �k 
 1�2��s 
 � with �

0 �i.e., the upper-cell side of the cell interface�,
he spatial discretization of Eq. �1� for the Ez com-
onents leads to the following differential–
ifference equation:

�Ez

�i, j, k � 1�2, t�

�t
�

c
εi, j,k
1�s

�Hx

�i, j � 1�2, k

� 1�2, t�

� Hx

�i, j � 1�2, k � 1�2, t�

� Hy

�i � 1�2, j, k � 1�2, t�

� Hy

�i � 1�2, j, k � 1�2, t�	 ,

(8)

here the superscript 
 indicates that the associated
ariables are evaluated at the upper-cell side of the
nterface, e.g., Ez


�i, j, k 
 1�2� implies that the value
f Ez�x, y, z, t� is evaluated at �x, y, z� � �i�s, j�s, �k 

�2��s 
 �	 with � 3 0.
Similarly, at the lower-cell side of the cell interface

i.e., the plane of z � �k 
 1�2��s � � with �3 0	, we
ave

�Ez
��i, j, k � 1�2, t�

�t
�

c
εi, j,k�s

�Hx
��i, j � 1�2, k � 1�2, t�

� Hx
��i, j � 1�2, k � 1�2, t�

� Hy
��i � 1�2, j, k � 1�2, t�

� Hy
��i � 1�2, j, k � 1�2, t�	 ,

(9)

here the superscript � indicates that the associated
ariables are evaluated at the lower-cell side of the
nterface, e.g., Ez

��i, j, k 
 1�2� implies that the value
f Ez�x, y, z, t� is evaluated at �x, y, z� � �i�s, j�s,�k 

�2��s � �	 with � 3 0. Because the tangential
omponents of the magnetic field vector components
re continuous, we must have

Hx

�i, j � 1�2, k � 1�2, t� � Hx

��i, j � 1�2, k � 1�2, t� ,
(10a)

Hy

�i � 1�2, j, k � 1�2, t� � Hy

��i � 1�2, j, k � 1�2, t� .
(10b)

n the contrary, the normal components of the elec-
ric field are not continuous at the cell interface, that
s,

E 
�i, j, k � 1�2, t� � E ��i, j, k � 1�2, t�. (11)
z z



T
t
f

W
a

w
c
t

w
i
d
b
a
E
i
u
t
t
i
d
t
c
c
e
t

a
t

T
a
�

�

o obtain an appropriate FDTD scheme to compute
he electric field at the cell interface, we define the
ollowing averaged quantities:

Ez�i, j, k � 1�2, t� � �Ez

�i, j, k � 1�2, t�

� Ez
��i, j, k � 1�2, t�	�2 ,

(12a)

1
ε�i, j, k � 1�2�

�
1
2� 1

εi, j,k
�

1
εi, j,k
1

� . (12b)

ith the auxiliary quantities defined in Eqs. �12a�
nd �12b�, averaging Eqs. �8� and �9�, we have

�Ez�i, j, k � 1�2, t�
�t

�
c

ε�i, j, k � 1�2��s
�Hx�i, j

� 1�2, k � 1�2, t�

� Hx�i, j � 1�2, k � 1�2, t�

� Hy�i � 1�2, j, k � 1�2, t�

� Hy�i � 1�2, j, k � 1�2, t�	 .

(13)

Using the approach suggested by Yang and Liou,8
e can then transform Eq. �13� to a real form to avoid

omplex computation in the numerical implementa-
ion as follows:
S
s
fi

H

i
a
w
t
v

here εi�i, j, k 
 1�2� and εr�i, j, k 
 1�2� are the
maginary and real parts of the averaged permittivity
efined in Eq. �12b�, respectively. Equation �14� can
e further discretized with respect to time, leading to
finite-difference scheme that is in the same form as
q. �6�. However, the permittivity and electric field

nvolved in the finite-difference equation cannot be
nderstood as their local values but the average of
he field components at the two sides of the cell in-
erface. Therefore, if one uses the grid configuration
n Fig. 1�b�, the average of the electric field is man-
atory so that the electromagnetic boundary condi-
ions are valid. The finite-difference equation to
ompute the magnetic field involves the Cartesian
omponents of the electric field that must be the av-
raged values as well. From Figs. �3a� and �3c�, af-
er integrating the x components of Eq. �2� over the
rea ABCD in Fig. 3�c� and subsequently applying
he Stokes formula, we obtain

�Hx�i, j � 1�2, k � 1�2�

�t
� �

c
�s2

� ��
A

B

Ey� x, y, z, t�dy

� �
B

c

Ez� x, y, z, t�dz

� �
c

D

Ey� x, y, z, t�dy

� �
D

A

Ez� x, y, z, t�dz� .

(15)
o further discretize Eq. �15�, we consider, as an ex-
mple, the fourth term on the right-hand side of Eq.
15� as follows:

1
�s2 ��

D

A

Ez� x, y, z, t�dz �
1

�s2 �Ez
��i, j, k � 1�2�

� �s�2 � Ez

�i, j, k

� 1�2��s�2	

� �
1

�s
Ez�i, j, k � 1�2� .

(16)
imilarly, the other three terms on the right-hand
ide of Eq. �15� can be given by the averaged electric
eld vector component. Thus we have

x
n
1�2�i, j � 1�2, k � 1�2�

� Hx
n�1�2�i, j � 1�2, k � 1�2�

�
c�t
�s

�Ey
n�i, j � 1�2, k� � Ey

n�i, j � 1�2, k � 1�

� Ez
n�i � 1, j, k � 1�2� � Ez

n�i, j, k � 1�2�	. (17)

Therefore, if we employ the grid configuration spec-
fied in Fig. 1�b�, the appropriate FDTD scheme for Ez
nd Hx, for example, are given by Eqs. �6� and �17� in
hich the electric field and permittivity do not posses

he conventional meanings as given by their local
alues. It is clear that the difficulty associated with
�exp�i�εi�i, j, k � 1�2��εr�i, j, k � 1�2�	Ez�i, j, k � 1�2, t��
�t

� exp�i�εi�i, j, k � 1�2��εr�i, j, k � 1�2�	
c

εr�i, j, k � 1�2��s
�Hx�i, j � 1�2, k � 1�2, t�

� Hx�i, j � 1�2, k � 1�2, t� � Hy�i � 1�2, j, k � 1�2, t� � Hy�i � 1�2, j, k � 1�2, t�	 , (14)
10 August 2004 � Vol. 43, No. 23 � APPLIED OPTICS 4615
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he medium discontinuity when the scatterer is a
ielectric particle has been circumvented in the pre-
eding scheme.

In the FDTD simulation for the scattering proper-
ies of a particle, the near field must be mapped to its
ar-field counterpart. If we employ the volume-
ntegral-based approach,8 we are required to deter-

ine the electric field at the centers of the cells from
hich the scattering particle is composed. Consider
z as an example. We have the following electro-
agnetic boundary condition at the cell interface

hown in Fig. 3�c�:

εi, j,k
1Ez

�i, j, k � 1�2� � εi, j,kEz

��i, j, k � 1�2�.
(18)

sing Eqs. �12a� and �18�, we obtain

Ez

�i, j, k � 1�2� �

2εi, j,k

εi, j,k � εi, j,k
1
Ez�i, j, k � 1�2�,

(19a)

Ez
��i, j, k � 1�2� �

2εi, j,k

εi, j,k � εi, j,k
1
Ez�i, j, k � 1�2�.

(19b)

hus the z component of the electric field at the cell
enter �i, j, k� is given by

Ez�i, j, k� � � εi, j,k
1

εi, j,k � εi, j,k
1
Ez�i, j, k � 1�2�

�
εi, j,k�1

εi, j,k � εi, j,k�1
Ez�i, j, k � 1�2�� .

(20)

he preceding expressions, i.e., Eqs. �6�, �12a�, �12b�,
17�, and �20�, form the FDTD algorithm for the grid
onfiguration in Fig. 1�b�. Similarly, if we use the
rid configuration in Fig. 1�a�, the spatial discretiza-
ion for the electric field for the Ez component, for
xample, is given by
w
n
N
i
t
s
q
t
t

here

ε�i � 1�2, j � 1�2, k� � �εi, j,k � εi
1, j,k

� εi
1, j
1,k � εi, j
1,k��4 .
(22)

he temporal discretization of Eq. �21�, after it is
ransformed into a form similar to Eq. �14�, is
traightforward and will not produce any difficulty.
616 APPLIED OPTICS � Vol. 43, No. 23 � 10 August 2004
n important point to note is that in Eq. �21� the
lectric field component Ez is a local value. Thus, if
e use Yee’s original grid configuration �Fig. 1�a�	,

nly the permittivity needs to be averaged in the
DTD algorithm to deal with the medium disconti-
uity. For the FDTD scheme given by Eq. �21�, the
lectric field components at the cell centers in the
ase of Ez, for example, can be obtained in a straight-
orward manner as follows:

Ez�i, j, k� � �Ez�i � 1�2, j � 1�2,k�

� Ez�i � 1�2, j � 1�2, k�

� Ez�i � 1�2, j � 1�2, k�

� Ez�i � 1�2, j � 1�2, k�	�4. (23)

he expressions in Eqs. �20� and �23� give the elec-
ric field components at cell centers for the grid
onfigurations shown in Figs. 1�a� and 1�b�. Sun
nd Fu,11 who used the grid configuration in Fig.
�b�, reported a useful interpolation scheme for cal-
ulating the electric field components at the gravity
enters of the cells, which involves both the electric
isplacement and the electric field utilizing the fact
hat the normal components of the electric displace-
ent and the tangential components of the electric
eld are continuous across the particle surface.

. Improvement on the Convergence of Near-Field
omputation

n the FDTD computation, the field values in the time
omain must be transformed into their counterparts
n the frequency domain. If a pulse is used as the
nitial excitation for the time-marching iteration as-
ociated with near-field calculation in the time do-
ain, the discrete Fourier transform is normally
sed to obtain the corresponding near-field signals in
he frequency domain as follows:

FN��� � �
n�0

N

fn exp�i�n�t� , (24)
here fn is the signal in the time domain at time step
, and FN��� is the signal in the frequency domain.
ote that a rigorous treatise on Fourier series and

ntegrals was given by Sommerfeld.20 In principle,
he parameter N in Eq. �24� should be infinitely large
o that a converged value of the signal in the fre-
uency domain can be obtained. However, in prac-
ice, it must be a finite number. An interesting point
o note is that the discrete Fourier transform is more
�Ez�i � 1�2, j � 1�2, k, t�
�t

�
c

ε�i � 1�2, j � 1�2,k��s
�Hx�i, j � 1�2,k � 1�2,t�

� Hx�i, j � 1�2,k � 1�2,t� � Hy�i � 1�2, j,k � 1�2,t� � Hy�i � 1�2, j,k � 1�2,t�	 ,
(21)
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omputationally efficient than the fast Fourier trans-
orm for application to the FDTD computation, as
emonstrated by Furse and Gandhi.21 This is
ainly because the summation in Eq. �24� for the

iscrete Fourier transform can be updated at every
DTD time step in a straightforward manner,
hereas the full history of the temporal variation of

he signals at all grid points are required in the fast
ourier transform.
Consider the following expressions for the discrete

ourier transform with various time steps for the
ear-field iterations. The signals in the frequency
omain are given by

FN0
��� � �

n�0

N0

fn exp�i�n�t� , (25a)

FN0
1��� � �
n�0

N0
1

fn exp�i�n�t� , (25b)

···

FN0
L��� � �
n�0

N0
L

fn exp�i�n�t� . (25c)

et Fc��� be the converged value of FN���, which, in
rinciple, corresponds to the case with L 3 � in
q. �25c�. It is expected that FN0

���, FN0
1���,
. .FN0
L��� will be approximately equal to Fc��� if N0
s sufficiently large so that

Fc��� � �FN0
��� � FN0
1��� � . . . � FN0
L���	

��L � 1� . (26)

sing Eqs. �25a�–�25c� and �26�, we obtain

Fc��� � �
n�0

N0

fn exp�i�n�t� �
L

L � 1
fN0
1

� exp�i��N0 � 1��t	

�
L � 1
L � 1

fN0
2 exp�i��N0 � 2��t	 � . . .

�
1

L � 1
fN0
L exp�i��N0 � L��t	

� �
n�0

N0

fn exp�i�n�t� � �
j�1

L L � 1 � j
L � 1

fN0
j

� exp�i��N0 � j��t	 . (27)

hysically, Eq. �27� implies that a diffusion damping
erm given by �L 
 1 � j���L 
 1� is added to the
ourier transform after a certain time step. As we
how below, the addition of the damping term to the
ourier transform substantially speeds up the con-
ergence of the discrete Fourier transform in the
DTD computation. It should be pointed out that

he present algorithm given by Eq. �27� is an empir-
cal approach. To compare the present algorithm
nd its conventional counterpart given by Eq. �24�,
e investigate the frequency spectrum of a time-
ependent pulse as a canonical problem, which is
pecified as follows:

fn �
1

0.001�n � 1000�2 � 1
. (28)

e simulate the propagation of this pulse using a
ne-dimensional FDTD scheme. Note that, for a
ne-dimensional FDTD scheme, an exact absorbing
oundary condition can be constructed. In the sim-
lation, the source is located at the third grid point.
e sample the time series of the signals at the 100th

rid point to perform the Fourier transform for a
requency of � � 2�c��30�s� in which �s is the grid
ize and c is the speed of light. The upper panel of
ig. 4 shows the pulse as a function of time step,
hich is observed in the third grid point. The mid-
le and lower panels show the real and imaginary

ig. 4. Top panel: the variation of a pulse as a function of time,
hich is observed at the third grid point in a 1-D FDTD grid;
iddle panel: the real parts of FN��� in Eq. �24� and Fc��� in Eq.

26�; bottom panel: the imaginary parts of FN��� and Fc���.
10 August 2004 � Vol. 43, No. 23 � APPLIED OPTICS 4617
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arts of the signal in the frequency domain, respec-
ively. In the computation, we select L � 120 in Eq.
27�. Evidently, the present algorithm leads to a fast
onvergence for the signals in the frequency domain.

Figure 5 shows the real and imaginary parts of the
component of the electric field �in the frequency

omain� at the center of a sphere that is illuminated
y a y-polarized incident pulse propagating along the
axis. In the present computation concerning elec-

romagnetic scattering by a dielectric particle, the
ncident pulse is defined as follows:

fn � exp� � �n�30 � 5�2	 . (29)

ote that the values of the field signals shown in Fig.
are not normalized by the Fourier transform of the

ncident wave. The refractive index for the sphere is
.0925 
 i0.248, the refractive index of ice at a wave-
ength of 11 �m. We employ an eight-layer perfectly

atched layer boundary condition22 with ten cells
etween the scattering particle and the perfectly

ig. 5. Variation of the y component of the electric field at the
enter of a sphere versus the time step used for the Fourier trans-
orm to derive the field signals in the frequency domain. The
phere is illuminated by a y-polarized incident pulse that propa-
ates along the z axis. The complex refractive index for the scat-
ering particle is m � 1.0925 
 i0.248.
618 APPLIED OPTICS � Vol. 43, No. 23 � 10 August 2004
atched layer medium throughout the present
DTD simulation. The dotted curves in Fig. 5 are
he near-field values in the frequency domain that
re calculated by the conventional Fourier-transform
echnique given by Eq. �24�. A slow convergence is
vident for this conventional technique as oscillations
re still noticeable when N in Eq. �24� is as large as
150. The solid curves in Fig. 5 are the solutions
iven by Eq. �27� with L � 87. The convergence of
he modified Fourier-transform scheme is observed at

0 � 565 �i.e., with a total iteration step of 653�. It
s evident that the diffusion damping term intro-
uced into Eq. �27� substantially improves the speed
f the convergence. The dashed curves in Fig. 5 in-
icate the converged values predicted from Eq. �27�.
Figure 6 shows the phase functions of ice spheres

or a wavelength of 11 �m for size parameters x � 5
nd 10. The size parameter is defined as x � 2�a��,
here a is the radius and � is the wavelength. For

he case with x � 5, the total iteration steps for the
alculation of the near field in the time domain is 653.
hen Eq. �27� is applied to the Fourier transform, the

ig. 6. Phase functions computed from the FDTD technique with
he modified Fourier-transform method given by Eq. �27� and the
onventional Fourier-transform method by Eq. �24�, which are
ompared with their Lorenz–Mie counterparts. The complex re-
ractive index for the scattering particle is m � 1.0925 
 i0.248.
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eld values between 566 and 653 are averaged, i.e.,
� 87 in Eq. �27�. Use of the average values for the

elds, accuracy for the phase function in the scatter-
ng angles near 140° is much improved, although
rrors are slightly enhanced around the backscatter-
ng direction. For the case of x � 10, the total num-
er of iteration time steps is 2173. For the modified
ourier-transform scheme given in Eq. �27�, N0 �
030 and L � 143 are used. It is evident from the
anels on the right-hand side of Fig. 6 that the max-
mum error for the phase-function calculation can be
s large as 20% when 2173 time steps are used for the
ime-marching iteration of the near-field calculation.
owever, accuracy for the phase function calculation

s substantially increased if the field values are av-
raged in the Fourier transform even though the
ame time steps are used.

. Comparison of Two Finite-Difference Time-Domain
umerical Schemes

n this section we compare the numerical accuracy of
wo FDTD schemes that are associated with the grid
onfigurations shown in Figs. 1�a� and 1�b�.
hroughout the present computations, the cells in

he vicinity of the particle surface are defined as
mpty cells �i.e., with ε � 1� if 50% of the cell volume
s outside the particle. If more than half of a cell is
nside the particle, the dielectric properties �i.e., the
eal and imaginary parts of permittivity� of the par-
icle are assigned to the cell. For numerical simplic-
ty, the effective permittivity calculated on the basis
f the Maxwell Garnett rule or the Bruggeman rule,
hich is suggested by Yang et al.9 for the cells at the
article surface, is not used in this study.
Figure 7 shows a comparison of the phase function

or an ice sphere with a size x � 5 at a far-infrared
IR� wavelength of 25 �m. Note that there is an
ncreasing interest in use of the far-IR spectral sig-
ature to retrieve the microphysical and optical prop-
rties of ice clouds.23 The refractive index of ice at
his wavelength is 1.5015 
 i0.067. In the numeri-
al computation, 1984 time steps are used for the
ear-field iteration. The field values for the last 420
ime steps are averaged in the Fourier transform
ased on Eq. �27�. In the following we refer to the
cheme associated with the grid configuration in Fig.
�a� as scheme 1 and that in Fig. 1�b� is referred to as
cheme 2. As shown in Fig. 7, accuracy is similar for
hese two FDTD schemes, although scheme 2 gives
arger errors near the backscattering directions.

Figure 8 is the same as Fig. 7, except for a size
arameter of x � 10. For this size parameter, 5872
teps of the time-marching iterations are carried out
o obtain the near-field in the frequency domain.
he overall performances of these two schemes are
uite similar. However, scheme 1 is more accurate
or the phase–function calculations for scattering an-
les near 180°, whereas scheme 2 is slightly better
ear 150°.
It is quite challenging to accurately determine the

ptical properties of a dielectric particle having a
arge refractive index, as articulated by Sun and Fu11
ho applied the FDTD technique to cases with re-
ractive indices as large as �7.1499 
 i2.914�. They
howed that an interpolation involving the electric
isplacement is necessary in the case in which the
efractive index is large. In this study we calculate
he electric field components, say Ez, by directly av-
raging the four Ez values at cell edges when scheme
is used. For scheme 2, an electric field component,

ay Ez, is given by Eq. �20�. Figure 9 shows the
hase functions calculated from the two schemes.
he complex refractive index used in the calculation

s 8.2252 
 i1.6808, the refractive index of water �at
temperature of 300 K� at a microwave wavelength

f 3.2 cm. Because the refractive index is large in
his case, a fine grid resolution ����s � 165� is nec-
ssary to resolve the sharp gradient of the near-field
nside the particle. For the results computed from
oth schemes, the total time-marching iterations re-
uired are 7500 steps. For scheme 1, the relative
rror is of the order of 5%; the maximum error occurs
or backscattering. The error pattern for scheme 2

ig. 7. Phase functions computed by use of the two grid configu-
ations shown in Figs. 1�a� and 1�b�. Also shown are the relative
rrors in comparison with Lorenz–Mie theory. The complex re-
ractive index for the scattering particle is m � 1.5015 
 i0.067.
10 August 2004 � Vol. 43, No. 23 � APPLIED OPTICS 4619
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s quite similar to that for scheme 1 although its error
s larger in the backscattering directions. Evi-
ently, the performance of schemes 1 and 2 are quite
imilar although different averaging methods are
sed to evaluate the permittivity at the locations
here the dielectric properties of the media are not

ontinuous.
Figure 10 shows the phase functions calculated

rom the two FDTD schemes for cubic particles that
re assumed to be randomly oriented in space. Also
hown in Fig. 10 are the relative errors that are de-
ned as �solution�scheme1� � solution�scheme2��
olution�scheme1�	. Following Chamaillard et al.,24

he refractive index of sea-salt aerosols �1.5 
 i10�8�
t a wavelength of 0.55 �m is used here. As illus-
rated from the scanning electron photograph, the
hape of sea-salt aerosols can be cubic.24 Because
here is no exact reference phase function for this
ase, we are unable to identify whether scheme 1 or
cheme 2 is more accurate; however, we can compare
he differences between the two. From Fig. 10, the
ifferences between the two schemes, in the phase-
unction calculation, are of the order of a few percent

Fig. 8. Same as Fig. 7, except for a size parameter of x � 10.
620 APPLIED OPTICS � Vol. 43, No. 23 � 10 August 2004
ith larger differences occurring in the backscatter-
ng directions.

As a new application of the FDTD method, we cal-
ulated the scattering phase matrix of bullet-rosette
ce crystals that are assumed to be randomly oriented
n space. These ice crystals have various branches
nd are often observed in ice clouds.25,26 The single-
cattering properties of these types of ice crystal are
undamental to radiative transfer calculations and
emote sensing applications involving cirrus clouds.
he geometric-optics method has been employed by
aquinta et al.25 to investigate the phase functions of
ultibranched bullet rosettes. The scattering prop-

rties of bullet rosettes with four and six branches
ave also been studied by Yang and Liou using the
DTD and geometric-optics methods.27,28 In this
tudy we further investigate the effect of multibranch
ullet rosettes on the scattering and absorption prop-
rties of these ice crystals. Figure 11 shows the
ullet-rosette geometries with 1, 3, 4, 5, 6, 8, 9, 10,
nd 12 branches. For simplicity in numerical com-
utation, we assume that all the branches are iden-
ical. The tip of an individual bullet element is one

ig. 9. Comparison of the two FDTD schemes for a case with a
arge refractive index �m � 8.2252 
 i1.6808�.
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fth of the total length of the element. The angle
etween the pyramidal faces of a bullet element and
ts axis is 26.5°. In the present light-scattering com-
utation, the bullet-rosette ice crystals are assumed
o be randomly oriented in space. Note that the tips
f the bullet geometry defined in this study differ
rom those reported by Iaquinta et al.25

Figure 12 shows the phase functions of bullet-
osette ice crystals with size parameters of x � 5 and
0, where x � 2�D�� and D is the length of an indi-
idual bullet element. The FDTD scheme associ-
ted with the grid configuration in Fig. 1�a� is used for
his calculation. The wavelength for the results
hown in Fig. 12 is 11 �m and the corresponding
efractive index is �1.0925 
 i0.248�. For compari-
on, we also show the phase functions of circumscrib-
ng spheres, i.e., the spheres with the same
imensions as the bullet rosettes. In addition, we
resent the phase functions of the ice spheres that
ave the same volumes as the bullet rosettes with 12
ranches. Note that the size parameters of the
quivalent-volume spheres are 2.523 and 5.046 for
he results shown in the left and right panels of Fig.
2, respectively. The left panel of Fig. 12 shows the
ase for x � 5. Evidently, the phase-function values

ig. 12. Phase functions of bullet-rosette ice crystals with 1–12
ranches. The wavelength is 11 �m. The size parameter for the
article is defined as x � 5, where x � 2�D�� and D is the length
f a bullet element. The complex refractive index for the scatter-
ng particle is m � 1.0925 
 i0.248. The term Lorenz–Mie 1
efers to the results for the spheres that have the same volume as
he bullet-rosette ice crystals with 12 branches, whereas the term
orenz–Mie 2 refers to the results for the spheres that have the
ame diameters as the bullet-rosette ice crystals.
ig. 10. Comparison of the two FDTD schemes for light-
cattering computations involving cubic particles. Note that the
olid and dotted curves in the upper panels are essentially over-
apped. The refractive index of sea-salt aerosols, m � 1.5 
 i10�8,
ig. 11. Morphological geometry of bullet-rosette ice crystals de-
ned for scattering calculations.
10 August 2004 � Vol. 43, No. 23 � APPLIED OPTICS 4621
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ear the forward-scattering direction increases with
he number of bullet branches because the particle
olume is proportional to the branch number. An
nteresting feature to note is that the scattering min-
ma of the phase function in the side-scattering di-
ection decreases with an increase in the branch
umber and shifts toward larger scattering angles.
he overall phase-function pattern for the circum-
cribing spheres differ substantially from those for
ullet-rosette ice crystals. In particular, two scat-
ering maxima can be seen in the spherical case,
hich are absent in the case for bullet rosettes. For

he equivalent-volume sphere, the overall phase-
unction pattern is similar to those for the nonspheri-
al particles, but detailed differences are still
oticeable. The right panel of Fig. 12 is the case of
� 10. In this case, we also note that the number of
ullet branches has a significant effect on the phase-
unction pattern. For bullet rosettes with 8, 9, 10,
nd 12 branches, there are pronounced scattering
axima in the side-scattering direction. As can be

een for the case of x � 5, the phase functions for the
pheres in the right panel of Fig. 12 are also quite
ifferent from those of bullet rosettes. It is clear
rom Fig. 12 that an equivalent substitute in the
hase-function calculation does not exist for complex
article geometries. Chou et al.29 show that the
cattering effect of cloud particles are nonnegligible
ven in the IR spectral region. Figure 12 illustrates
hat bullet-rosette ice crystals have much stronger
ide scattering ��120°� and backscattering. These
cattering features could have implications in atmo-
pheric radiative transfer computations involving cir-
us clouds.

Table 1 lists the extinction efficiency, single-
cattering albedo, and asymmetry factor associated
ith the phase functions shown in Fig. 12. We note

hat the values of these three quantities are mono-
onically increasing with increasing branch number.

Figures 13 and 14 show the nonzero elements of
he scattering phase matrix at a wavelength of 0.66
m for bullet rosettes with 1, 6, and 12 branches for
ize parameters x � 5 and 10, respectively. The
omplex refractive index of ice for this wavelength is
.3078 
 i1.66 � 10�8 based on the data compiled by

Table 1. Extinction Efficiency �Qe�, Single-Scattering Albedo ��̃�, and
Phase Function

Branches

x � 5

Qe �̃

1 0.5723 0.0758
3 0.5450 0.0902
4 0.5671 0.1004
5 0.5855 0.1088
6 0.6359 0.1224
8 0.6431 0.1380
9 0.6318 0.1417

10 0.6638 0.1529
12 0.6957 0.1667

ax is the size parameter defined as x � 2�D��.
622 APPLIED OPTICS � Vol. 43, No. 23 � 10 August 2004
arren.30 The nonzero phase-matrix elements of
he spheres with the same volume as the 12-branched
ullet rosettes are also shown. The nonsphericity
ffect on the phase-matrix elements is evident from
hese two diagrams. It has been suggested that P22�
11 is indicative of nonsphericity19,31 because this ra-
io is unity for a sphere. From Figs. 13 and 14, the
onsphericity in terms of the deviation of P22�P11
rom unity becomes more significant with increasing
ranch number. The other phase-matrix elements
or bullet rosettes are also quite different from those
or spheres. We note that the elements P12�P11,
33�P11, P43�P11, and P44�P11 are not particularly

ig. 13. Nonzero phase-matrix elements for the bullet-rosette ice
rystals with 1, 6, and 12 elements for a wavelength of 0.66 �m at
hich the refractive index of ice is 1.3078 
 i1.66 � 10�8. The

ize parameter is x � 5. The phase-matrix elements of a sphere
hat has the same volume as the 12-branched bullet rosettes are
lso shown.

metry Factor �g� for Bullet-Rosette Ice Crystals Associated with the
wn in Fig. 12a

x � 10

Qe �̃ g

2 0.9535 0.2001 0.6283
6 0.9429 0.2096 0.6712
4 0.9632 0.2189 0.7023
3 0.9750 0.2285 0.7200
9 1.0101 0.2391 0.7475
9 1.0542 0.2562 0.7881
1 1.0486 0.2631 0.7987
4 1.0734 0.2724 0.8111
4 1.1071 0.2863 0.8309
Asym
s Sho

g

0.360
0.431
0.501
0.544
0.589
0.648
0.668
0.696
0.735
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ensitive to the number of branches in bullet rosettes.
inally, we point out that for pure backscattering, the
alculated phase matrices presented herein satisfy
he reciprocity relation,2 namely,

1 � P22�P11 � P44�P11 � P33�P11 . (30)

his result is quite general and holds for a particle in
fixed orientation or in random orientations.

. Conclusions

n the Cartesian FDTD grid configuration that was
riginally reported by Yee in 1966, the electric field
omponents were defined at cell edges, whereas the
agnetic field components were defined at cell-face

enters. This configuration automatically satisfies
he electromagnetic boundary condition if a scatter-
ng dielectric particle is represented by a number of
omogeneous cubic cells in the FDTD computation.
lternatively, the electric field components can be
efined at the center of cell faces, whereas the mag-
etic field components can be specified at cell edges.
hen the permittivity values of adjacent cells are

ifferent, they are not defined at cell edges or face
enters in both grid configurations. In this study we
uggest two numerical schemes to overcome the dis-
ontinuity of the permittivities for nonidentical adja-
ent cells on the basis of the electromagnetic
oundary conditions. Furthermore, we show that, if
he electric field components are defined at the cen-
ers of cell faces, the electric field components in-
olved in the finite-difference analog of Maxwell’s
quations are the averages of the electric field values
t two different sides of the cell interface. The
resent FDTD schemes associated with the grid con-

Fig. 14. Same as Fig. 13, except for x � 10.
gurations in Figs. 1�a� and 1�b� have been applied to
ight scattering by dielectric spheres with a moderate
nd a large refractive index. In general, the perfor-
ance of these two FDTD schemes is similar. The

mportant point to note is that, from first principles,
n average of permittivity is inevitable in the Carte-
ian FDTD scheme regardless of the specific grid con-
guration.
We also find that the field values in the frequency

omain, which are derived from the discrete Fourier-
ransform technique, converge extremely slowly. A
imple yet efficient empirical approach has been de-
eloped to accelerate the convergence rate. In a case
tudy involving the refractive index for ice at a wave-
ength of 11 �m, the errors associated with the mod-
fied Fourier-transform method are significantly
educed, as compared with those derived from the
onventional Fourier transform.

Finally, we investigate the effect of multiple
ranches of bullet-rosette ice crystals on the single-
cattering properties of these ice crystals by using the
DTD method. Numerical results illustrate that
heir scattering properties are dependent on the
umber of bullet elements. We also show that the
pproximation in which equivalent spheres are used
o simulate complex bullet rosettes leads to signifi-
ant errors in the phase-function calculation.
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