Remote sensing of cirrus cloud vertical size profile using MODIS data

Xingjuan Wang, K. N. Liou, Steve S. C. Ou, G. G. Mace, and M. Deng

Received 20 October 2008; revised 10 February 2009; accepted 27 February 2009; published 6 May 2009.

This paper describes an algorithm for inferring cirrus cloud top and cloud base effective particle sizes and cloud optical thickness from the Moderate Resolution Imaging Spectroradiometer (MODIS) 0.645, 1.64 and 2.13, and 3.75 μm band reflectances/radiances. This approach uses a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm band, above-cloud water vapor absorption, and 3.75 μm thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to the instrument noise and the perturbation of input parameters. The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program’s southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective particle sizes was evaluated by comparison with MODIS cloud products and qualitatively good correlations were obtained for all three cases, indicating that the performance of the vertical sizing algorithm is comparable with the MODIS retrieval program. Retrieved cloud top and cloud base ice crystal effective sizes were also compared with those derived from the collocated ground-based millimeter wavelength cloud radar for the first case and from the Cloud Profiling Radar onboard CloudSat for the other two cases. Differences between retrieved and radar-derived cloud properties are discussed in light of assumptions made in the collocation process and limitations in radar remote sensing characteristics.

1. Introduction

Cirrus clouds are frequently in nature and display substantial horizontal variability [Minnis et al., 1993; Mishchenko et al., 1996]. On the basis of the time series of backscattering coefficients derived from lidar and radar returns [Sassen, 1991; Spinhrine and Hart, 1990; Mace et al., 2002], cirrus clouds also show significant vertical inhomogeneity in terms of extinction coefficient and ice water content (IWC), and are strongly sensitive to vertical temperature distribution [Ou and Liou, 1995]. Miloshevich and Heymsfield [1997] and Heymsfield and Iaquinta [2000] analyzed in situ balloon-borne ice crystal replicator data, and showed that the variation of ice crystal size and shape distributions within midlatitude cirrus clouds tend to be stratified: small nonspherical or quasi-spherical ice crystals are predominant in the upper layer, pristine single ice crystals and bullet rosettes with well defined hexagonal shapes are prominent in the middle layer, and the bottom layer mainly contains larger but irregularly shaped aggregates formed by collision and sublimation processes of ice crystals. Moreover, the mean cloud particle size increases from cloud top downward, but sharply decreases to near-zero value at cloud base.

The inhomogeneity of cirrus cloud composition has been shown to cause the spatial variation of atmospheric radiative heating/cooling rates. Gu and Liou [2001, 2006] and Gu et al. [2003] used the Fu-Liou radiative transfer model [Fu and Liou, 1993; Fu, 1996] incorporated into the University of California at Los Angeles general circulation model to demonstrate that the vertical profile of ice crystal mean effective size (D_e) drives the radiative heating/cooling rate profiles within cirrus clouds and surrounding cloudless areas, and concluded that this radiative effect due to the inhomogeneous cirrus cloud properties must be considered in the study of radiation-climate feedback. Obviously, a comprehensive knowledge of the spatial distribution of D_e will improve the representation of cirrus clouds in weather and climate models.

Limited vertical profiles of ice crystal size and shape distributions have been derived from in situ observations [Miloshevich and Heymsfield, 1997; Kinne et al., 1997; G. McFarquhar et al., Horizontal and vertical profiles of in situ cloud properties measured during tropical warm pool international cloud experiment, paper presented at Sixteenth Atmospheric Radiation Measurement Science Team Meeting, Dep. of Energy, Atmos. Radiat. Meas. Program, Albuquerque,
New Mexico, 2006]. Retrieval techniques for the inference of the vertical profile of cloud microphysics and optical parameters from ground-based lidar and radar measurements have also been developed [Sassen, 1991; Spinhirne and Hart, 1990; Matrosov et al., 1994; Mace et al., 2002; Comstock et al., 2002], but the development of retrieval methodology based on satellite imager data is still in its embryonic stage. Liou et al. [2002] combined collocated ground-based lidar/radar measurements and Advanced Very High Resolution Radiometers (AVHRR) observations over the Atmospheric Radiation Measurement (ARM) Program’s Southern Great Plain (SGP) site to construct three-dimensional (3-D) cirrus cloud parameter fields. Although this approach is capable of producing detailed 3-D cloud maps, its applicability is restricted both in time and space because of the limited access of collocated satellite and radar/lidar observations. By using a generalized parameterization of the vertical \(D_c \) profile involving temperature from sounding/analysis, Liou et al. [2006] further developed a satellite remote sensing technique to produce 3-D IWC and \(D_c \) fields of cirrus clouds for global application.

[5] Recently, the addition of CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder Observations (CALIPSO) to the NASA’s A-Train satellite constellation in 2006 has enabled the global mapping of cross sections of cirrus cloud properties, but the geographical coverage of the Cloud Profiling Radar (CPR) onboard CloudSat and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard CALIPSO is still limited to the suborbital track. Because of the wide cross-track scanning swath (\(\sim 1300 \) km), and the excellent spatial resolution (\(\sim 0.5 \) km for visible bands and 1 km for the rest of bands) of the Moderate Resolution Imaging Spectroradiometer (MODIS), a good alternative for global cirrus cloud vertical sizing over much larger areas is to develop a retrieval scheme to infer cirrus cloud vertical size profiles based on differences in the spectral reflection/absorption characteristics of MODIS near-infrared (IR) bands.

[6] The current MODIS cloud retrieval algorithm simultaneously retrieves the total cloud optical thickness (\(\tau_c \)) and a vertically averaged mean effective radius (\(r_e \)) using observed solar reflectances/radiances at one visible and three near-IR window bands [King et al., 1997], assuming a plane-parallel cloud geometry with a vertically homogeneous composition. It is based on the physical principle that reflectances at nonabsorbing (for cloud particles) visible and absorbing near-IR wavelengths primarily depend on \(\tau_c \) and \(r_e \), respectively. Although this approach is straightforward and elegant, it cannot resolve the vertical structure of cirrus clouds because of the assumption of vertically homogeneous cloud composition. Consequently, for any cloudy pixel, the \(r_e \) values inferred from individual near-IR bands are different from each other [Baum et al., 2000]. Platnick [2000] explained these differences in retrieved water cloud \(r_e \) by theorizing that the difference in the maximum photon penetration levels for individual near-IR bands causes the reflectance of stronger-absorbing bands to be primarily sensitive to cloud top properties, and the reflectance of weaker-absorbing bands to carry more information about the cloud’s deeper structure. On the basis of this theory, Chang and Li [2002] used three MODIS near-IR band reflectances to infer the vertically linear profile of \(r_e \) in low-level nonprecipitating stratus clouds. They assessed the performance of the retrieval method by comparison with in situ observation of microphysical profiles, and showed that the retrieved linear \(r_e \) profiles are capable of capturing the vertical trend of variation in \(r_e \). It appears that we can utilize the information content of MODIS visible and near-IR band reflectances/radiances to infer the vertical profile of ice crystal \(D_c \) on the pixel level, on the basis of the unique characteristics of the difference in cloud absorption strength among these bands.

[7] This paper describes a cirrus cloud vertical sizing algorithm for inferring cloud top and cloud base effective sizes (\(D_t, D_b \)) and \(\tau_c \) from the MODIS 0.645, 1.64, 2.13 and 3.75 \(\mu \)m band reflectances/radiances, using a successive minimization method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 \(\mu \)m band, above-cloud water vapor absorption, and 3.75 \(\mu \)m thermal emission. The algorithmic accuracy and limitation of the retrieval method were investigated by synthetic retrievals subject to instrument noise and perturbation of input parameters.

[8] The retrieval algorithm was applied to three MODIS cirrus scenes over the Atmospheric Radiation Measurement Program’s Southern Great Plain site, north central China, and northeast Asia. The reliability of retrieved cloud optical thicknesses and mean effective sizes was evaluated by comparisons with MODIS cloud products for all three cases, and retrieved cloud top and cloud base ice crystal effective sizes were compared with those derived from the ground-based millimeter wavelength cloud radar (MMCR) data for the first case, and from CPR/CloudSat data for the other two cases.

[9] The arrangement of the paper is as follows. Section 2 describes the retrieval methodology and forward radiative transfer modeling subject to various atmospheric and surface correction schemes. Section 3 contains description of error budget studies by performing synthetic retrievals and discussions of the algorithmic errors and retrieval errors caused by uncertainties in input parameters and instrument noises. Section 4 presents results of application of the vertical sizing algorithm to the three selected midlatitude MODIS scenes containing widespread stratiform cirrus clouds, their comparison with MODIS cloud products, and the assessment of retrieval performance using data from ground-based MMCR and space-based CloudSat/CPR. Last, a summary is given in section 5.

2. Theoretical Description of the Retrieval Approach

2.1. Retrieval Algorithm

[10] We developed a cirrus cloud vertical sizing algorithm to simultaneously retrieve \(D_t, D_b \) and \(\tau_c \), from the reflectance/radiance of MODIS visible 0.645 \(\mu \)m and near-IR 1.64, 2.13 and 3.75 \(\mu \)m bands, where \(D_t \) and \(D_b \) are defined as

\[
D_{t,b} = \frac{(3/2)}{\int_{L_{\text{min}}}^{L_{\text{max}}} \frac{V_h(L) n_{i,b}(h,L) \, dL}{\int_{L_{\text{min}}}^{L_{\text{max}}} A_h(L) n_{i,b}(h,L) \, dL}}.
\]
A_\text{d}(L) and V_\text{d}(L) are the projected area and volume of the particle with habit index \(h \) and maximum dimension \(L \), respectively, and \(n_h(h, L) \) and \(n_v(h, L) \) are ice crystal size and shape distributions at cloud top and base, respectively.

[11] The retrieval algorithm uses a novel look-up table approach for the simultaneous retrieval of \(D_b \), \(D_h \), and \(\tau_c \). To illustrate the relative contribution from different layers within the cloud to the total reflectance/radiance at the top of atmosphere, Figure 1 shows weighting functions for all three near-IR bands of a model cirrus cloud with \(\tau_c = 4 \) and \(D_c = 40 \, \mu m \). These weighting functions are defined as \([dR(\tau)/d\tau]/R(\tau_0) \), and were obtained on the basis of the maximum photon penetration principle [Platnick, 2000]. Because of the stronger ice absorption in the 3.75 \(\mu m \) band, its weighting function peaks at a higher level than other weighting functions, implying that the 3.75 \(\mu m \) reflectance/radiance is more sensitive to cloud top properties. On the other hand, the weighting functions for 1.64 and 2.13 \(\mu m \) bands are almost identical, forming practically only one piece of information. Therefore, in the retrieval algorithm, the vertical profile of \(D_c \) is constrained as a linear function of \(\tau \), because there are essentially only two independent pieces of information available, which can only be used to retrieve the two sizes \(D_b \) and \(D_h \).

[12] The retrieval algorithm follows the numerical iterative approach to search for the converged solution of \(D_b \), \(D_h \), and \(\tau_c \) that are associated with minimal differences between simulated and observed reflectance/radiance for all four bands. Figure 2 shows the flowchart for retrieving \(D_b \), \(D_h \), and \(\tau_c \). First of all, the adding-doubling radiative transfer model is used to build a library of cloud-only radiative parameters for all combinations of reference values of \(D_b \), \(D_h \), and \(\tau_c \). For each pixel identified as cirrus cloud, reflectance/radiance at the four bands and viewing geometry data are extracted from MODIS L1B products. Required input parameters, including cloud top temperature \(T_c \), cloud top pressure \(P_c \), surface albedos \(A_0 \), and surface temperature \(T_s \) are extracted from MODIS data products. A comprehensive set of cloud-only reflectances/radiances for combinations of reference \(D_i \), \(D_b \), and \(\tau_c \) are first computed and tabulated. Various pixel-dependent correction schemes are then applied and a look-up library of total reflectance/radiance for this particular pixel is built for the retrieval of cloud parameters for a cloudy pixel.

[13] The numerical iterative search program uses a successive minimization method. It starts by prescribing initial values of \(D_i \) and \(D_{im} \), then it retrieves and updates \(\tau_i \) on the basis of the minimization of the 0.645 \(\mu m \) reflectance residual, and retrieves and updates \(D_i \) by minimizing the 3.75 \(\mu m \) radiance residual assuming updated value of \(\tau_i \) and \(D_{im} \), and finally retrieves \(D_{im} \) by minimizing 1.64 and/or 2.13 \(\mu m \) reflectance residual assuming updated \(\tau_i \) and \(D_i \) values. If all of the most updated \(D_{im} \), \(D_i \), and \(\tau_c \) values differ from their respective values from the previous iteration by less than prescribed thresholds, or the number of iterative steps reaches a prescribed limit, the numerical procedure terminates, and the last set of \(D_{im} \), \(D_i \), and \(\tau_c \) values is the retrieval solution. Otherwise, the iteration continues until they converge. The iteration is quite effective and usually takes only three to four steps to reach convergence.

2.2. Formulation and Modeling of Radiative Transfer

[14] For any given cirrus cloudy pixel identified by the MODIS Cloud/Phase Mask programs, the retrieval algorithm uses a look-up library of reflectance/radiance at the four spectral bands to retrieve \(D_b \), \(D_h \), and \(\tau_c \). The generation of the look-up library is based on the ice crystal size and habit distribution models developed by Baum et al. [2005a]. These models were based on 1100 in situ measurements of ice crystal size and habit distributions obtained during several cirrus cloud field campaigns, including FIRE-I, FIRE-II, ARM Cloud IOP, CEPEX, and CRYSTAL-FACE, and were the most comprehensive size and habit distribution models currently available for application to the satellite remote sensing of cirrus clouds. Therefore, we expect that these models should represent ice crystal size and habit distributions for a variety of cirrus clouds observed by MODIS. Each ice crystal size distribution was fitted to the Gamma function, and parameters of the Gamma function were obtained by minimizing the difference between computed and measured IWC and median mass diameter. Both reference \(D_b \) and \(D_h \) vary from 10 to 180 \(\mu m \) with an interval of 10 \(\mu m \). A composite ice crystal size distribution was obtained for each size bin based on fitted Gamma function parameters.

[15] The prescribed ice crystal habit distribution model varies with the maximum dimension \(L \). For \(L < 60 \, \mu m \), these small particles are composed of 100% droxtals. For \(60 < L < 1000 \, \mu m \), a mixture of 15% 3-D bullet rosettes, 50% solid columns, and 35% plates is prescribed. For \(1000 < L < 2500 \, \mu m \), a mixture of 45% hollow columns, 45% solid columns, and 10% aggregates is prescribed. Finally, for \(2500 < L < 9500 \, \mu m \), these large particles are composed of 97% 3-D bullet rosettes and 3% aggregates.

[16] The bulk single-scattering properties associated with each reference \(D_i \) and \(D_{im} \) were based on archived single-scattering properties for individual wavelength, \(L \), and habit, which were computed by using the Finite difference Time Domain method and modified Geometric Optics method [Yang et al., 2000; Baum et al., 2005b]. The prescribed reference \(\tau_c \) values are 0, 0.5, 1, 2, 4, 8, 16, and 32. Thus, for each spectral band and for a particular set of sun sensor

Figure 1. Weighting functions are calculated at MODIS 1.64, 2.13, and 3.75 \(\mu m \) bands for a cirrus cloud with \(\tau_c = 40 \, \mu m \) and \(\tau_c = 4 \).
geometry, the dimension of the look-up library is $18(D_t) \times 18(D_b) \times 8(\tau_c)$. For potential global application, the look-up library will have to be expanded to include the functional dependence of reflectances on the combination of reference solar and viewing zenith angles and relative azimuthal angle.

[17] We used an adding-doubling radiative transfer code specifically designed for simulating the radiative transfer in cirrus clouds. The adding-doubling method has been recognized as a very powerful tool for multiple-scattering calculations, particularly with reference to remote sensing applications [Liou, 2002]. For each combination of D_t, D_b, and τ_c, the adding-doubling radiative transfer model was used to calculate cloud-only radiative parameters, which include the bidirectional transmission functions (T, T^*), the reflection functions (R, R^*), the transmissions (γ, γ^*), the reflections (r, r^*), and the spherical albedo (A^*). The latter three quantities are determined on the basis of the following formulae:

$$\gamma^*(\mu) = (1/\pi) \int_0^{2\pi} \int_0^1 T^*(\mu', \mu, \phi - \phi') \mu' d\mu' d\phi' + e^{-\tau_c \mu}, \quad (2)$$

$$r^*(\mu) = (1/\pi) \int_0^{2\pi} \int_0^1 R^*(\mu', \mu, \phi - \phi') \mu' d\mu' d\phi', \quad (3)$$

and

$$A^* = 2 \int_0^1 r^*(\mu) d\mu. \quad (4)$$

Figure 2. Flowchart of the retrieval algorithm.
where μ and μ' are cosines of zenith angles for the outgoing and incoming directions, respectively. The superscript asterisk denotes the property related to the incident radiation at cloud base. The μ values are discretized into 8 Radau quadrature nodes within the interval $(0,1]$, and the relative azimuthal angle between the sun and the sensor $(\Delta \phi)$ ranges between 0° to 180° with an interval of 30°. For prescribed sun sensor geometry, simulated cloud-only properties (T, T^*, R, R^*, r, r^*, γ and γ^*) are calculated through linear interpolation between reference directions. Spherical albedo (τ^*) is not affected by viewing geometry and does not require interpolation.

The observed total reflectance consists of cloud-only reflectance and the multiple reflection between surface and clouds [Nakajima and Nakajima, 1995]

$$R(\mu, \mu_0, \Delta \phi) = R_c(\mu, \mu_0, \Delta \phi) + \left[A_k/\left(1 - r^* A_k\right) \right] \gamma^*(\mu) \gamma(\mu_0).$$

(5)

In this study, surface albedo (A_k) data for the 0.645, 1.64 and 2.13 μm bands are compiled from the MODIS 16 day L3 1 km Global Albedo data product MOD43B3, and the 3.75 μm albedo is estimated from the MODIS 8 day L3 global surface temperature/emissivity data product MOD11C2. Thus, variation in the surface albedo has been accounted for, and retrieval errors due to uncertainties in the surface albedo have been minimized.

2.3. Correction for Above-Cloud Water Vapor Absorption Effect

Water vapor absorption above the cloud is accounted for by assuming the atmosphere above cloud is purely absorptive [Platnick et al., 2003]. The water vapor corrected reflectance R_w is approximated by the following equation:

$$R_w = RT_w(\mu)T_0(\mu_0),$$

(6)

where $T_0(\mu_0)$ and $T_0(\mu)$ are transmittances in the solar incident and satellite viewing directions, respectively. The transmittance $T_0(\mu)$ is expressed as

$$T_0(\mu) = e^{-\tau_w(P_c)/\mu},$$

(7)

where $\tau_w(P_c)$ is the water vapor absorption optical thickness for air mass above the cloud top pressure P_c. The optical thickness $\tau_w(P_c)$ is calculated from the correlated k distribution method by assuming the water vapor profile in the U.S. Standard Atmosphere. A library of precomputed $\tau_w(P_c)$ is constructed.

2.4. Correction for Rayleigh Scattering Effect

The Rayleigh scattering effect is more prominent in the 0.645 μm band than in the other three near-IR bands. Wang and King [1997] showed that neglecting Rayleigh scattering correction can cause a significant error in retrieved τ_r for large solar and/or viewing zenith angles. To account for the Rayleigh scattering above clouds, we adopted their Rayleigh-scattering parameterization scheme. The corrected bidirectional reflectance, $R_{0.645}$ is expressed as

$$R_{0.645}(\mu, \mu_0, \Delta \phi) \cong \left[\tau_P(\mu, \mu_0, \Delta \phi) \right]^{-\mu_0}$$

$$+ \left[\tau_r(\mu, \mu_0, \Delta \phi) e^{-\tau_r(\mu, \mu_0, \Delta \phi)/\mu} \right]^{-\mu_0}$$

$$+ \left[\tau_r(\mu, \mu_0, \Delta \phi) e^{-\tau_r(\mu, \mu_0, \Delta \phi)/\mu} \right]^{-\mu_0},$$

(8)

where P' is the Rayleigh scattering phase function, τ_r is the Rayleigh optical thickness and can be calculated from P_c [Liou, 2002]. The first and second terms on the right hand side account for the direct Rayleigh scattering without cloud reflection; and for the reflection of direct solar radiation by the cloud; respectively. The third and fourth terms are for the reflection of the direct solar radiation by the cloud subject to single scattering in the air; and for single scattering in the air subject to the reflection from the cloud, respectively.

2.5. Correction for Thermal Emission Contribution in the 3.75 μm Band

For the 3.75 μm band, the thermal emission from both earth surface and cloud is a major component of the total measured radiance. The total radiance, $I_{3.75}$, can be approximated by the following equation [Nakajima and Nakajima, 1995]:

$$I_{3.75}(\mu, \mu_0, \Delta \phi) = R_w(\mu, \mu_0, \Delta \phi)(\mu_0 F_0/\pi)$$

$$+ T_0(\mu) \left\{ \gamma^*(\mu) \left[1 - A_k \right] / \left(1 - r^* A_k\right) \right\} B(T_0)$$

$$+ \left[1 - \gamma(\mu) - r(\mu) \right] B(T_0),$$

(9)

where B is the Planck function, F_0 the extraterrestrial solar flux at 3.75 μm band, and T_0 and T_w are cloud and surface temperatures, respectively. The first term on the right-hand side represents the reflected solar radiance, corrected for multiple reflection and water vapor absorption. The second term denotes the contribution from surface and cloud emissions attenuated by above-cloud water vapor absorption $T_w(\mu)$. For each cirrus cloudy pixel, the above corrections are applied to all combinations of reference D, D_0 and τ_e, to create a look-up library of reflectance/radiance.

3. Error Budget Studies

3.1. Algorithmic Errors

To assess the accuracy and limitations of the retrieval approach, we perform synthetic retrievals, using simulated reflectance/radiance in lieu of measurement data. For each of the three parameters, D, D_0, and τ_e, we prescribed a set of intermediate values in between their neighboring library reference points. There are 17 intermediate D and D_0 values ranging from 15 to 175 μm with an interval of 10 μm, and the following seven intermediate τ_e values: 0.25, 0.75, 1.5, 3, 6, 12, and 24. For each of the 2023 (= $17 \times 17 \times 7$) combinations of the intermediate, D, D_0, and τ_e values, the simulated reflectance/radiance is determined from the adding-doubling radiative transfer program, using interpolated...
single-scattering properties. Retrieval errors are obtained as differences between retrieved and input (truth) cloud parameters. Since all reflectance/radiance values are from simulations based on unperturbed input parameters with zero instrument noise, the retrieval errors produced indicate the accuracy of the numerical iteration process. The conditions under which the algorithm is able to perform well are thus identified. We found that for \(2 < \tau_c < 15 \) and \(D_t < 80 \mu m \), the retrieval results are reasonably accurate. The root-mean-square (rms) error of retrieved \(D_b \) and \(\tau_c \) are around \(2.4 \mu m \), \(2.8 \mu m \) and \(0.004 \), respectively. These error magnitudes for particle sizes and optical thicknesses are comparable with error estimates for inferred \(\tau_c \) and \(D_t \) from MODIS cloud retrieval algorithm [King et al., 1997].

For \(D_t > 80 \mu m \), the accuracy of the retrieval algorithm is limited by the low sensitivity of near-IR reflectance to \(D_t \) and \(D_b \). Figure 3 displays the correlation of a \(1.64 \mu m \) reflectance and \(3.75 \mu m \) radiance for \(\tau_c = 8 \), selected combination of \(D_t \) and \(D_b \), and a prescribed viewing geometry (\(\mu = 1, \mu_0 = 0.82, \Delta \phi = 180^\circ \)). Solid and dashed curves denote reflectance/radiance for constant \(D_t \) and \(D_b \), respectively. The constant \(D_t \) and constant \(D_b \) curves are distinctly separated for \(D_t < 80 \mu m \), indicating a good sensitivity of reflectance/radiance to \(D_t \) and \(D_b \), and small retrieval errors due to uncertainties in observed reflectance/radiance (\(\Delta D_t \sim 2.6 \mu m \), \(\Delta D_b \sim 3.5 \mu m \), see Table 1). However, for \(D_t > 80 \mu m \), the constant \(D_t \) and constant \(D_b \) curves are close to each other, implying that a small perturbation of reflectance/radiance can cause an unacceptable error in both retrieved \(D_t \) and \(D_b \). We estimate that a 5% uncertainty in the \(1.64 \mu m \) reflectance can lead to errors of 5 to 20 \(\mu m \) and 20 \(\mu m/\min \) the retrieved \(D_t \) and \(D_b \), respectively.

3.2. Retrieval Sensitivity to Uncertainty in Input Parameters and Instrument Noise

[24] The accuracy of the retrieval depends on the accuracy of input parameters \(A_g, T_c, T_g \) and \(P_c \), and instrument noise of measured reflectance/radiance. To investigate the error budget due to uncertainties in input parameters along with noises in reflectance/radiance data, we carried out synthetic retrievals with perturbed input parameters and simulated reflectance/radiance. The perturbation of input parameters is based on the following error specifications in MODIS data products: \(\Delta T_g = \pm 1 \) K, \(\Delta P_c = \pm 50 \) mb, and \(\Delta T_c = \pm 5 \) K. For each band, \(\Delta A_g = \pm 10\% \), and the simulated reflectance/radiance is based on the design-specified signal-to-noise ratio. For each perturbation run, only a single input parameter or reflectance/radiance for a band is perturbed, while all other input parameters and reflectances/radiances are unperturbed. In this manner, we can identify major error sources for each retrieved cloud parameter. On the basis of results for the algorithmic error analysis, synthetic retrievals were carried out for \(D_t < 80 \mu m \) and \(2 < \tau_c < 15 \). The restriction on \(\tau_c \) is due to the fact that retrieval performance deteriorates for either \(\tau_c < 2 \) or \(\tau_c > 15 \). The retrieval is most effective for semitransparent cirrus clouds.

Table 1 summarizes the absolute and percentage RMS errors of retrieved \(D_b \) and \(\tau_c \) subject to various single-parameter perturbations. Most of the RMS errors are comparable with error budget estimates of \(\tau_c \) and \(D_t \) for the cloud optical property retrieval program using the solar channels of the Visible Infrared Imaging Radiometric Suites (VIIRS), which is to be onboard the next generation National Polar-Orbiting Environmental Satellite System (NPOESS) [Ou et al., 2003]. Retrievals of \(\tau_c \) are fairly accurate with the maximum RMS percentage errors around 3% associated with \(\Delta A_g(0.645 \mu m) = \pm 10\% \), indicating the accuracy of the visible band surface albedo drives the retrieval performance of \(\tau_c \). Retrievals of \(D_t \) and \(D_b \) are also reasonably accurate, with the largest errors around 10 and 14 \(\mu m \) associated with \(\Delta T_c = \pm 5 \) K, respectively. It is possible that with future

<table>
<thead>
<tr>
<th>Perturbed</th>
<th>rms ((\Delta \tau_c))</th>
<th>([(\Delta \tau_c/\tau_c) \times 100%])</th>
<th>rms ((\Delta D_t))</th>
<th>([(\Delta D_t/D_t) \times 100%])</th>
<th>rms ((\Delta D_b))</th>
<th>([(\Delta D_b/D_b) \times 100%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_c) (50 mb)</td>
<td>0.016</td>
<td>0.16</td>
<td>2.55</td>
<td>4.5</td>
<td>3.05</td>
<td>15.3</td>
</tr>
<tr>
<td>(T_c) (1 K)</td>
<td>0.007</td>
<td>0.12</td>
<td>3.58</td>
<td>8.6</td>
<td>4.87</td>
<td>21.1</td>
</tr>
<tr>
<td>(T_g) (5 K)</td>
<td>0.061</td>
<td>0.66</td>
<td>10.39</td>
<td>18.4</td>
<td>14.03</td>
<td>23.8</td>
</tr>
<tr>
<td>(A_{g1}) (10%)</td>
<td>0.138</td>
<td>3.20</td>
<td>4.13</td>
<td>9.1</td>
<td>5.06</td>
<td>19.4</td>
</tr>
<tr>
<td>(A_{g2}) (10%)</td>
<td>0.030</td>
<td>0.80</td>
<td>5.91</td>
<td>15.7</td>
<td>11.38</td>
<td>34.3</td>
</tr>
<tr>
<td>(A_{g3}) (10%)</td>
<td>0.018</td>
<td>0.49</td>
<td>3.87</td>
<td>10.0</td>
<td>7.38</td>
<td>24.3</td>
</tr>
<tr>
<td>(A_{g4}) (10%)</td>
<td>0.004</td>
<td>0.1</td>
<td>2.64</td>
<td>5.4</td>
<td>3.31</td>
<td>14.1</td>
</tr>
<tr>
<td>(R_b) (SNR = 128)</td>
<td>0.144</td>
<td>1.6</td>
<td>2.75</td>
<td>5.2</td>
<td>3.53</td>
<td>16.3</td>
</tr>
<tr>
<td>(R_b) (SNR = 275)</td>
<td>0.008</td>
<td>0.10</td>
<td>2.58</td>
<td>4.7</td>
<td>3.20</td>
<td>15.6</td>
</tr>
<tr>
<td>(R_b) (SNR = 110)</td>
<td>0.016</td>
<td>0.18</td>
<td>2.65</td>
<td>5.0</td>
<td>3.62</td>
<td>16.3</td>
</tr>
<tr>
<td>(R_b) (SNR = 200)</td>
<td>0.009</td>
<td>0.09</td>
<td>2.65</td>
<td>4.98</td>
<td>3.33</td>
<td>15.7</td>
</tr>
</tbody>
</table>

The definition of the notations are as follows: \(P_c \), cloud top pressure; \(T_c \), surface temperature; \(T_g \), cloud temperature; \(A_g \), surface albedo; \(R_b \), measured reflectance.
satellite sensors, such as VIIRS/NPOESS, the specified uncertainty for T_c could be further reduced. MODIS specified 5 K uncertainty in T_c is caused by the deficiency in the CO$_2$ slicing method that MODIS cloud top parameter algorithms adopted [Menzel et al., 2006]. MODIS T_c are often positively biased near cirrus cloud edge because of the effect of the 5 × 5 pixel aggregation, which might include clear pixels mis-typed as cloudy pixels, increasing the averaged cloudy radiance, and hence overestimating the cloud top pressure and temperature [Wong et al., 2007]. According to the new design specification of NPOESS/VIIRS, the uncertainty threshold requirement for T_c is 3 K, and has been met on the pixel level by the VIIRS cloud top temperature retrieval program (E. K. Wong and S. C. Ou, NPOESS/VIIRS cloud top temperature—Algorithm performance case study, paper presented at 4th Symposium on Future National Operational Environmental Satellites, American Meteorological Society, New Orleans, Louisiana, 2008). Given the smaller uncertainty in T_c based on VIIRS retrieval, errors in retrieved D_c and D_b can be reduced by half.

4. Retrieval Results and Validation

[26] This section presents results of the application of the retrieval algorithm to three MODIS cirrus cases, and of the assessment of retrievals using data sets from MMCR and CPR/CloudSat. The first scene over south central United States was observed by MODIS/Terra, and the quality of its retrieval results were evaluated by comparing with MODIS cloud products and properties derived from MMCR data. The second and third cirrus scenes over north central China and northeast Asia, respectively, were observed by the A Train’s MODIS/Aqua and CPR/CloudSat, and retrieval results are compared with MODIS and CPR data products.

[27] We have attempted to compare the retrieved D_c, D_b, and τ_c, and those parameters from CALIOP/CALIPSO cloud products for the last two cases. However, because of the nonabsorbing nature of the CALIOP operating laser wavelengths, there is no data product for cloud effective particle size, and we cannot use CALIOP data to verify our retrieved D_c and D_b. On the other hand, CALIOP data products do include extinction coefficient (β_e) profiles, which could be vertically integrated to produce τ_c, and could be used to verify retrieved τ_c. But for opaque clouds, because of the laser’s limited penetration, CALIOP τ_c tend to be much smaller than retrieved τ_c, and the resulting time series of τ_c tend to be insensitive to the horizontal inhomogeneity of clouds. Therefore, it is not adequate to use CALIOP τ_c to assess the retrieved τ_c.

4.1. ARM-SGP Site (6 March 2001 at 1736 UTC)

[28] On 6 March 2001 at 1736 UTC, MODIS/Terra over-passed the ARM-SGP Central Facility site (CF) at Lamont (36.62°N, 97.5°W) with excellent viewing zenith angle ($\theta = 1.3^\circ$). The MODIS true color composite image (Figure 4a) shows a large area of stratiform cirrus clouds over the south central United States. The operational MMCR at CF also observed a continuous layer of cirrus cloud between 6 and 11 km during the period from 0600 to 2200 UTC. For the purpose of assessing retrieval results by comparison with MODIS and MMCR cloud products, we selected a rectangular domain (51 × 51 pixels, denoted by the red rectangular box in Figure 4a) around CF, which is roughly located in the center of the rectangular box in Figure 4a. Cloud mask result indicates that pixels within the box are cloudy, and the cloud phase results as determined by the cloud phase mask program and extracted from the MOD06 cloud product [Menzel et al., 2006] show that these cloudy pixels are cirrus clouds. Cloud–top temperatures for cirrus pixels are lower than 240 K.

[29] The retrieval algorithm is applied to each cirrus cloud pixel within the domain, and mappings of retrieved τ_c, D_c, and D_b are shown in Figures 4b–4d, respectively. The τ_c values (≈6) over the northwest quadrant is relatively large, while small τ_c values (≈3) over the southeast quadrant indicate optically thin cirrus clouds. Except for the northwest quadrant, retrieved D_c values (≈50 μm) are generally smaller than D_b (≈150 μm), consistent with in situ observed stratified pattern as described in section 1. The vertically mean D_c for each pixel from the retrieval is calculated by the average of D_c and D_b. Comparison with MODIS cloud products reveals that retrieved (Figure 4b) and MODIS τ_c maps are almost identical, but retrieved $D_c/2$ (=[($D_c + D_b$)/2] are systematically larger than MODIS $D_c/2$ (=2τ_c), which are extracted from the MODIS cloud effective particle size products retrieved using 0.645 μm (band 1) and 2.13 μm (band 7) reflectances.

[30] Scatterplots in Figures 4e and 4f show the correlation between retrieved and MODIS τ_c and D_c for the selected domain, respectively. Figure 4e shows retrieved and MODIS τ_c’s are highly correlated, with a correlation coefficient of 0.983, and this good correlation demonstrates that the retrieved τ_c is highly accurate. The RMS difference is 0.219, which is about 5% of the mean τ_c (≈4), and is comparable to the objective requirement for NPOESS–VIIRS algorithm [Ou et al., 2003]. Figure 4f shows that the retrieved mean D_c also correlates well with MODIS D_c with a correlation coefficient of 0.65. Differences for the retrieved and MODIS D_c are due primarily to the differences in the assumed vertical D_c profiles. In the present radiative transfer program to generate the look–up library, the vertical linear profile of D_c has been included in the calculations, whereas in the MODIS forward radiative transfer modeling, cloud effective particle size is assumed to be vertically constant. Thus, retrieved D_c are mostly larger than MODIS D_c, because, with the assumption that the vertical distribution of D_c increases from the cloud top toward the cloud base, MODIS D_c tends to be biased toward the smaller cloud top D_c as indicated by Figure 1, while the retrieved D_c tends to be biased toward the larger midcloud D_c. Since both the present and MODIS 005 Collection algorithms have employed the same ice crystal size and habit distribution models, the difference between the mean effective particle sizes inferred from the present and MODIS retrieval programs should not be due to differences in the assumption of ice crystal habits.

[31] Around the time of the Terra overpass, the MMCR at CF also observed a single layer of cirrus clouds between 6 and 10 km. Figure 5a shows the MMCR time series of vertically resolved D_c [Mace et al., 2002]. Over a 10 min period (5 min before and after the MODIS overpass), MMCR observed 16 D_c profiles. The MMCR D_c vary between 50 and 150 μm, with a few spots larger than 150 μm.

[32] To assess the validity of retrieved D_c and D_b, we processed MMCR D_c and IWC profiles, and applied a collocation scheme to the retrieved cloud parameters. For each of the
16 MMCR profiles, we first obtained the vertical profile of extinction coefficient \(\beta_e(z) \) as [Fu and Liou, 1993]

\[
\beta_e(z) \approx \text{IWC}(z)[a + b/D_e(z)],
\]

where \(a = -6.656 \times 10^{-3} \), \(b = 3.686 \), \(\beta_e(z) \) is in the unit of \(\text{m}^{-1} \), IWC in \(\text{g} \cdot \text{m}^{-3} \) and \(D_e \) in \(\mu \text{m} \). Then \(\tau(z) \) is calculated by the vertical integration of \(\beta_e(z) \) from cloud top to the level \(z \)

\[
\tau(z) = \int_z^{\infty} \beta_e(z)dz.
\]

Finally, the MMCR \(D_e(z) \) is converted to \(D_e(\tau) \) using \(\tau(z) \).

A linear fitting procedure is applied to each \(D_e(\tau) \) profile to generate \(D_t \) and \(D_b \). The MMCR time series of \(D_t \) and \(D_b \) are plotted as lines with triangle symbols in Figures 5b and 5c, respectively.

[33] We then applied a space-to-time collocation scheme to match the geographical locations of retrieved \(D_t \) and \(D_b \) with the observation time of MMCR \(D_e \) profiles. Since the MODIS data represent nearly instantaneous observation on the order of only a few seconds, while the MMCR data provide a time series of observations from a single location, we can establish the space-to-time correlation between the two data sets by using the wind speed and direction data at the...
Figure 5. (a) Time series of vertically resolved D_v derived from MMCR in the 10 min period centered around the satellite overpass at 1736 UTC on 6 March 2001, which is denoted by the vertical line; (b) collocated time series of retrieved and MMCR $D_v(t)$; (c) same as Figure 5b except for D_b; and (d) strip-averaged retrieved (gray curve) and MMCR (black curve) D_v profiles as functions of τ_n. Horizontal bars denote standard deviations.
cirrus cloud level from atmosphere soundings [Ou et al., 1995]. As observed by collocated daytime soundings, which were launched at CF (collocated with the MMCR site) and at 1130 and 2029 UTC, the wind speed and direction at the cirrus cloud level based on interpolation to the MODIS overpass time are estimated to be around 28 m s\(^{-1}\) and 276° clockwise from north, respectively. Within the selected domain, we further identified a 2 × 16.8 km strip of cloud (denoted by the black rectangle in Figure 4b) that is supposed to have drifted over the MMCR site during the 10 min period, and has been scanned by the radar beam. The length of the strip is the distance traveled by the cloud within the 10 min period (600 s × 28 m s\(^{-1}\) = 16,800 m). Then we match the geographical location of each pixel within the strip with the time of one of the 16 MMCR profiles. Because there are altogether 37 pixels within the strip, each MMCR profile may correspond to two or three pixels. Then mean values of retrieved \(D_t\) and \(D_b\) for collocated pixels associated with each MMCR profile are calculated. The converted and MMCR time series of retrieved \(D_t\) and \(D_b\) are plotted as curves with circles and crosses in Figures 5b and 5c, respectively.

[34] Figure 5b shows that retrieved and MMCR \(D_t\) vary between 40 and 55 µm, and between 60 and 70 µm, respectively, and that both time series display similar trends. The MMCR \(D_t\) is systematically 10–30 µm larger than corresponding retrieved values. This difference near cloud top could be explained by the fact that MMCR are mainly sensitive to large particles and missing smaller particles [Comstock et al., 2002]. Since cloud top is generally composed of smaller particles, MMCR derived \(D_t\) may be positively biased. Figure 5c displays that retrieved and MMCR \(D_b\) vary between 70 and 100 µm and between 90 and 100 µm, respectively, and that retrieved \(D_b\) displays more variability than MMCR. However, the two \(D_b\) series generally agree with each other better than the two \(D_t\) series, with differences anywhere between 0 and 30 µm. This better agreement near cloud base could be due to the fact that MMCR \(D_b\) might be less biased than \(D_t\) given that particle sizes at cloud base is larger than at cloud top. Similar magnitude and sign of differences between AIRS retrieved and MMCR derived ice crystal sizes were reported by Yue et al. [2007].

[35] Figure 5d shows the averaged \(D_c\) profiles derived from MMCR observations (black lines) and retrievals (gray lines) as functions of normalized cloud optical depth, \(\tau_n\), where \(\tau_n\) is defined as

\[
\tau_n = \tau/\tau_c.
\]

Horizontal bars at the six selected \(\tau_n\) levels represent the standard deviations of \(\tau_c\). Both the averaged profiles show that \(D_c\) generally increases from the cloud top toward the cloud base, consistent with the general behavior of midlatitude cirrus clouds. The slope of retrieved profile is about 45 µm per unit \(\tau_n\), while the slope of the MMCR profile is around 53 µm per unit \(\tau_n\). Figure 5d demonstrates a qualitative agreement in the vertical trend of retrieved and MMCR \(D_c\) profiles. The standard deviations vary between 10 and 20 µm for the MMCR profiles, and they increase from upper cloud (~10 µm) to lower cloud (~30 µm).

[36] In addition to the remote sensing characteristics of MMCR, differences between retrieved and MMCR retrievals can also be attributed to other factors involving spatial coverage and microphysical processes. The spatial coverage for MODIS is considerably different from MMCR. MODIS has a nominal spatial resolution of 1 km near nadir. MMCR deployed at ARM-SPG site has a beam diameter of 3 m at ground level and beam width of 0.19°. The beam diameter increases to 22 m at 6 km and 36 m at 10 km. The MMCR beam diameters are much smaller than MODIS pixel sizes. Difference in retrieved and MMCR derived cloud particle size parameters can result from different observation scales. Moreover, in our collocation scheme, we assume that cirrus clouds drifted over the MMCR site with nearly constant bulk microphysics properties over the 10 min period. However, the temporal scale of cloud microphysical processes is on the order of seconds, so the evolution of clouds can be another source of differences in retrieved and MMCR cloud parameters.

4.2. North Central China (17 October 2006 at 0624 UTC)

[37] MODIS/Aqua flew over north central China on 17 October 2006, at 0624 UTC, followed by CloudSat. The MODIS true color composite image (Figure 6a) contains an area of widespread stratiform cirrus clouds over the Inner Mongolia region. The black solid line denotes the CloudSat orbital track. For comparison with MODIS cloud products from Collection 005 algorithms and for assessment of retrieval results using CPR data, we selected a strip of cloudy area (26 × 301 pixels) centered along the CloudSat track, as indicated by the red narrow rectangular box. The MODIS cloud mask result indicates that most pixels within the box are cloudy, and cloud phase product shows that the majority of cloudy pixels in the box are cirrus clouds. Cloud–top temperatures for cirrus pixels are lower than 240 K.

[38] Figures 6b–6d show retrieved \(\tau_c\), \(D_t\) and \(D_b\) for the selected box, respectively. The \(\tau_c\) values are small (<5) over the northern part of the box, indicating the presence of thin cirrus clouds, and \(\tau_c\) values are large (~30) over the southern part of the box, showing the occurrence of opaque cirrus clouds. The size parameters \(D_t\) and \(D_b\) vary between 0 and 120 µm and between 0 and 180 µm, respectively, and \(D_t\) are generally smaller than \(D_b\), except for the central part of the box, where \(D_t\) are around 120 µm, and are larger than \(D_b\). Figures 6e and 6f show the correlation between retrieved and MODIS \(\tau_c\) and \(D_c\), respectively, for cloud-mask-identified cirrus cloud pixels, for which both vertical sizing retrievals and MODIS products are available. The retrieved and MODIS mean sizes \(\bar{D}_c\) have been defined in section 4.1. The vertical sizing retrieval results are highly correlated with the MODIS cloud products, with correlation coefficients for \(\tau_c\) and \(\bar{D}_c\) being 0.96 and 0.803, and the RMS differences being 1.03 and 29.4 µm, respectively. Retrieved \(\tau_c\) values agree well with MODIS for \(\tau_c < 20\), but retrieved \(\bar{D}_c\) are generally larger than MODIS \(\bar{D}_c\). The possible explanation for such a behavior has been given in section 4.1. It is noted that the geographical distribution of retrieved \(\tau_c\) (Figure 6b) and \(\bar{D}_c\) are both similar to those of MODIS \(\tau_c\) and \(\bar{D}_c\).

[39] To compare vertical sizing retrieval results with collocated CPR data products within the selected cloudy box, we further identified two parts of the CloudSat track, where the CloudSat observed cirrus cloud coverage is continuous. The lower and upper sections are indexed as Segments 1 and 2, respectively, as denoted by the two yellow lines in Figure 6b.
Segments 1 and 2 correspond to CloudSat 5 and 3 s overpasses, respectively. The vertically resolved cloud effective radius and cloud liquid/ice water content derived from CPR backscatter data have been archived in the 2B-CWC-RO data product, where “CWC-RO” means Radar-Only Combined Water Content.

The bulk microphysical properties of clouds were assumed to remain largely constant within the 1 min gap between Aqua and CloudSat/CALIPSO overpasses. We compared the retrieved cloud size parameters with the CloudSat data products. The CPR time series of vertically resolved D_e for Segments 1 and 2 are presented in Figures 7a and 7b, respectively. The CPR time series of D_t and D_b were derived in the same manner as for MMCR, and were collocated with retrieved D_t and D_b. Because each CPR footprint roughly covers 15 MODIS pixels [3 (cross track) × 5 (along track)], we computed the average of retrieved D_t and D_b for the 15 MODIS pixels, and compared them with the collocated CPR D_t and D_b.

Results of comparison of D_t and D_b for Segment 1 are shown in Figures 7c and 7e, respectively. Retrieved D_t and D_b are generally smaller than CPR D_t and D_b, because, like MMCR, CPR observations tend to miss the smaller particles in cirrus clouds. Moreover, differences between retrieved and
CPR D_b (Figure 7e) are smaller than those for D_t. This is because CPR D_t are smaller than CPR D_b, and therefore, we expect more small particles near cloud top were missed by CPR observations than at cloud base, and the agreement for D_b is better than for D_t. Results of comparison of D_t and D_b for Segment 2 are shown in Figures 7d and 7f, respectively. Like the comparison for Segment 1, retrieved D_t and D_b are generally smaller than those from CPR. Differences for D_t and D_b vary between 50 and 80 μm and between 30 and 100 μm, respectively. The larger ranges of differences for D_t and D_b in Figures 7d and 7f than in Figures 7c and 7e could be due to the lower accuracy in the retrieved effective particle sizes at smaller optical depths for Segment 2 as shown in Figure 6b [Ou et al., 2003].

Comparisons of the retrieved average (gray curves) and CPR (dark curves) D_e profiles for Segments 1 and 2 are shown in Figures 7g and 7h, respectively, where horizontal bars represent standard deviations. For both segments, both retrieved and CPR D_e generally increase from cloud top toward cloud base, and the gradient of increase for both retrieved and CPR D_e in Segment 1 are larger than in Segment 2. The CPR D_e in both segments recurves toward smaller values near cloud base, consistent with typical in situ observation. This feature cannot be reproduced by the present retrieval scheme because of the linear constraint of the vertical size profile. Nevertheless, the slope of increase for retrieved D_e roughly agrees with the CPR D_e. Differences between retrieved and CPR D_e in Segment 2 is generally
larger than in Segment 1. As also shown by Figures 7c–7f, the agreement for Segment 1 is better than for Segment 2. These behaviors can be explained by the fact that a large portion of CPR D_t is generally less than 80 μm, while most CPR D_b are larger than 80 μm. As indicated by Figure 3, the retrieval performs effectively for $D_t < 80$ μm, and therefore, we expect the vertical sizing retrievals to agree with CPR product better for Segment 1 than for Segment 2.

4.3. Northeast Asia (23 October 2007 at 0515 UTC)

MODIS/Aqua flew over northeast Asia around 0515 UTC on 23 October 2007, followed by CloudSat. The MODIS true color composite image (Figure 8a) displays a large area of stratiform cirrus clouds over Eastern Siberia. The black line denotes the CloudSat track. As in the case of 17 October 2006, for the purpose of assessment of retrieval performance using CPR observations, a narrow area (51 × 451 pixels) centered along the CloudSat track has been selected, as indicated by the red rectangular box. Cloud mask result indicates that most pixels within the box are cloudy, and cloud phase product shows that the majority of cloudy pixels are cirrus clouds. Cloud top temperatures for cirrus pixels are lower than 240 K.

Figures 8b–8d show retrieved τ_c, D_t, and D_b products for the selected box, respectively. For the whole box, $\tau_c < 5$, and both D_t and D_b vary between 0 and 180 μm, with most $D_t < D_b$, except several small areas around north and south parts of the box. Scatterplots in Figures 8e and 8f
and show the correlation between retrieved and MODIS D_e and D_c, respectively, for pixels for which both the vertical sizing retrieval and MODIS cloud product from Collection 005 algorithms are available. Retrieved τ_c and D_c are highly correlated with MODIS cloud products, with correlation coefficients being 0.947 and 0.743, and RMS differences being 0.662 and 29.6 μm, respectively. Similar to the 6 March 2001 and 17 October 2006 cases, the retrieved τ_c appear to agree qualitatively with MODIS τ_c, and the correlation between retrieved and MODIS D_e is also significant with retrieved D_e generally larger than MODIS values. The possible explanation for such behavior has been given in section 4.1.

[45] To compare retrieval results with collocated CPR data products within the selected box, we further identified a section of the CloudSat track, in which the cirrus cloud coverage is continuous. This section corresponds to a 10 s CloudSat overpass from 0518:30 to 0518:40 UTC, and is denoted by the yellow line segment in Figure 8b. The procedure for the processing of the CPR data is the same as in the 17 October 2006 case. The CPR time series of vertically resolved D_e are presented in Figure 9a. Particles with sizes smaller than 100 μm are present at cloud top, while near cloud base, particles are much larger (>200 μm). Time series of retrieved average and CPR D_e and D_b are shown in Figures 9b and 9c, respectively. The time series of CPR D_b are relatively constant without too much oscillations, and are consistent with cloud top D_e values shown in Figure 9a. The increase in retrieved D_b between $t = 6$–8 s actually matches the CPR D_b values. Both retrieved D_e and D_b are generally smaller than collocated CPR data, because of CPR’s inability to detect smaller ice crystals. Differences in D_b are smaller than those in D_e, because of the presence of more large particles at cloud base than at cloud top (see Figure 9a). We also examined the retrieved average vertical profiles of D_e with CPR as a function of normalized cloud optical depth τ_n. Figure 9d shows the retrieved average (gray line) and CPR (dark line) D_e profiles, where horizontal bars represent standard deviations of D_e. For this region, effective particle sizes generally increase from cloud top to cloud base.

5. Summary

[46] Detailed analyses of in situ balloon-borne ice crystal observations reveal that cirrus clouds are often vertically stratified, with small quasi-spherical or plate-like particles at the cloud top, hexagonally shaped and bullet rosettes crystals in the midcloud layers, and large and irregularly shaped single or aggregated particles near the cloud base. Radiative transfer simulations indicate that heating/cooling within cirrus clouds is driven by the vertical distribution of cloud particle sizes and shapes. Clearly, in order to accurately determine cloud radiative forcing and heating/cooling rate for the study of climate change, it is necessary to have comprehensive and reliable knowledge of the vertical profile of cloud particle sizes. Current MODIS cirrus cloud retrieval algorithm assumes a vertically homogeneous cloud model to retrieve the total cloud optical thickness and vertically averaged effective particle size. With the availability of multiple near-IR band radiance data from MODIS, it appears that a retrieval scheme for inferring the vertical ice crystal sizes over large areas could be developed utilizing the information content in near-IR bands on the basis of the difference in cloud absorption for each band.

[47] In this paper, we present a cirrus cloud vertical sizing algorithm to infer the cloud top and cloud base mean effective particle sizes from a combination of MODIS visible and near-IR band reflectance/radiance, where the vertical profile of ice crystal size is linearly constrained as a function of optical depth. This approach uses a numerical iterative search method based on a look-up library of precomputed reflectances/radiances from an adding-doubling radiative transfer program, subject to corrections for Rayleigh scattering at the 0.645 μm
band, above-cloud water vapor absorption, and 3.75 μm thermal emission.

[48] The performance and limitation of the retrieval method were investigated by synthetic retrievals. Retrieval results are reasonably accurate for $2 < \tau_c < 15$ and $D_c < 80 \mu m$. For $D_c > 80 \mu m$, the accuracy decreases because of the decrease in sensitivity of the near-IR reflectance to D_c and D_b. An error budget analysis of the retrieval algorithm subject to the perturbation of input cloud temperature, cloud top pressure, surface temperature and surface albedo and to instrument noise was also carried out by synthetic retrievals. Retrievals of τ_c are relatively accurate with the largest RMS percentage error around 3% when the 0.645 μm band surface albedo is perturbed by ±10%. The RMS error of retrieved τ_c value is roughly 0.16. The retrieval accuracy of D_c and D_b is subject to the 3.75 μm band radiance noise and the retrieved D_c and D_b value has an estimated RMS error of about 20 and 28 μm, respectively.

[49] The retrieval algorithm was applied to three MODIS cirrus scenes over the ARM-SGP site, north central China, and northeastern Asia. The accuracy of retrieved cloud optical thicknesses and mean effective sizes was examined by comparison with MODIS cloud products. The quality of retrieved cloud top and cloud base ice crystal effective sizes was evaluated by comparison with those derived from observations by the ground-based MMCR and CPR/CloudSat. These assessments show that retrieved cloud optical thicknesses and mean effective sizes correlate well with MODIS cloud products. Retrieved mean effective sizes are also well correlated with radar-derived mean sizes, but are generally smaller in magnitude, because of the fact that radar beam tends to miss small cloud particles.

[50] Overall, the cirrus cloud vertical sizing retrieval algorithm represents a step of progress in the development of satellite cloud retrieval program in terms of its capability to determine the vertical cloud particle size profile, and is potentially applicable to the processing of remote sensing data from the next generation VIIRS/NPOESS, which is to be launched beyond 2010. Clearly, to make this algorithm operationally viable on a global scale, much more research is needed to improve the performance of retrieval algorithm. For example, the present retrieval program makes use of the “independent pixel approximation” in the forward radiative transfer calculations; an approximation best applicable to stratiform clouds. Note that all three cases studied in this paper were stratiform cirrus. To adequately account for horizontal radiative transfer associated with cloud inhomogeneity, particularly in vertically convective clouds, a 3-D radiative transfer model coupled with an intrinsic numerical iterative retrieval scheme are required, a challenging research subject requiring further exploration and numerical study.

[51] Acknowledgments. This research was supported by NSF grant ATM-0331550 and by DOE grant DEFG03-00ER62904.

References

