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Analytical solutions are presented for Fraunhofer diffraction by the following non-

spherical particles: rectangular parallelepiped, hexagonal cylinder, spheroid, and three-

axis ellipsoid. Using these solutions, numerical results for the diffracted intensity of

these particles in specific orientations and 3-D random orientation for an ensemble of

particles of the same size are presented and discussed in terms of their minima and

maxima that occur in intensity patterns, which differ substantially from their spherical

counterparts.
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1. Introduction

The theoretical development of diffraction begins with
Babinet’s principle, which states that the diffraction
pattern in the far field, i.e., Fraunhofer diffraction, from
a circular aperture is the same as that from an opaque
disk or a sphere of the same radius. Babinet [1] stated the
diffraction principle by citing the corona produced by
water droplets in the atmosphere. Babinet’s principle can
take scalar and vector forms. The vector form accounts for
the sign of electric and magnetic fields. However, when
the product of wavenumber and diffracting particle size is
larger than about 1 and scattering angles are small, the
scalar Babinet principle is sufficient for analysis [2]. See
diffraction by circular cylinders [3,4] for example. The
condition and limitation for Fraunhofer diffraction have
been discussed by Born and Wolf [5].

The diffracted images for a circular and rectangular
aperture were presented by Born and Wolf [5]. Other
diffracted images for polygonal apertures were also studied
by Komrska [6,7] and Smith and Marsh [8]. Cai and Liou [9]
ll rights reserved.

: þ1 310 794 9796.

no).
performed the computation of diffracted intensity for ran-
domly oriented hexagonal cylinders, while Takano and
Asano [10] studied diffraction phenomena produced by
randomly or horizontally oriented ice crystals. Liou et al.
[11] extended their numerical computations on the diffrac-
tion by hexagonal cylinders to account for cubes and
parallelepipeds. Takano and Liou [12] illustrated the manner
in which the diffracted intensity can be added to the
reflected/refracted intensity when the phase function for
ice crystals produces a delta-function transmission at the 01

forward scattering direction. Parviainen et al. [13] discussed
the connection of vertically elliptical coronas with horizon-
tally oriented pollens. While carrying out the computation
of the Fraunhofer integral, Tränkle and Mielke [14] simu-
lated corona patterns using elliptical shapes and produced
strong brightening for birch and pine pollens. Additionally,
Bi et al. [15] illustrated good agreement between the results
determined from Fraunhofer diffraction and a surface-inte-
gral method for an absorbing cube. Also, Hesse et al. [16]
presented polar scattering patterns of the diffracted and
externally reflected intensities for a strongly absorbing cube.

In this paper, we have applied Babinet’s principle to a
number of shapes, including rectangle, hexagonal cylinder,
rectangular parallelepiped, spheroid, and three-axis ellipsoid
to derive analytical solutions for the respective diffraction
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intensities. Additionally, we have also presented some perti-
nent computational results and discussed the physical fea-
tures that occur in the diffraction patterns for single
orientations as well as for 3-D random orientation involving
a group of particles of the same size. In Section 2, the
analytical solutions are derived for Fraunhofer diffraction
involving the following shapes: rectangular parallelepiped,
hexagonal cylinder, spheroid, and three-axis ellipsoid. Inter-
pretation and discussion of the diffracted intensity follow in
Section 3. Concluding remarks are given in Section 4.

2. Analytical solutions

2.1. Sphere

For reference purposes, we shall begin with a discus-
sion on diffraction by a sphere. In the far field, the light-
wave disturbance can be derived from the Fraunhofer
diffraction theory following Born and Wolf [5] as follows:

upðsphereÞ ¼ uce�kr0

ZZ
Ac

exp �ikðx cos fþy sin fÞsin y
� �

dx dy,

ð1Þ

where for simplicity of presentation, we let uc¼� iu0/rl,
where u0 represents the disturbance in the original wave,
k¼2p/l, l is the wavelength, r0 is the distance between a
diffracting particle and an observing point, Ac is the
Fig. 1. Geometric shadow of (a) a rectangular parallelepiped, (b) a hexagonal c

incident direction. (c) Geometry showing semi-major axis of shadow ellipse of
geometrical cross section area of the particle perpendicular
to the incident light beam, y is the scattering angle, and f is
the azimuthal angle. For a circular aperture, we can transfer
the rectangular coordinates (x, y) to the polar coordinates
(r, c) such that x¼r cos c and y¼r sin c to obtain

up ¼ uce�ikr0

Z a

0

Z 2p

0
exp½�ikr cosðc�fÞsin y�r dr dc: ð2Þ

By noting the zero-order (J0) and first-order (J1) Bessel
functions and their recurrence relationship [17], Eq. (2)
can be expressed by

up ¼ 2uce�ikr0 AcJ1ðx sin yÞ=x sin y, ð3Þ

where the geometric shadow area Ac ¼ pa2, y¼ x sin y,
and the size parameter x ¼ ka. The scattered intensity in
terms of the incident intensity I0¼9u09

2 can then be written
in the form

Id ¼ 9up9
2
¼ I0

ip

k2r2
where ipðy; kaÞ ¼

x4

4
½2J1ðyÞ=y�2: ð4Þ

2.2. Rectangular parallelepiped

Consider a plane wave incident on a rectangular paralle-
lepiped from a direction with a zenith angle (p/2�a) and an
azimuthal angle b measured with respect to the coordinate
system fixed to the parallelepiped, as shown in Fig. 1a,
ylinder, and (d) a three-axis ellipsoid projected on a plane normal to an

a spheroid projected on a plane normal to an incident direction.
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where the x-, y-, and z-axes are directed, respectively,
through the centers of three sets of rectangular planes.
The origin O of the coordinate system is taken at the center
of the parallelepiped. The geometric shadow of the paralle-
lepiped projected onto a plane normal to the incident
direction is expressed in terms of the (x0, y0) coordinates of
its marginal vertexes in a new coordinate system, where the
z0-axis is taken along the incident direction (see Fig. 1a).
The transformation of the body-framed coordinate system
X(x, y, z) into the new coordinate system X0(x0, y0, z0) can be
written in the form

X0 ¼ CDX, ð5Þ

where the transformation matrices are given by

C¼

sin a 0 �cos a
0 1 0

cos a 0 sin a

2
64

3
75, ð6Þ

D¼

cos b sin b 0

�sin b cos b 0

0 0 1

2
64

3
75: ð7Þ

Thus, if the size and shape of the parallelepiped and the
propagation direction (a,b) of the incident wave are known,
the coefficients a1, a2, b1, b2, y1, and y2 defined in Fig. 1a can
be determined by Eq. (5).

The shape of a parallelepiped is defined by the lengths
a, b, and c, which are half lengths of a rectangular
parallelepiped along the three axes with the size para-
meter given by ka. Having defined these geometric vari-
ables, we may rewrite the integral equation denoted in
Eq. (1) in the form

upðparallelepipedÞ ¼ uce�ikr0

ZZ
Ap

exp½�iðXx0 þYy0Þ�dx0 dy0, ð8Þ

where

X ¼ k sin y cos f,

Y ¼ k sin y sin f:

)
ð9Þ

The integration of Eq. (8) over the geometric shadow
area bounded by (2–3–4–8–5–6–2), shown in Fig. 1a, can
be performed by dividing the whole integration domain
into three sub-domains: two trapezoids (10–4–8–5–10)
and (3–70–6–2–3) and one parallelogram (10–5–70–3–10).
In this manner, we can use the integration method
developed by Smith and Marsh [8] to carry out these
integrations. It follows that the diffraction amplitude
up=uce�ikr0 of a parallelepiped defined by the orientation
position (a,b) at an arbitrary point P(y,j) can be obtained
in the form

upðy,f;a,b; ka,b=a,c=aÞ=uce�ikr0

¼
4

Xða1XþYÞ
sin

1

2
ðy2�y1Þða1XþYÞ

� �

sin
1

2
�a1ðy1�y2Þþ2b1

� �
X�

1

2
ðy1þy2Þ

� �

þ
4

Xða2XþYÞ
sin

1

2
ðy2�y1Þða2XþYÞ

� �

sin
1

2
a2ðy1þy2Þþ2b2

� �
Xþ

1

2
ðy1þy2Þ

� �
þ
4

Xða1XþYÞ
sin y1ða1XþYÞ
� �

sinðb1XÞ, ð10Þ

where a1, a2, b1, b2, y1, and y2 are given explicitly as
functions of a, b, a, b, and c as follows:

a1 ¼ sin a tan b, ð11Þ

a2 ¼�sin a=tan b, ð12Þ

b1 ¼ sin a tan bða sin b�b cos bÞþa sin a cos b
þb sin a sin bþc cos a, ð13Þ

b2 ¼�ðsin a=tan bÞða sin b�b cos bÞþa sin a cos b
þb sin a sin bþc cos a, ð14Þ

y1 ¼�a sin bþb cos b, ð15Þ

y2 ¼ a sin bþb cos b: ð16Þ

It follows that the intensity function for a given orienta-
tion of a rectangular parallelepiped defined by angles a
and b is given by

ipðy,f;a,b; ka,b=a,c=aÞ ¼
k2

2p

 !2

9up=uce�ikr0 92
: ð17Þ

For application to a rectangular aperture, we can
define the geometric shadow area as 2aL, where 2a and
L are the lengths of a rectangle. In reference to Eq. (1), we
may let the integrating boundaries x and y be from �a to
a and from –L/2 to L/2, respectively. A separation of the
two integrations leads to

upðrectangleÞ ¼ uce�kr0

Z a

�a
expð�ikx cos f sin yÞdx

�

Z L=2

�L=2
expð�iky sin f sin yÞdy

¼ uce�kr0 4aðL=2Þ
sinðka cos f sin yÞ

ka cos f sin y
sin½kðL=2Þsin f sin y�

kðL=2Þsin f sin y
:

ð18Þ

The solution of diffraction due to the light wave distur-
bance associated with a rectangle in the far field is given
by the product of sine functions. It follows that the
intensity function for diffraction can be expressed by

ip y,f; ka,kðL=2Þ
� �

¼
4k4a2ðL=2Þ2

p2

sin2
ðka cos f sin yÞ

ðka cos f sin yÞ2
sin2
½kðL=2Þsin fsin y�

½kðL=2Þsin fsin y�2
: ð19Þ

If we set that a¼0, b¼0, b¼a, and c¼L/2 in Eq. (10),
Eq. (17) reduces to Eq. (19) as a special case.

2.3. Hexagonal cylinder

Procedures for the determination of the diffraction by
a hexagonal cylinder have been described by Takano and
Asano [10]. They are similar to the rectangular parallele-
piped case presented above. However, an additional
matrix B must be applied to X in order for the bases of
trapezoids to be parallel to the x0-axis, as shown in Fig. 1b,
in the form

X0 ¼ BCDX, ð20Þ
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where the transformation matrix is given by

B¼

cos c sin c 0

�sin c cos c 0

0 0 1

2
64

3
75: ð21Þ

The relationship among the three angles is defined by the
following equation:

tan c¼�tan bþ
p
3

� 	
=sin a, ð0rcrpÞ: ð22Þ

It follows that the diffraction amplitude of a hexagonal
cylinder defined by the orientation position (a,b) at an
arbitrary point P(y,f) can be obtained in the form

upðy,f;a,b; ka,c=aÞ=uce�ikr0

¼
4

Xða1XþYÞ
sin

1

2
ðy2�y1Þða1XþYÞ

� �

sin
1

2
�a1ðy1�y2Þþ2b1

� �
X�

1

2
ðy1þy2Þ

� �

þ
4

Xða2XþYÞ
sin

1

2
ðy2�y1Þða2XþYÞ

� �

sin
1

2
a2ðy1þy2Þþ2b2

� �
Xþ

1

2
ðy1þy2Þ

� �

þ
4

Xða3XþYÞ
sin y1ða3XþYÞ
� �

sinðb3XÞ: ð23Þ

Note that a1, a2, a3, b1, b2, b3, y1, and y2 defined in Fig. 1b
are not expressed explicitly in terms of the variables a, b, a,
and c which differ from the rectangular parallelepiped case.

2.4. Spheroid

The geometric shadow of a spheroid projected onto a
plane perpendicular to the incident direction is generally
an ellipse. We can specify an orientation of a spheroid by
an angle z (¼p/2–a) between the incident direction and
its rotation axis. An ellipse can be defined as a circle with
a radius a multiplied by a factor x in the direction Ox0

(Fig. 1c). Thus, the elliptical aperture Ae is equal to a
circular aperture Ac multiplied by x in the direction Ox0. In
reference to Eq. (1) and by changing variables such that
x0 ¼x/x and y0 ¼y, we obtain

upðspheroidÞ ¼ xuce�ikr0

ZZ
Ac

exp½�ikðx0x cos f

þy0sin fÞsin y�dx0 dy0: ð24Þ

We may transfer the rectangular coordinate (x0,y0) to
the polar coordinate ðr,cÞ such that x0 ¼ r cos c and
y0 ¼ r sin c. In this manner, Eq. (24) can be rewritten
as follows:

up ¼ xuce�ikr0

Z a

0

Z 2p

0
exp½�krl cosðc�sÞsin y�r dr dc,

ð25Þ

where s¼ tan�1ðtan f=xÞ, l¼ ðx2cos2 fþsin2 fÞ1=2, and
x¼ ½ðc=aÞ2 sin2 zþcos2 z�1=2,which is derived below. In
terms of the zero-order Bessel function, we have

up ¼ xuce�ikr0 2p
Z a

0
J0ðkrl sin yÞr dr: ð26Þ
Using the relationship between the zero- and first-
order Bessel functions and from Eq. (26), we can show
that

up ¼ uce�ikr0 Ae
2J1ðxl sin yÞ

xl sin y
, ð27Þ

where the geometric shadow area Ae¼xpa2 and the size
parameter x¼ka. On using Eq. (17), the intensity function
for diffraction by a spheroid can be expressed in the form:

ipðy,f; z; ka,c=aÞ ¼
x2x4

4

2J1ðlx sin yÞ
lx sin y

� �2

: ð28Þ

Note that the spheroid and the incident light beam are
defined by the following two equations:

x2

a2
þ

z2

c2
¼ 1, ð29aÞ

x¼ tan zzþv, ð29bÞ

where the intercept v is still unknown, but can be deter-
mined by substituting Eq. (29b) into Eq. (29a) to yield

1

c2
þ

tan2 z
a2


 �
z2þ

2v tan z
a2

zþ
v2

a2
�1¼ 0: ð30Þ

In order to have the incident beam tangent to the
spheroid, a discriminant D0 must be 0 such that

D0 ¼
v tan z

a2


 �2

�
1

c2
þ

tan2 z
a2


 �
v2

a2
�1


 �
¼ 0, ð31Þ

which leads to the solution in the form: v¼ 7 ðc2

tan2 zþa2Þ
1=2. From Fig. 1c, we find the following rela-

tionship:

xa¼ 9v9cos z¼ a½ðc=aÞ2sin2 zþcos2 z�1=2: ð32Þ

Thus, we obtain

x¼ ½ðc=aÞ2sin2 zþcos2 z�1=2: ð33Þ

2.5. Three-axis ellipsoid

Three-axis ellipsoid is governed by the following geo-
metric relationship:

x2

a2
þ

y2

b2
þ

z2

c2
¼ 1: ð34Þ

When a three-axis ellipsoid is seen from an arbitrary
direction expressed by angles a and b, its shadow is an
ellipse, as shown in Fig. 1d. The ellipse can be obtained as
follows. On solving X¼(CD)T X0, the coordinate system (x,
y, z) can be expressed by (x0, y0, z0). Substituting (x, y, z)
into Eq. (34), we obtain a quadratic equation on the
coordinate system (x0, y0, and z0). If a discriminant D0 for
the quadratic equation with respect to z0 is 0, another
quadratic equation on x0 and y0 is obtained representing
a shadow ellipse. Specifically, we obtain Ax02þBx0y0 þ

Cy02 ¼D: A rotation of the coordinate axes (x0y0 plane) by
an angle Zð ¼ tan�1½B=ðA�CÞ�=2Þ reduces this equation to
x002=p2þy002=q2 ¼ 1: Hence, its semi-axis lengths p and q,
and an angle Z between the p-axis and x0-axis as well as
its diffracted intensity can then be computed.

Finally, for randomly oriented nonspherical particles,
the intensity function (hereafter referred to as intensity) ip
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can be obtained by performing integrations over the
angles a, b, and f in the form:

ipðy; ka, b=a,
� �

c=aÞ

¼
1

4p2

Z 2p

0

Z 2p

0

Z p

0
ipðy,f; ka,½b=a,�c=a;a,bÞcos a da db df:

ð35Þ

3. Interpretation of diffracted intensity patterns

Fig. 2 shows logarithmic contours of the intensity func-
tion for a diffracting body whose shape and orientation are
defined in the inset. The wavelength used for the calculation
is 0.55 mm. Any diffracted intensity would have a maximum
at a scattering angle y1st max of 01. Blackened portions in the
figures associated with the dense contour lines depict weak
Fig. 2. Logarithmic contours of the diffracted intensity from an object whose shape

radial direction is the scattering angle y from 01 to 101. The diffracting object is

c¼6 mm), (c) a rectangular aperture (a¼3 mm and L/2¼6 mm), (d) a hexagonal aper

cylinder (a¼601, b¼301, a¼4 mm, and c¼8 mm), (g) a hexagonal cylinder (a¼60

b¼301, a¼2 mm, b¼7 mm, and c¼4 mm), and (i) a three-axis ellipsoid (a¼601, b
diffracted intensities. The diffraction pattern of a circular
aperture is concentric (Fig. 2a). It has the first and second
minima at y1st min¼4.51 and y2nd min¼8.31. These dark bands
are explained by the fact that the first order Bessel function
J1(y) has zeros at y¼3.832 and 7.016. Fig. 2b shows the
diffraction pattern of an elliptical aperture whose area is
equal to that of the circle. The long-axis of an elliptical
contour is along the short-axis of its aperture, such that the
aspect ratio is the same as that of the aperture.

Fig. 2c is for a rectangular aperture circumscribing the
ellipse in Fig. 2b. The first minimum pattern around y1st

max¼01 is a rectangular shape whose aspect ratio is equal to
that of the aperture but with a 901 rotation. Next to the first
maximum pattern, four surrounding fans of rectangular
shapes are produced. The regular hexagonal aperture pro-
duces a hexagonal pattern around y1st max¼01 surrounded by
and orientation are defined in the inset using a wavelength of 0.55 mm. The

(a) a circular aperture (a¼4.24 mm), (b) an elliptic aperture (a¼3 mm and

ture (a¼10 mm), (e) a cube (a¼451, b¼451, and a¼3.8 mm), (f) a hexagonal

1, b¼201, a¼4 mm, and c¼8 mm), (h) a rectangular parallelepiped (a¼301,

¼451, a¼3 mm, b¼6 mm, and c¼9 mm).
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six fans (Fig. 2d). However, there is a dark circle inside the
hexagonal pattern, which was also shown in the work of
Smith and Marsh [8]. The scattering angle y1st min of 2.111 at
which the diffracted intensity becomes zero is identified by
inspecting where the diffracted amplitude changes its sign
from positive to negative. It is noted that this dark circle
coincides with the first minimum of circular aperture of the
same area whose radius is 9.09 mm corresponding to
y¼3.832. The same dark circle also occurs for a regular
octagonal aperture. Fig. 2e shows the diffracted pattern by a
cube when light is incident obliquely. In view of the shape
defined in the inset, its pattern resembles that of a hexagon
but its apex has a 30o rotation. For example, there is a dark
circle-like shape inside the hexagonal pattern containing the
first maximum. Its approximate scattering angle y is �3.41,
close to the first minimum of a circular aperture of the same
area which occurs at y1st min¼3.431.

Fig. 2f illustrates the diffraction pattern for a hexagonal
cylinder for an oblique incident light beam. In view of the
projected shadow in the inset, its diffraction pattern has the
characteristics of both rectangular and hexagonal apertures.
Fig. 2g shows another example of a hexagonal cylinder in
which the incident direction in Fig. 2f is shifted by changing
the rotational angle in the horizontal direction b from 301 to
201. The diffraction pattern is also rotated by �101 and is
not symmetric in reference to a line defined by f¼901 and
f¼2701, which differs from the pattern depicted in Fig. 2a–
f. Fig. 2h is for a rectangular parallelepiped in which the
shape of the projected shadow resembles a parallelogram.
As a result, a parallelogram-like pattern occurs around the
incident direction and is surrounded by four fans. Fig. 2i
shows the diffraction pattern generated by a three-axis
ellipsoid. The projected shadow is an ellipse whose semi-
p-axis length is 6.6 mm, semi-q-axis length is 4.0 mm, and
angle Z between the p-axis axis and x-axis is 29.01. In
reference to Fig. 2b, we have shown that the diffraction
pattern for an ellipse whose long axis is along the q-axis.
Fig. 3. Diffracted intensities for randomly oriented spheroids (left panel), hex

panel) defined by the aspect ratio of 4 and 1/4 using a wavelength of 0.55 mm

with a size parameter of ka¼100 and the corresponding polydisperse spheres
Fig. 3 shows the diffracted intensity for randomly
oriented spheroids, hexagonal cylinders, and rectangular
parallelepipeds whose aspect ratios are 4 and 1/4 (see the
figure). Their cross sectional area is equal to that of a sphere
with a size parameter of ka¼100, whose diffracted intensity
is shown in the figure. The diffracted intensity correspond-
ing to a polydisperse sphere system is also depicted for
comparison purposes. To smooth out the diffracted intensity
for spheres, we have used a modified gamma size distribu-
tion whose variance is 0.05. In order to interpret a series of
maxima and minima generated in the diffracted intensities
shown in Fig. 3, we consider the dependence of the
projected shadow of a hexagonal cylinder on the angle a.
In the direction of y-axis depicted in Fig. 1b when the results
are averaged over the angle a and the lengths change from
�2a to �2c so that the positions of maxima and minima
produced by them shift resulting in a smoother average
pattern. A similar interpretation can be applied to spheroids
and parallelepipeds shown in the figure.

Along the x-axis direction shown in Fig. 1b, there is only
one length, which is about 2a and is equal to 2z. This is the
characteristic length contributing to diffraction such that
the maxima and minima patterns will remain even after an
integration over the angle a. On the basis of Eq. (19), we
may consider that the contribution of the diffracted inten-
sity from the x-axis direction is given by [sin(kzy)/kzy ]2 for
the preceding shapes, since a maximum intensity in the
direction of f¼01 occurs, as shown in Eq. (19). For this
reason, it is anticipated that the diffracted intensity will
have maxima and minima at the following angles:

yðnþ1Þ-th max ¼ sin�1 ð2nþ1Þp
2kz

� �
, yn-th min ¼ sin�1 np

kz

� 	
,

n¼ 1,2,3,. . .: ð36Þ

Minima and maxima occur at y¼4.61, 7.11, and 8.01 for a
prolate spheroid, as shown in the left panel of Fig. 3
corresponding to y2nd max¼4.851, y2nd min¼6.481, and y3rd
agonal cylinders (middle panel), and rectangular parallelepipeds (right

in the calculation. Also, the diffracted intensity for an equal-area sphere

are added for comparison purposes.
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max¼8.111 by using z¼a¼4.876 mm in Eq. (36). There are
minima and maxima patterns depicted at y¼4.71, 5.01,
6.01, 6.51, 7.41, 7.81, 8.81, and 9.21 for an oblate spheroid
corresponding to y3rd min¼4.071, y4th max¼4.751, y4th min¼

5.431, y5th max¼6.111, y5th min¼6.791, y6th max¼7.471,
y6th min¼8.161, and y7th max¼8.841 by using z¼a¼

11.629 mm in Eq. (36). Minima and maxima are illustrated
at y¼4.01, 5.31, 7.71, and 9.61 for the hexagonal column
denoted in the central panel of Fig. 3 corresponding to
y1st min¼3.711, y2nd max¼5.561, y2nd min¼7.431 and y3rd max¼

9.301 by employing z¼a¼4.254 mm. For a hexagonal plate,
minima and maxima patterns are shown at y¼2.21, 2.41,
3.61, 4.11, 5.11, 5.71, 6.71, 7.31, 8.41, and 9.01 corresponding to
y1st min¼1.681, y2nd max¼2.521, y2nd min¼3.361, y3rd max¼4.201,
y3rd min¼5.041, y4th max¼5.891, y4th min¼6.731, y5th

max¼7.581, y5th min¼8.421, and y6th max¼9.271 by using
z¼ ð

ffiffiffi
3
p

=2Þa¼ 9:386 mm (radius of the inscribed circle).
Minima and maxima are shown at y¼3.51, 4.81, 6.71, 8.0
1and 9.71 for a columnar rectangular parallelepiped in
the right panel of Fig. 3 corresponding to y1st min¼3.051,
y2nd max¼4.581, y2nd min¼6.111, y3rd max¼7.641 and
y3rd min¼9.181 with a value of z¼

ffiffiffi
2
p

a¼ 5:172 mm (radius
of the circumscribed circle). There are minima and max-
ima at y¼3.81, 4.21, 5.41, 6.01, 7.11, 7.81, 8.91 and 9.51 for
a planar rectangular parallelepiped, which correspond to
y2nd min¼3.521, y3rd max¼4.401, y3rd min¼5.281, y4th max¼

6.171, y4th min¼7.051, y5th max¼7.941, y5th min¼8.831, and
y6th max¼9.721 using a value of z¼a¼8.958 mm. The
diffracted intensities for polydisperse spheres are also
displayed for comparison purposes.

Fig. 4 shows the diffracted intensity when the size of
the diffracting particles in Fig. 3 is reduced by a factor of
1/5. Takano and Asano [10] pointed out that for the same
shape, the diffracted intensity patterns for particles of
different sizes are similar. The diffracted intensity for a
nonspherical particle with a size r times larger but of the
same shape can be expressed in terms of that for the
Fig. 4. Same as Fig. 3, e
original nonspherical particle as follows:

ipðy,f;rka,½b=a�,c=aÞ ¼ r4ipðy
n,f; ka,½b=a�,c=aÞ, ð37Þ

where

yn
¼ sin�1

ðr sin yÞ: ð38Þ

For example, ip (y¼0) for a single sphere in Fig. 3 is
2.5�107, and ip(y¼0) for a single sphere in Fig. 4 is
2.5�107/54

¼4�104. Also, ip (a single sphere) in Fig. 3
has the first minimum at yn¼2.21, and ip (a single sphere) in
Fig. 4 has the first minimum at y¼sin�1(5 sin 2.21)¼11.11.

4. Concluding remarks

In this paper, we have derived analytical solutions for
the diffracted intensity of a number of nonspherical
particles: rectangular parallelepiped, hexagonal cylinder,
spheroid, and ellipsoid. Diffraction by a three-axis ellip-
soid is formulated by extending the diffraction by spher-
oid, although the lengths and the direction of principal
axes of its shadow ellipse are computed implicitly.
Numerical results on the diffracted intensity for a specific
orientation of a diffracting body whose size parameter is
from �50 to �100 as well as randomly oriented non-
spherical particles whose size parameters are 20 and 100
are, respectively, displayed as contour diagrams and as a
function of the scattering angle.

The results are interpreted and discussed in terms of
one- and two-dimensional diffraction patterns. In the case
of a hexagonal aperture, there is a dark circle within the
diffracted pattern around a light source, which corre-
sponds to a diffracted image measured by Smith and
Marsh [8]. The angular radius of this dark circle coincides
with that of the first minimum produced by a circular
aperture of the same area as the hexagonal aperture.
Finally, for randomly oriented nonspherical particles in
three-dimensional space, a simple model has been
xcept for ka¼20.
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developed to explain the angular positions of minima and
maxima that occur in their diffracted intensity patterns.
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