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We have developed a theory for the computation of the polarization of infrared radiation in optically anisotropic
media, with specific application to horizontally oriented ice crystals that frequently occur in cirrus clouds.
Both emission and scattering contributions are accounted for in the basic formulation concerning the transfer
of thermal radiation in anisotropic media. The symmetry relations of the phase matrix elements for horizon-
tally oriented ice crystals, which are required in the infrared polarization formulations, are presented for the
first time to our knowledge. Phase matrix elements for horizontally oriented hexagonal ice crystals are com-
puted by a geometric ray-tracing technique. Radiance and linear-polarization patterns at a 10-um wavelength
that are emergent from cirrus clouds that contain plates and columns oriented in two-dimensional space are
presented and discussed in physical terms. Downward polarization emergent from the cloud base is negative,
while upward polarization emergent from the cloud top has a positive maximum value near the limb directions.
These polarization configurations differ distinctly from the configurations of polarization emergent from ice
clouds that contain randomly oriented ice crystals in three-dimensional space. Given these results, it appears
feasible to infer the orientation characteristics of ice crystals in cirrus clouds with the use of infrared polariza-
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tion measurements either above or below the cloud.

1. INTRODUCTION

The apparent infrared signatures of aircraft often depend
on the infrared transmission and radiance properties of
cirrus clouds. In our previous papers® we developed
methodologies for the computation of infrared radiances
and linear polarization for randomly oriented hexagonal
ice crystals. However, ice crystals in cirrus clouds often
are oriented with their maximum dimensions horizontal
and are referred to as horizontally oriented ice crystals.®
Although the transfer of solar irradiance and the associ-
ated polarization configuration in cirrus clouds that
contain horizontally oriented ice crystals have been formu-
lated and numerically studied by Takano and Liou,*° radi-
ance and polarization patterns associated with thermal
infrared radiation, in which emission plays an important
role, have not been investigated.

In this paper we develop a theory and a numerical
scheme for the computation of infrared polarization pat-
terns in optically anisotropic media, with application to
horizontally oriented ice crystals. In Section 2 we present
the basic formulation concerning the transfer of thermal
radiation, including polarization in anisotropic media. We
describe a procedure for calculating anisotropic polariza-
tion for thermal radiation emitted from horizontally ori-
ented ice crystals. We also present a numerical scheme
based on the adding principle for radiative transfer. In
Section 3 we discuss the symmetry relations with respect
to the phase matrix for horizontally oriented ice crystals.
In Section 4 we present phase matrix elements for plates
and columns oriented in two-dimensional (2D) space for
visible and infrared wavelengths computed with a geomet-
ric ray-tracing technique, and we display and discuss
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infrared radiance and linear-polarization patterns at
cirrus cloud boundaries. We present our conclusions in
Section 5.

2. TRANSFER OF POLARIZED INFRARED
RADIATION IN OPTICALLY ANISOTROPIC
MEDIA

A. Radiative-Transfer Equation

Following the well-known principle (see, e.g., Ref. 6), the
differential change in the Stokes vector, dI, after travel-
ing a thickness, dz/u, in the direction of the propagation
can be expressed in the form

dl(z, u, ) = —B(W(z, p, p)dz/u
27 1
+ ;11— j Bs(W)Z(u, i, b, ¢)L(z, i, ¢)dpidg’
mJo J
+ B.(wB\(T)I,, oy

where u is the cosine of the zenith angle, 6; 2 is the vertical
distance; ¢ is the azimuthal angle; 8., B8, and B, are the
extinction, the scattering, and the absorption coefficients,
respectively; Z is the phase matrix with respect to the
local meridian plane; B,(T') is the Planck radiance of tem-
perature T at a wavelength A; and I, is the emitted
Stokes vector. Generally, 8., B;, and 8, are functions of
¢ and z as well as of u. In the present study, however, the
dependence of these coefficients on ¢ and z is neglected on
the assumption that ice crystals are oriented randomly in
a horizontal plane and that they are distributed uniformly
in the vertical direction. The first term on the right-hand
side of Eq. (1) denotes an attenuation along the path. The
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second and the third terms denote increments that are due
to multiple scattering and to thermal emission, respec-
tively. Next we introduce the differential normal optical
depth, d7, in the form

d7 = —B.dz, @)

where B, is the extinction coefficient in the vertical direc-
tion, B.(u = 1). When Eq. (1) is divided by dF, we obtain
the radiative-transfer equation in the form

dI(‘r, dI(F, 1, &)

& = k(WIF u,¢) — IF, u,4), (3)

where & (u) is the extinction coefficient normalized by the
vertical extinction coefficient:

k(w) = B(w)/B.. @)
The source function, J, is given by
2r
I, ) = — f S, 6, NG, i, )i
-1

+ k(u)[l = &(w)]BA(T)L.. 6))

In Eq. (5), the true single-scattering albedo & and the ap-
parent single-scattering albedo &* are given in the forms

() = B(p)/Be(W), (6a)
@*w) = B, (w)/B.. (6b)

The appearance of the true and the apparent single-
scattering albedos in Eq. (5) is due to the fact that multiple
scattering is proportional to the scattering cross section
in the incident direction, y, whereas emission is propor-
tional to the absorption cross section in the emergent di-
rection, u

The emitted infrared polarized radiation is symmetrical
with respect to the azimuthal angle. For this reason we
may use only the zeroth Fourier component of the radiance
in the discussion of radiative transfer. On averaging the
general radiative-transfer equation, Eq. (3), with respect
to the azimuthal angle, we can express the transfer equa-
tion for polarized infrared radiation in the form

dI('r, dIF, w)
T

Here, I is the 2D Stokes vector, (I, Q).
function, J, can be written in the form

= k(WIF p) — 7, p). M

Now the source

1
(:)*(M’)Z(l"r ’J'I)I(;’ F’,)d"d

1

JGFp) = sz

+ k(U1 - w(#)]BA(T)[Q] ®

Z is the 2 x 2 phase matrix, which will be derived in
Section 3. —Q, is the linear polarization associated with
emission, which is derived in Subsection 2B.

B. Evaluation of the Polarization Term Q,

To formulate the anisotropic polarization of the emitted
radiation, let the major axis of a hexagonal column be the
¢ axis and a pair of prism planes be in the horizontal plane
(i.e., a Parry column) as shown in Fig. 1. Consider a light
beam emitted from the basal plane in a direction, OE,
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specified by the zenith angle, 6, and the relative azimuthal
angle, ¢ — ¢'. The angle between direction OF and
the normal direction of the basal plane, OX, is denoted o:
The angle between the reference plane with respect to the
emitting plane, EOX, and the reference plane with respect
to the local meridian plane, EOZ, is denoted 8. To obtain
the polarization patterns for thermal emission in the in-
frared region, we may use a procedure similar to that for
emission from calm ocean surfaces at microwave frequen-
cies. A light beam reflected by a flat surface has no ellip-
tical polarization. On the basis of this principle, the
fourth Stokes parameter, V, must be 0 for a light beam
that is emitted from a flat surface. In other words, a light
beam emitted from a flat surface is linearly polarized.
The third Stokes parameter, U, is also 0, as a result of the
symmetry of emission with respect to the normal of the
surface. Therefore the Stokes vector (I}, I.,U, V) emitted
from a flat surface to a zenith angle @ can be written as
1 - |r@|3 1 - {r.(8]%0,0), where r; and r, are the
Fresnel reflection coefficients. In the case of the hori-
zontally oriented ice crystals, the normal direction of each
crystal plane does not always coincide with the zenith di-
rection, OZ, as in the case of calm ocean surfaces. Thus
the reference plane with respect to the emitting plane,
EOX, in Fig. 1, must be converted to the local meridian
plane, EOZ, by appllcatlon of the transform matrix, L to
the above Stokes vector. Transformation matrix L can be
expressed in the form

cos?8 sin’8 Y% sin28 0

A~ gin?8 cos’8d —-%sin286 0
L@ = : 9
® —sin 28 sin 28 cos 28 0 ©

0 0 0 1

As a result, the Stokes parameters I, I, U, and V emitted
from a certain crystal plane can be expressed as

I = cos? 8[1 — |ri(0)|?] + sin® 81 — |r,(@)|*],

I, = sin® &1 — |r(@)|*] + cos® 8[1 ~ |r.(a)|’],

U = sin 28[|r(a)|? — |r.(0)|?],

V=0 10

Angles o and § can be obtained easily from the scattering
geometry shown in Fig. 1. The two polarization compo-

Y

Fig. 1. Emission geometry for Parry columns.
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Fig. 2. Degree of linear polarization, —@Q., for thermal radiation
emitted from (a) Parry columns and (b) 2D plates.

nents, I, and 1., emitted from an ensemble of Parry
columns located randomly in a horizontal plane, are
equivalent to those for a single fixed Parry column aver-
aged with respect to the relative azimuthal angle, ¢ — ¢'.
We may carry out integration of I ., weighted by the effec-
tive area of each crystal plane with respect to the relative
azimuth, to obtain the averaged values in the form

27
f 21/ cos 0iAid(¢ — ¢)
1,60 = = ; an
> cos 0, Aid(d — ¢)
0 i

where i is the suffix expressing each crystal plane and A;
is the area of crystal planes. U is 0 because § is an odd
function of ¢ — ¢'.

Figure 2 shows the degree of linear polarization, —@. =
-, - 1,)/U, + I,), of radiation emitted from Parry
columns and 2D plates (plate crystals with the short c axis
vertical) at a wavelength of 10 um. The complex refrac-
tive index of ice’ used in this computation is 1.1991 —
10.051. If ice crystals are oriented randomly, the degree
of linear polarization, —@., is zero. Negative polarization
at @ < 80° and positive polarization at 8 = 80° can be in-
terpreted by the relation r; < r, between the Fresnel re-
flection coefficients. As shown in Fig. 2(b), the computed
values of negative polarization can reach —4% in the case
of flat 2D plates. Generally, magnitudes of polarization
for 2D plates [Fig. 2(b)] are greater than those for
Parry columns [Fig. 2(a)], because the relative area of 2D
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plates with respect to the vertical is greater than that of
Parry columns.

C. Solution of the Radiative Transfer Equation
The adding principle for radiative transfer® may be used
to evaluate the transfer of polarized infrared radiation in
cloud layers. On the basis of successive tracing of the ra-
diation beam, as illustrated in Fig. 3, the upward (J,) and
the downward (J,) source terms at the interface of the
two layers denoted by a and b are given, in the notation of
Ref. 5, by
Jd; = [1 + R.,'R; + (Ra*Rb)z + .. .]Ja_
+[1 + R R, + R R, + ... ]R*J,"
=(1+ 8)J.” + R,*%5), (12)
J.=[1 + R,R.* + R,R,M? + ... 1J,"
+[1 + RR.* + (RR.*? + ... IR, J,~
= (1 + S + Ryd, ), (13)
where 1 is the identity matrix, R is the reflection matrix,
the superscript * denotes quantities associated with radia-
tion from below, and the multiple-reflection terms are de-
fined by
S = R, *R,(1 — RS R,) 7, (14
$* = R,R.*(1 — R,R,®". (15)
If we use the upward and the downward source terms
at the interface, the upward and the downward source
terms at the top and the bottom of the combined layer are
given by
3, =4, + T4, (16)
Js” = dy + Tudy, an

where the total transmission matrix, T, is the sum of the
diffuse plus the direct components:

T =T + exp(—7w). 18

For a homogeneous layer, the reflection matrix and the
diffuse-transmission matrix are the same regardless of

Te - T 2+ T . -
Tafb7a TaRbRa‘jB r;RbRaRbJa

J
7 ¥ . A} 7 d
J Rc;RbSc/ RIS,
/
\ >\\

. A\ L]
Rt;Ran \ RbRgRb"a

\ /

W Jy
v
b \
\

- ~ - ~ ¥ - ¥ \ +

Jb rb‘la TbR;J; ER;RbJa TbR;RbR;Jb

Fig. 3. Geometric configuration of the adding method used to
evaluate thermal emission. The dashed and the solid lines repre-
sent radiation emitted from layers a and b, respectively.
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radiation from below or above. That is, R* = R and
T* =T. It follows that the multiple-reflection term
S* = S in Egs. (14) and (15).

For a thin layer having an optical thickness A7, the up-
ward and the downward Stokes vectors, J* and J ", result-
ing from emission from a gray body in the emergent
direction, u, can be obtained from Egq. (8) as follows:

I (W) =Jd(w = k(W1 - &')(,U«)]B,\(T)[é ]A&-’/p. (19

For a thin layer, the reflection and the diffuse-transmis-
sion matrices can be computed from the phase matrix in
the forms

AR
R, ) = E(M—),TZ(M, -, (20a)
dup
AR
T ) = LB 50, (20b)
dup

where i(p,, W) is the azimuthally averaged component of
the phase matrix Z(u,u,¢ — ¢'), which is defined in
Section 3. Starting from Egs. (19) and (20), we repeat the
above adding procedure to attain a desired optical depth.
Finally, the surface emission can be considered a separate
layer, with emission pointing only upward.

3. PHASE MATRIX FOR HORIZONTALLY
ORIENTED ICE CRYSTALS

To describe scattering processes, we define the amplitude
matrix, A, in the form

E/| _exp(=ikR + ik2)[A, As|[ B @1)
E, ikR A AJlES]

where E° = (E°,E,%) and E = (E;, E,) are the incident
and scattered electric vectors, respectively, & is the wave
number of the incident light, R is the distance between the
scatterers and the observer, z is the distance from the
scatterers along the incident direction, and i = V—1.
The phase matrix P is defined in the form

Pll P12 PIS P14 IO
1 P21 P22 P23 P24 QO
F’R?|Py Py Py Py||Us|
Py Py Py Pu||V;

(22)

<TO ™~

where (I, Q0,Us, Vo) and (I,Q,U,V) are the incident and
the scattered Stokes vectors, respectively. Generally, if
no assumption is made on the scatterers, the phase matrix
consists of 16 elements.

To derive the symmetry relations of the phase matrix
for horizontally oriented crystals, we consider a pair of
horizontally oriented crystals that are mirror images with
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respect to the principal meridian plane. Let a pair of
parallel rays be incident upon the two crystals (either two
plates or two columns). A pair of incident points upon the
two crystals can be considered, since an arbitrary point on
one crystal will always have a symmetrical counterpart on
the other crystal. The two incident rays that are re-
flected and/or refracted are also emergent to the symmet-
rical directions with respect to the principal meridian
plane, i.e., to directions (8,,¢, — ¢) and @,,¢' — ¢,),
where 0 is the zenith angle and ¢ — ¢' is the azimuthal
angle. The subscript n represents the order of the scat-
tered light rays.® The directions of the normals at each
incident point upon the two crystals are also symmetrical.
The signs of the rotational angles of the coordinate axis at
each incident point for a pair of scattered rays are oppo-
site. As a result, the signs of the nondiagonal elements of
the 2 X 2 amplitude matrix, A", are also opposite, as is
pointed out in Ref. 9. The diagonal elements, A{® and
A", are even functions of ¢ — ¢/, and the nondiagonal ele-
ments, A{” and A{”, are odd functions of ¢ — ¢ when ice
crystals are oriented horizontally. This symmetry rela-
tion is expressed symbolically as

A én) A én) c s
(n) = .
A [ A ,(;n) A §n) s ¢ (2 3)

In this research, the geometric ray-tracing method is
used for the computation of the amplitude matrix, A™.
The geometrical optics is an approximation based on the
assumption that light may be thought of as consisting of
separate localized rays that travel along a straight-line
path. In Fig. 4, I denotes an incident ray, L is the length
of the ice crystal, and 2a is the width. The ray denoted
n = 0 is an externally reflected ray. The ray denoted
n =1 is a transmitted ray without internal reflections.
In the framework of geometrical optics, the amplitude
matrix A™ for the nth ray can be written in the form

2
Ar(n) = wanTﬂPHI: l—I RkPk:lTlPl, (243)

k=n-1

A(n) — P,,,A' (n)P—en , (24b)

where w, is a weight concerned with the flux conservation
and T, and R, are the transmission and the reflection
matrices, respectively, which are expressed by

tln 0 7‘[" 0
T, = ’ R, = ’ 25
[0 tr"] [0 ] @

where ¢," and ¢,” are the Fresnel transmission coefficients
and " and r." are the Fresnel reflection coefficients.
The matrix P, denotes the rotation of coordinate system
by an angle ¢,, which is given in the form

P - [cos ¢, —sin ¢n:| ) 26)

sin ¢, cos ¢,
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Next we consider the symmetry relations with respect
to the phase matrix that transforms the incident Stokes
parameters (I, Qo, Uy, Vp) to the scattered Stokes parame-
ters (I,@,U,V). The phase matrix G for the geometric
rays is expressed explicitly by the elements of the ampli-
tude matrix A” in the form®
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3 /3 N
Pu6,0,¢ — ¢) = ;fo Pu0,6',¢ — ¢'; B)dB,

k1 =1-4, (31

where B is the angle expressing the rotation of the crystal
around the ¢ axis, as shown in Fig. 6(a). If the symmetry

(M; + M; + M, + M,)/2
_ (M; + My — M, — My)/2
824 + SSI
D,y + Dy

My — My + M, — M,)/2
Mz -~ My — M, + M,)/2
Sp4 — Sz
D3y — Dy

G

Sas + Sa —Day — Dy
- ~ Dy +
823 — Sa Dys + Dy . @7
So1 + S3s —Dy + Dsy
Dy + Dy Sa1 — Ss4

where M, Sy, and Dy, are given by

M, = A A%,
S =Sy = 1/2(AA* + ALAP),
=Dy = Dy = i/2(AA* — ALAD),
for k,1 =1-4. (28)

For simplicity, the superscript n is omitted in the above
equations. The phase matrix elements, P,;, are calculated
by adding the contributions from the geometric rays, G{7,
and the Fraunhofer diffracted ray,"! Gp, in the form

Bu=(0- )3 GY + 8ufoGo. (29)

In this equation, 8, is the Kronecker delta and fy is the
fraction of diffracted rays, which is given in the form

1

o= ea =7y’

(30)

where f; is the & function transmission at the 0° scattering
angle, which is discussed in Ref. 4. From the symmetry
relation of the amplitude matrix denoted in Eq. (23), the
elements inside the boxes in Eq. (27) are odd functions of
¢ — ¢, and the other elements are even functions of
¢ — ¢'. Since Gp is an even function of ¢ — ¢/, P has the
same symmetry relation as Eq. (27). To evaluate diffrac-
tion by a nonspherical ice crystal, we use the Babinet
principle: the distribution of light intensity diffracted by
a particle is identical to that diffracted by an aperture
with shape and size identical to the geometric shadow of
the particle. The projections of the eight vertices of a
hexagonal crystal on the plane normal to an incident di-
rection are denoted by B;’ in Fig. 5, where ® and ® are the
scattering and the azimuthal angles, respectively, of the
diffracted light beam. The diffraction integral over
the geometric shadow area defined by B,’ can be per-
formed easily.

As shown in Ref. 4, the phase matrix elements P;
for plate crystals with the ¢ axis vertical (2D plates) are
given by

relation denoted in Eq. (27) is used, Eq. (31) can be writ-
ten as

w6 N
Pu6,0,l¢p — ¢) = % f P.6,0,¢ — ¢'; B)dB, (32)
0

6 /6 A
Pu6,6,l6 — ¢ = = f sgn(é — ¢ Pu(0,6,¢ — ¢'; B)dB
0
(33)

for the elements outside and inside the boxes in Eq. (27),
respectively. Here sgn(x) = x/|x|. Also according to
Ref. 4, the phase matrix elements Py, for columnar crys-
tals with both the ¢ axis and a pair of prism planes hori-
zontal (Parry columns) are given by

3 /2 /3 A
Pkl(0:0,,¢ - ¢’) = '7—1_5 d’)’f Pkl(0’0,,¢ - ¢’;‘Y’B)
0

—m/2

X 5(8 — B*dB, kil =1-4, (34)

where 8 = 1 when B = B* and § = 0 otherwise, g* is an
angle that is defined in Ref. 4, and vy is the angle denoting
the orientation of the ¢ axis in the horizontal plane, which
is illustrated in Fig. 6(b). If the symmetry relation given
in Eq. (27) is used, Eq. (34) can be written as

c axis

Z(c axis)

Fig. 4. Geometry of a light ray in an ice crystal: a is the angle
between the incident ray and the ¢ axis defined in the diagram, g8
is the angle of rotation about the axis, I denotes the incident ray,
L is the length of the ice crystal, and 2a is the width.
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Fig. 5. Geometry for Fraunhofer diffraction at an arbitrary
point, P. The projections of the eight vertices of a hexagonal
crystal on the plane normal to an oblique incident ray are denoted
by Bt = 1-8). © and & are the scattering and the azimuthal
angles, respectively, of the diffracted light beam.
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Angles i, and i;, are given by

—p + i cos O
__,_(1 - 6082 @)1/2(1 — “'12)1/2

cos i, = 39)

— + pcos®
(1 ~ cos® @)1 — uhH2

cOS Iy = (40)

where @ is the scattering angle, which can be written in
the form

cos ® =y + (1 — pH2(1 — wHY%cos(p — ¢). (41)

In Egs. (39) and (40), the plus is to be taken when 7 <
¢ — ¢ < 27 and the minus when 0 < ¢ — ¢’ < 7. . Using
the 16 nonzero phase matrix elements of P, we can write Z
explicitly as

P11 PuC’ + P13S'
Plzc - P31S Pzch' - P32SC’ + PzaCS’ - P33SSI

—PuS' + P13C' P14
—Py;C8' + P33S8' + PyCC' — Py SC' PpuC — Py,S

P21S + P31C szsC’ + PazCC' + P2’3SSI + Paacs'
P, PpC + PSS

—PpSS — Py,CS' + P3SC + PuCC PuS + PoC |

6 [™ w3

Pues i - #) =2 [ ay[ @06 - 4378
mJo 0 v
x 8(6 - 438, (35)

) 0 6 /2 /3 ,
Pu60,1 ~ #D =75 | dy[ sgns - @)

X Bu(6,60,6 — ¢ 7,088 — BdB,
(36)

for the elements outside and inside the boxes in Eq. (27),
respectively.

As is well known, the phase matrix defined with respect
to the local meridian plane, Z(6,8',¢ — ¢'), can be obtained
by premultiplication and postmultiplication of P with
L7 — i5) and L(—i,) in the form®

26,0,¢ - ¢) = Lim — iy)PL(~iy), @m0

where L(7 — a) is the rotation matrix of angle = — a,
which is expressed in the form

1 0 0
0 cos2a -sin 2«
L —_ 3 -— =
(m = a) = L(-a) 0 sin 2« cos 2a

0 0 0

(38)

o O O

—P428’ + P4ac’ P44
- (42)
For simplicity, the following abbreviations are used:
S’ = sin(2i,), C' = cos(2iy),
S = sin(2iy), C = cos(2iy). (43)

Since i, and i, are odd functions of ¢ — ¢, as shown in
Egs. (39) and (40), §' and S are odd functions of ¢ — ¢’
and C’' and C are even functions of ¢ ~ ¢'. If we use the
symmetry relation with respect to P denoted in Eq. (27),
the elements of Z inside the boxes in Eq. (42) are odd func-
tions of ¢ — ¢' and the other elements are even functions
of ¢ — ¢. Only the azimuthally averaged term (i.e., the
zeroth Fourier component) contributes to the infrared ra-
diative transfer. Hence the matrix elements inside the
boxes in Eq. (42) are zero. The Stokes vector of radiation
emitted from horizontally oriented ice crystals is (,Q,0,0),
which is defined in Section 2. Furthermore, the surface
is assumed to emit unpolarized isotropic radiation. Thus,
for the computations of the infrared radiances and linear
polarization, only the following 2 X 2 matrix is required:

A

Z

_ Py PuC + PyS' ]
PuC — PuS PuCC' ~ PuSC' + PuCS — PySS'
(44)

The azimuthally averaged component of Z is used for
infrared radiative-transfer computations by means of
Egs. (20a) and (20b).

The symmetry relations of the phase matrix for
randomly oriented nonspherical particles in three-
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Z (C axis)

(a)

C axis Y

Fig. 6. Scattering geometries for horizontally oriented (a) plate
crystals and (b) columnar crystals. IO and SO denote the inci-
dent and the scattered directions, respectively. Other symbols
are explained in the text.

dimensional (3D) space have been derived by Hovenier.'?
In the following, we discuss the symmetry relations of the
phase matrix for horizontally oriented ice crystals. Con-
sider Egs. (39)—(41). If the signs of u, &, ¢, and ¢’ are
changed simultaneously, ©, i;(=®), and i, will remain the
same. ~ For this reason, Z as defined in Eq. (87) will also
remain unchanged. Thus the symmetry relation C de-
veloped by Hovenier,

Z(-p, -, ¢ — ) =Zu, i, — ¢), (O,
is valid for horizontally oriented ice crystals. The sym-

metry relation expressed in Eq. (42) is referred to as the
symmetry relation D and can be rewritten as follows:

Z(p, i, ¢ — &) = MZ(p, i, ¢ — M, D),

where M is the mirror matrix,'® which is defined by
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10 0 0
o1 0 O
= 4
M 00 -1 0 (45)
00 0 -1

However, other symmetry relations (A, B, E, and F)
derived by Hovenier, which are valid in a slab of randomly
oriented particles with a plane of symmetry, are not appli-

(b)

Fig. 7. Phase function, Py, for 2D plates with aspect ratio L/2a
of 0.4 at A = 0.55 um (a) above the horizon and (b) below the
horizon. The diffracted-light component is excluded so that
geometrical-optics ray patterns can be clearly understood. The
small circle in (a) indicates the incident solar direction whose
zenith angle ¢ is 77°. The symbols +, + , *, and 8 denote 0, 1, 2,
and 3, respectively, in units of [logi Pu], where [] denotes the
integral part.
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Fig. 8. (a) Phase function Py, corresponding to Fig. 7 and
(b) degree of linear polarization, — Pyz/Py;, along the parhelic
circle as a function of the azimuthal angle, ¢ — ¢

cable to the case of horizontally oriented ice crystals, be-
cause Zl3, Z14, Zza, Z24, Z41, Z42, Zal, and Z32 are generally
nonzero elements.

4. RESULTS AND DISCUSSION

In order to evaluate infrared polarization from cirrus
clouds consisting of horizontally oriented hexagonal ice
crystals, we must first compute the single-scattering prop-
erties for these ice crystals. In our previous research? we
developed a geometric ray-tracing program for calculating
the phase function P;;. However, we must have other
phase matrix elements, P12, P21, P22, P31, P32, P13, P23, and
P, as indicated by Eq. (44), to evaluate linear polariza-
tion in multiple scattering. To compute these elements,
we must take into account the rotation of coordinate sys-
tems in relation to the incident plane.’* According to
Ref. 9, the effect of phase shift can be neglected. Fur-
thermore, since we are concerned with infrared wave-
lengths in which significant absorption within ice crystals
occurs, the effect of birefringence on the scattering
properties can also be neglected.

Y. Takano and K. N. Liou

Figure 7 shows the phase function Py, at A = 0.55 um
for 2D plates with an aspect ratio of L/2a = 0.4 above
[Fig. 7(a)] and below [Fig. 7(b)] the horizon by means of
equidistant projection. In this presentation, the dif-
fracted light is excluded so that the reflected and/or the
refracted light patterns can be investigated more clearly.
The small circle in Fig. 7(a) indicates the incident solar
direction. The incident solar zenith angle, ¢, is taken

(a)

()
Fig. 9. Same as Fig. 7, except for 2D plates with aspect ratio
L/2a of 40/100 (um/um) at A = 10 um. The symbols -, + , *, and
® denote O, 1, 2, and 3, respectively, in units of [logy Pu] + 1,
where [ ] denotes the integral part.
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Fig. 10. Same as Fig. 8, except for 2D plates with an aspect ratio
L/2a of 40/100 (um/um) at A = 10 um.

to be 77°. The scattered light is confined to four latitude
circles: the parhelic circle, the circumzenithal arc, the
subparhelic circle, and the subcircumzenithal arc. Well-
known peaks that are due to the 22° parhelia (sundogs)
and to the 120° parhelia on the parhelic circle, as well as
peaks that result from the subsun and the subsundogs on
the subparhelic circle, can be identified clearly. The halo-
phenomenology nomenclature described in this paper fol-
lows that of Greenler.

Figure 8 shows the phase function Py; corresponding to
Fig. 7 and the degree of linear polarization, — Py3/Py;,
along the parhelic circle as a function of the azimuthal
angle, & — ¢'. Positive (negative) polarization shows that
the electric vector on the scattering plane is smaller
(larger) than that perpendicular to this plane. There are
two noticeable peaks corresponding to the sundog and to
the 120° parhelion [Fig. 8(a)]. Except for negative values
of approximately ¢ — ¢ = 30° that correspond to the sun-
dog, the degree of linear polarization is positive [Fig. 8(b)].
However, the degree of linear polarization cannot reach
+100% as calculated by Lynch,® because not only the ex-
ternally reflected rays (n = 0) but also the transmitted
rays (n = 1) can contribute to the parhelic circle outside
the sundog.

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1251

Figure 9 shows the phase function for 2D plates with an
aspect ratio of L/2a = 40/100 (um/um) at the 10-um
wavelength. As a result of absorption inside the ice crys-
tals, scattered light is contributed mostly from externally
reflected rays but also from transmitted rays without in-
ternal reflections. As a result, not many optical features
can be identified in this case. Because of the difference
in real refractive index between the visible and the infra-
red wavelengths, the position of the circumzenithal arc is
different from that produced by visible light. The halos
at the 10-um wavelength in this and in subsequent figures

(b)

Fig. 11. Same as Fig. 7, except for Parry columns with an aspect
ratio L/2a of 2.5 at the solar zenith angle of 73°. The symbols
-, +, *, and ® denote 0, 1, 2, and 3, respectively, in units of
[logio P11], where [ ] denotes the integral part.
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Fig. 12. Degree of linear polarization, —Py2/Py,, for Parry
columns (a) above the horizon and (b) below the horizon. The
digit 3, for example, denotes a certain value of polarization be-
tween +30% and +40%. Digits are underlined when the polar-
ization is negative.

would occur more vaguely than the present computation
indicates because of the effect of diffraction, as pointed
out by Fraser.”” However, our intention in Fig. 9 is to
compare the 10-um-wavelength halos with the visible halos
for the purpose of checking the computation scheme, not
to simulate the 10-um-wavelength halos.

Figure 10 shows the phase function, Pj;, corresponding
to that in Fig. 9 as well as the degree of linear polarization,
— Py, /Py, along the parhelic circle as a function of the
azimuthal angle. The delta function transmission at ¢ —
¢ = 0° and the relatively weak peaks resulting from the

Y. Takano and K. N. Liou

sundog and the 120° parhelion occur on the parhelic circle
produced by externally reflected rays [Fig. 10(a)]. The
corresponding degree of linear polarization is positive.
As a result of externally reflected rays, the polarization
value can reach +90% at ¢ — ¢ = 90°. Comparing this
figure with Fig. 1 of Ref. 2, we can expect that more-
positive polarization resulting from the effect of scattering
will be produced in this case than in the case of randomly
oriented ice crystals.

Figure 11 shows the phase function for Parry columns
of L/2a = 2.5 at the 0.55-um wavelength. The incident

(a)

()
Fig. 13. Same as Fig. 9, except for Parry columns with an aspect
ratio L/2a of 120/60 (um/um) at A = 10 pm. The symbols *, +,
%, and ® denote 0, 1, 2, and 3, respectively, in units of
[logio Pu] + 1, where [] denotes the integral part.
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Fig. 14. Same as Fig. 12, except for Parry columns of L/2a =
120/60 (um/um) at A = 10 pm.

solar zenith angle, ¢, is 73°. In this figure the upper
Parry are, the lower Parry arc, the parhelic circle, the cir-
cumzenithal are, the heliac arc, the subsun, and the sub-
antihelion are clearly displayed. Figures 11(a) and 11(b)
are almost the same as Figs. 3(a) and 3(b), respectively, of
Ref. 18, so that the program for the computation of the
phase matrix that was developed in this research is con-
sistent with the intensity components.

The degree of linear polarization at A = 0.55 um for
Parry columns with aspect ratio of L/2a = 2.5 corre-
sponding to P); in Figs. 11(a) and 11(b) is shown in
Figs. 12(a) and 12(b), respectively. The numbers in
Fig. 12 denote certain values of polarization. For ex-

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1253

ample, number 3 denotes linear polarization between 30
and 40%. The patterns produced by the transmitted rays
associated with the Parry arcs and the circumzenithal arc
are negatively polarized. According to Greenler," the
heliac arc is produced by the externally reflected rays. In
light of the small values of linear polarization for the
heliac arc displayed in Fig. 12, it appears that the trans-
mitted rays also contribute to its polarization. The polar-
ization pattern shown in Fig. 12(b), if measured from
space, can be used for discrimination between ice clouds
and snow surfaces in polar regions.

Figure 13 shows the phase function for Parry columns
with an aspect ratio of L/2a = 120/60 (um/um) at the
10-um wavelength. Because of intense absorption of ice
at this wavelength, the phase functions are contributed
mostly from the externally reflected and transmitted rays
without internal reflections. These patterns should be
compared with those illustrated in Fig. 11 for the visible
wavelength: the positions of the Parry arcs and of the
circumzenithal arc for the 10-um wavelength differ some-
what from those produced by visible light because of the
difference in the real refractive index between the two
wavelengths.

Figures 14(a) and 14(b) show the degree of linear polar-
ization, — Pyy/Py;, corresponding to Py in Figs. 13(a) and
13(b), respectively. The parhelic circle and the heliac arc,
which are produced by the externally reflected rays, are
positively polarized. Polarization values close to +100%
can be observed on the parhelic circle in Fig. 14(a) and on
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Fig. 15. Radiances as a function of zenith/nadir angles on the
boundaries of cirrus clouds in midlatitude winter atmosphere
(T, = 230 Kand T, = 273 K). (a), (b) Cloud optical depth 7. = 1;
(c), (d) cloud depth 7. = 4.
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Fig. 16. Same as Fig. 15, except for the tropical atmosphere
(T: = 200 K and T, = 300 K).

the heliac arc in Fig. 14(b). These values are produced by
the externally reflected rays whose incident angle is the
Brewster angle. We can also expect more-positive polar-
ization resulting from the effect of scattering in this case
than in the case of randomly oriented crystals. Polariza-
tion values for the Parry arcs and for the circumzenithal
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arc (which are produced by the transmitted rays without
internal reflections) are slightly negative.

Figure 15 shows the upward radiances emergent from
the cloud top and the downward radiances emergent from
the cloud base at the 10-um wavelength. In performing
this radiance calculation, we have used the midlatitude
winter atmospheric profile (cloud temperature T, = 230 K
and surface temperature 7, = 273 K). The microphysi-
cal cloud models used are 2D plates with L/2a =
40/100 (um/um) and Parry and 3D (randomly oriented)
columns of L/2a = 120/60 (um/um). The radiances for
horizontally oriented crystals deviate only slightly from
those for 3D columns. In both cases, limb darkening and
limb brightening appear in the upward and the downward
radiances, respectively.

Figure 16 also shows the upward radiances emergent
from the cloud top and the downward radiances emergent
from the cloud base at the 10-um wavelength. The tropi-
cal atmospheric profile (T, = 200 K and T, = 300 K) is
used in this computation. The upward radiances near the
nadir direction for horizontally oriented crystals are
slightly smaller than those for randomly oriented crystals,
as shown in Figs. 16(a) and 16(c). However, the radiances
for horizontally oriented crystals are, in general, similar
to those for randomly oriented crystals. On the basis of
the results presented in Figs. 15 and 16, we may conclude
that the effect of horizontal orientation may be neglected
if the infrared radiances are the only required results.

Figure 17 shows the degree of linear polarization, —Q/I,
corresponding to Fig. 15, i.e, in the case of midlatitude
cirrus. Positive (negative) polarization in the multiple
scattering shows that the electric vector on the local
meridian plane is smaller (larger) than that perpendicular
to this plane. Polarization values for horizontally ori-
ented crystals are greater by an order of magnitude than
those for 3D columns, because radiation emitted from
horizontally oriented crystals is polarized, whereas radia-
tion emitted from randomly oriented crystals is unpolar-
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Fig. 17. Degree of linear polarization, —Q/I, corresponding to Fig. 15 as a function of zenith/nadir angles on the boundaries of cirrus
clouds in the midlatitude winter atmosphere: (a), (b) cloud optical depth 7. = 1; (c), (d) cloud depth 7. = 4.
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Fig. 18. Same as Fig. 17, except for the tropical atmosphere.

ized. The patterns of the linear polarization in this fig-
ure resemble those of the linear polarization, —~@,, emit-
ted from horizontally oriented crystals as shown in Fig. 2.
However, we can see local maximum values at 8 = 65° in
Figs. 17(a) and 17(c) and maximum values at § = 77° in
Figs. 17(b) and 17(d), which are produced by the effect of
scattering in the case of 2D plates. These maxima can be
interpreted as follows: In the case of 2D plates, scattered
light is confined to four latitude circles and is contributed
mostly from the externally reflected rays. Diffuse reflec-
tions are produced by reflections at the basal plane of 2D
plates. For the reflected light at a zenith angle 8 the
corresponding incident angle is 6. As a result, at a cer-
tain zenith angle the maximum value of positive polariza-
tion appears, as shown in Figs. 17(b) and 17(d). Diffuse
transmissions are produced by reflections at the six prism
planes of 2D plates. For scattered light at a nadir angle 6,
the corresponding maximum incident angle is #/2 — 6.
For this reason, the local maximum of polarization ap-
pears at a different nadir angle, as shown in Figs. 17(a)
and 17(c). The effect of scattering in upward radiances is
weaker than that in downward radiances at limb direc-
tions. As a result, the (local) maximum values shown in
Figs. 17(a) and 17(c) are smaller than those shown in
Figs. 17(b) and 17(d).

The magnitudes of negative upward polarization shown
in Figs. 17(a) and 17(c) become larger when optical depth
increases, because negatively polarized radiation emitted
from horizontally oriented crystals is more predominant
than unpolarized radiation emitted from the ground.
On the other hand, downward polarization remains un-
changed when optical depth increases, as shown in
Figs. 17(b) and 17(d), because polarization from both
cloud reflection and cloud emission is weakly dependent
on optical depth.

Figure 18 shows the degree of linear polarization for
tropical cirrus corresponding to Fig. 16. Upward polariza-
tion values in Figs. 18(a) and 18(c) are close to those for
midlatitude cirrus shown in Figs. 17(a) and 17(c). This is

because unpolarized radiation emitted from the ground at
small nadir angles and cloud emission at other nadir
angles contribute to the upward radiation. Downward
polarization values in Figs. 18(b) and 18(d) are different
from those for midlatitude cirrus in Figs. 17(b) and 17(d).
Positive polarization values are larger and reach +7% at
the zenith angle of 77°, because the cloud temperature, T,
is much colder than the surface temperature, T}, for tropi-
cal cirrus. Therefore positively polarized cloud reflection
relative to weakly polarized cloud emission is more domi-
nant for tropical cirrus than for midlatitude cirrus. Small
ice crystals with sizes of less than ~40 um may exist in
both tropical and midlatitude cirrus clouds, as is discussed
in Ref. 19, These small ice crystals tend to orient ran-
domly in space'” and may reduce the percentage of linear
polarization presented in Figs. 17 and 18. The degree of
reduction would depend on the number density of small
ice crystals that are present in the cloud.

5. CONCLUSIONS

Extending our previous research on the evaluation of
radiance and linear-polarization patterns for randomly
oriented hexagonal ice crystals, we have developed a the-
ory to compute radiances and linear-polarization distribu-
tions for horizontally oriented ice crystals at thermal
infrared wavelengths. A numerical program for comput-
ing the phase matrix elements for horizontally oriented
crystals was developed in the present study on the basis of
the procedure outlined in Ref. 4. For the first time to our
knowledge, we derived the symmetry relations of the
phase matrix and the linear polarization of thermal emis-
sion for horizontally oriented crystals. A 2 X 2 phase
matrix in reference to the local meridian plane is suffi-
cient for computing linear polarization for infrared radia-
tion in multiple-scattering processes.

The phase matrices for horizontally oriented crystals
were calculated at the 0.55- and 10-um wavelengths.
We find that positive polarization values of the parhelic
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circle at the visible wavelength cannot reach +100%, a
finding that differs from the results that we obtained in
our previous study. Computations of infrared radiative
transfer are carried out by means of the adding method
with the use of the midlatitude-winter and tropical-
atmospheric profiles. If one is interested only in infrared
radiances, it is sufficient to use the randomly oriented
crystal model in the computation. In this case, the effect
of horizontal orientation can be neglected. However, the
effect of crystal orientation is important for the genera-
tion of linear polarization at infrared wavelengths. The
degree of linear polarization in the case of randomly ori-
ented crystals is zero or slightly positive, with values of
only as much as +1%. In the case of horizontally oriented
crystals, linear polarization is negative, with values of ap-
proximately —1% at the cloud top, whereas it can have a
maximum value of +7% at the cloud base.

In view of these findings, it appears that it is possible to
infer the orientation properties of ice crystals in cirrus
clouds by measuring infrared polarization from the
ground or from aircraft above cirrus clouds.
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