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                           Abstract

   Fraunhofer diffraction has been explicitly formulated for a finite hexagonal cylinder 

and a spheroid in any arbitrary orientation. The diffracted intensity was computed for 

hexagonal cylinders and spheroids oriented randomly in a three dimensional space and in 

a horizontal plane. The diffraction by hexagonal cylinders in 3D random orientation can 

be well approximated by that of spheroids of the same aspect ratio. For horizontal orien-

tation, the diffracted intensity is a function not only of the scattering angle but also of the 

azimuth angle, and the diffraction patterns for hexagonal cylinders and spheroids are quite 

different from each other. The diffraction patterns of hexagonal cylinders in horizontal 

orientation strongly depend on the source elevation, showing patterns highly anisotropic 

with respect to the azimuth angle at low source elevations. Applications to optical phenomena 

due to ice crystals in the atmosphere are also discussed.

1. Introduction 

 An exact treatment of the light scattering by 
ice crystals in the atmosphere seems to be im-

practicable, if not impossible. However, since 
sizes of ice crystals are much larger than the 
wavelength of light, the scattering can be de-
scribed by the geometrical optics approximation. 
In addition, predominant shape of ice crystals 
can be well modelled by hexagonal plates and 
hexagonal columns: hereafter we shall refer to 

both as hexagonal cylinders. Recent years, sev-
eral attempts have been made to investigate the 
light scattering by hexagonal cylinders by means 
of the geometrical optics approximation (Jacobo-
witz, 1971; Wendling et al., 1979; Coleman and 
Liou, 1981; Cai and Liou, 1982). 

  In geometrical optics approximation, the scat-
tered light is decomposed into light rays dif-
fracted, externally (Fresnel) reflected, and re-
fracted after some internal reflections. The dif-
fraction of the sun or moon light by ice crystals 

can be described by the Fraunhofer diffraction 
theory since the light source and the observer are 

both very far from the targets. In earlier studies, 
the Fraunhofer diffraction by hexagonal cylinders

was approximated by that for rectangular or 
circular apertures (Jacobowitz, 1971; Wendling 
et al., 1979). More recently, Coleman and Liou 

(1981), and Cai and Liou (1982) have treated 
more exactly the diffraction by finite hexagonal 
cylinders; unfortunately their formulations con-
tain some minor oversights, and hence differ from 
our formulation presented in this work. 

  In the present study, we shall concentrate our-
selves on the diffraction by hexagonal cylinders 
and spheroids. First, the Fraunhofer diffraction 
by these particles in an arbitrary orientation is 
explicitly formulated. Then the diffracted inten-
sity is computed for those particles oriented ran-
domly in a 3D space as well as in a horizontal 

plane. The small roughness and the skeleton 
structure of ice crystals will not appreciably af-
fect the diffracted intensity distribution, so that 
we can treat only convex ice crystal particles 
without losing generality. 

  Ice crystals in the atmosphere present various 
optical phenomena such as the 22* halo, par-
helia, light pillar, and so on. Quite frequently 
anisotropic light scattering patterns like an aste-
roid or a cross are observed in the vicinity of 
the light source. We shall discuss some relations
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between the diffraction patterns of hexagonal 
cylinders and the optical phenomena due to ice 
crystals in horizontal orientation. 

2. Theory 

  In order to study the diffraction by a particle, 
we apply Babinet's principle (van de Hulst, 1957; 
Born and Wolf, 1975), which states that the dis-
tribution of light intensity diffracted by a particle 
is identical with that by an aperture of the shape 
and size identical to the geometric shadow of 
the particle. In the limit of Fraunhofer diffrac-
tion at the far field, the disturbance amplitude 
of diffraction by an aperture S at an arbitrary 

point P(*, *) is given, ignoring a constant factor, 
by (Born and Wolf, 1975)

where

Here k is the wave number of the incident plane 
wave, i = *-1, * is the scattering angle, and * 
is the azimuth angle. The diffracted intensity I 
is given by the square of the absolute value of 
the amplitude of disturbance, viz., I=*A*2. 

A. Diffraction by a hexagonal cylinder 
  Let a plane wave be incident on a hexagonal 

cylinder from a direction with zenith angle 
(*/2-*) and azimuth angle * measured with 
respect to the coordinate system fixed to the 
cylinder, where the x- and z-axes are directed, 
respectively, along the a- and c-axes of the hex-
agonal cylinder. The origin * of the coordinate 
system is taken at the center of the cylinder. 
The geometric shadow of the hexagonal cylinder 

projected onto a plane normal to the incident 
direction is expressed in terms of the (x', y') co-
ordinates of its marginal vertexes in a new coor-
dinate system, whose z' axis is taken along the 
incident direction (see Fig. 1). The transforma-
tion of the body-framed coordinate system X(x, 

y, z) into the new coordinate system X'(x', y', z') 
can he written in the form:

where the transformation matrixes are given by

Fig. 1 Geometric shadow of a hexagonal cyl-
   inder projected onto a plane normal to the 
   incident direction.

with

Therefore, if the size and shape of the hexagonal 
cylinder as well as the propagation direction 
(a, *) of the incident wave are known, the co-
efficients a1, a2, a3, b1, b2, b3, y1 and y2 in Fig. 1 
are easily determined by Eq. (3). Here we spe-
cify the size and shape of the cylinder by, respec-
tively, ka and the length to radius ratio c/a; a 
and c are the half-lengths of the a- and c-axes 
of the hexagonal cylinder, respectively. 

 The integration of Eq. (1) over the geometric 
shadow area bounded by (1-6-5-4-10-9-8-7-1) in 
Fig. 1 can be easily performed by dividing the 
whole integration domain into three subdomains: 
two trapezoids (1-6-5-4-1) and (7-10-9-8-7), and 
one parallelogram (1-4-10-7-1). The operation of 
the matrix B in Eq. (3) is done to make the bases
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of the trapezoids parallel to the x' axis, so that 

we can apply the integration method by Smith 
and Marsh (1974). Finally we have the diffrac-
tion amplitude AH of a hexagonal cylinder in the 
orientation (*, *) at a point P(*, *) in the form:

a case of particles oriented randomly in a 3D 
space on one hand, and a case in which particles 
are oriented randomly in a horizontal plane on 
the other hand (hereafter referred to as 3D ran-
dom orientation and horizontal orientation, re-
spectively). The latter is a modelling of large 
ice crystals falling through the atmosphere in a 

preferred orientation keeping their maximum 
dimensions horizontal (Sassen, 1980a). For both 
cases, each orientation in a 3D space or in a 
horizontal plane is supposed to occur with a uni-
form probability. 

 The diffraction intensities IH3 and HS3 for hex-
agonal cylinders and spheroids, respectively, in 
3D random orientation are given by

and

B. Diffraction by a spheroidal particle 
 The geometric shadow of a spheroid projected 

onto a plane perpendicular to the incident direc-
tion is, in general, an ellipse. We specify an 
orientation of a spheroid by an angle * between 
the incident direction and the rotation axis of the 
spheroid. The intensity distribution of light dif-
fracted by a spheroid in any orientation * can 
be expressed as follows.

For 3D random orientation, the diffracted inten-

sities are naturally independent of the azimuth 

angle *. 

  In Fig. 2, a configuration of horizontal orienta-

tion is shown. The direction *Z" corresponds to 

the zenith direction, * is the angle between the 

incident direction EO and a horizontal plane

where

Here J1 is the first order Bessel function of the 
first kind, and a and c are, respectively, the 
radius and the half-length of the rotation axis 
of the spheroid. For prolate spheroids (c>a), the 
azimuth angle * should be measured from the 
long axis of the shadow ellipse, while, for oblate 
spheroids (c<a), * should be measured from its 
short axis. 

C. Superposition of the diffracted intensities over 
   orientation 

 The total intensity of diffraction at an observa-
tion point for particles in different orientation is 
a sum of the diffracted intensity at the same point 
for each particle in each orientation. We con-
sider two cases of particle orientation, namely,

Fig. 2 Geometry for a hexagonal column ori-

   ented in a horizontal plane.
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X"OY", and represents the elevation angle of 
the incident light source. * is the angle between 

the c axis of a hexagonal column or a prolate 
spheroid and the X" axis; this angle describes 
the orientation of a particle in the horizontal 
direction. From the spherical trigonometry, the 

angles *(=*/2-*) and * are given, respective-
ly, by

In this case, the azimuth angle at an observation 

point is measured from the X"OZ" plane (the 
principal meridional plane); we denote this 
azimuth angle by *, in order to discriminate it 

from * measured from a body-fixed coordinate 
for IH and Is. 

 Considering that the angle * takes values be-
tween 0 and 2* with an equal probability, and 

that at each * a hexagonal column may rotate 
about its c-axis, the diffracted intensity IHG for 
hexagonal columns in horizontal orientation can 
be expressed in the form:

For prolate spheroids in horizontal orientation, 

the corresponding expression for the diffracted 

intensity IPS is written as

  Rather complicated expressions for the azi-
muth angle seen in these equations (16) through 

(19) stem from the fact that the azimuth angles 
for IH and IS are measured from the direction 
fixed to the scattering body. The double sign 
appearing in these equations can be taken arbi-
trarily, and the diffracted intensities coincide with 
each other for any choice of the double sign. 

This results from the symmetrical properties of 
the diffraction pattern of each particle with re-
spect to the *=0*-180* plane, and from the 
randomness of orientation in a horizontal plane. 
In addition, one should notice in those equations 
that the diffracted intensities of particles in hori-
zontal orientation depend not only on the scat-
tering angle * but also on the azimuth angle *. 
The azimuthal dependence has often been ignored 
in the foregoing studies (e.g., Liou, 1972; Ste-

phens, 1980b; Coleman and Liou, 1981). Fur-
thermore, the validity of the scheme proposed by 
Liou (1972) for integration over random orinent-
ation is somewhat questionable; a more detailed 
discussion will be given in the Appendix. 

D. Diffracted intensity for the forward direction 

 For the forward direction (*=0), the diffracted 
intensity of a particle is given, excluding a con-
stant factor, by k4G2(*,*) from Eq. (1); G(*,*) 
is the geometric shadow area of the particle at 
the incident direction (*,*). For convex non-
spherical particles oriented randomly in a 3D 
space, the diffracted intensity I(*=0) in the for-
ward direction is given by averaging k4G2(*,*) 
over all particle orientation. Then, from the 
Schwarz inequality, the following relation holds:

 For planar particles such as hexagonal plates 

and oblate spheroids in horizontal orientation, 

their c axes happen to be parallel to the Z" axis 

in Fig. 2: the integration over the orientation an-

gle * is not necessary. The diffracted intensities 

IHP and Ios for hexagonal plates and oblate 

spheroids in horizontal orientation are, respective-

ly, given by

and

The right side of Eq. (20) is just the diffracted 
intensity I0 for a spherical particle of the same 
surface area, or equivalently, of the cross sec-
tional area equal to the averaged projected area 
of randomly oriented convex particles (van de 
Hulst, 1957). Equation (20) implies that the dif-
fracted intensity for the forward direction is 
larger for randomly oriented convex particles 
than for the surface-area equivalent sphere. 

  As an example, we shall examine the forward 
diffraction intensity of hexagonal cylinders in 3D 
random orientation. For a hexagonal cylinder, 
the geometrical shadow area GH at the incident
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direction (*,*) can be expressed in the form*

where

Integrating over orientation, the averaged geo-

metrical shadow area becomes

Writing rG for the radius of the surface-area 

equivalent sphere, the following relation between 

a and rG results in,

From Eqs. (20), (21), and (24), we obtain

Fig. 3 Ratios of the diffracted intensities of 

   randomly oriented hexagonal cylinders and 

   spheroids to that for the surface-area 

   equivalent sphere at *=0*.

ent sizes but with a same shape. The geometric 

shadow area and the diffracted intensity of a 

hexagonal cylinder with a size * times larger but 

of the same shape are expressed in terms of 

those for the original cylinder as,

where I0=k4(*rG2)2 is adopted. 
  Similar expressions can be obtained for ran-

domly oriented spheroidal particles by integrat-
ing the squares of their geometrical shadow areas 

(e.g., Eqs. (5) and (6) of Asano (1979)). Figure 
3 shows the forward diffraction intensity ratios 

I/I0(*=0), as a function of the shape parameter 
(c/a for columnar particles, i.e., hexagonal col-
umns and prolate spheroids, and a/c for planar 

particles), for hexagonal cylinders and spheroids 
in 3D random orientation. As expected from Eqs. 

(20) and (25), the forward diffraction intensity 
of randomly oriented nonspherical particles is 
larger than that of the area-equivalent sphere: 
especially, in the limit of c/a*0, the forward 
diffraction by very thin planar particles tends to 
be 1.33 times more intense than for the equivalent 
sphere. 

E. Similarity of the diffracted intensities 
 An another interesting feature is a similarity 

in the diffracted intensities of particles of differ-

 * In the right side of Eq. (9) of Coleman and Liou 
 (1981), the factor L/3 should be read as 2L/3, 

 then the expression becomes equivalent to ours.

with

The same similarity holds for spheroidal parti-

cles. This similarity relation provides a useful 

method to estimate the diffraction intensity of 

particles of different sizes but with a same shape. 
 Now we shall introduce the normalized inten-

sity IN defined as

Then, from Eqs. (26) and (27), we have

The normalized intensity IN satisfies the follow-

ing normailzation condition,

The similarity relation Eq. (30) is also valid 
even for the diffracted intensities integrated over 
a size distribution such as the modified gamma
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distribution or the log-normal distribution, when 

the mean size is varied but the variance of dis-

tributions remains unchanged. This can be easily 

shown by invoking that the above size distribu-

tions have the following property:

where the notation is explained in the next sec-
tion. 

3. Computed results 

  In order to check correctness of our formula-
tion, the diffraction pattern, computed by Eq. (8), 
of a regular hexagonal aperture was compared 
with some photographic images of the Fraun-
hofer diffraction by the similar apertures (Smith 
and Marsh, 1974; Schemer and Hirayama, 1894). 
The computed diffraction pattern agrees well 
with the images. Figure 4 shows the intensity 
distribution diffracted by a hexagonal cylinder of 
c/a=2 and k2G=104, for the orientation of *= 
60* and *=20*. The shape of the projected 
shadow of the cylinder is depicted at the upper 
right corner. At scattering angles *3*, the 
maximum intensity appears at *=165* and 345*

(roughly parallel to the short sides of the geo-
metric shadow), and the secondary maximum ap-

pears at *75* and 255* (parallel to the long 
sides of the geometric shadow), while in the inter-
mediate azimuthal directions the diffracted inten-
sity becomes minimum. For round particles like 
spheroids, the azimuthal distribution pattern is 
much more smooth; the diffraction pattern of a 
spheroid is elliptical. 

  Next, we computed the diffracted intensity of 
hexagonal cylinders in 3D random orientation. 
For a comparison with the result by Coleman 
and Liou (1981, Fig. 6), the normalized inten-
sities diffracted by the same particles are shown 
in Fig. 5, as a function of the scattering angle *. 
The size parameter for the wavelength *= 
0.55*m is about 19 times larger than for *= 
10.6*m. Following the similarity relation dis-
cussed above, the normalized intensity in the 
forward direction at *=0.55*m should be about 
360 times larger than that at *=10.6*m, just 
as shown in the figure. In contrast, Coleman and 
Liou obtained the forward scattering intensities 
of the same order of magnitude at the both wave-
lengths.

Fig. 4 Contour of the diffracted intensity for 
   a hexagonal cylinder of c/a=2 and k2G= 

   104 at the specific orientation (*,*)=(60*, 
   20*). The insert at the upper right corner 

   is the geometric shadow of this hexagonal 
   cylinder. Numerical values denote the loga-

   rithms of the intensities of the diffracted 
  light.

Fig. 5 Normalized diffracted intensities for 

   hexagonal cylinders in 3D random orien-

   tation at two wavelengths *=0.55µm and 

   10.6µm.
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  As seen on the curves for *=10.6*m in Fig. 

5, some conspicuous fluctuations still remain even 

after averaging over random orientation. Inte-

gration over a particle size distribution was per-
formed in order to smooth out the fluctuations. 

The modified gamma distribution function was 

used in the form:

where n(x, xe, *)dx is the number of particles 
with the size parameters between x and x+dx, 
xe is the effective size, * is the effective variance, 
and * is the gamma function. In the integra-
tion, the particle shape c/a was kept constant. 

  In Fig. 6, the normalized intensities of diffrac-
tion by hexagonal columns and plates in 3D 
random orientation are compared with those for 
the surface area equivalent spheres. The cor-
responding figure for prolate and oblate spheroids 
is given in Fig. 7. In both figures, the geometric 

shadow area k2G averaged over orientations and 
sizes is set to be *(100)2. The diffraction inten-
sity patternss of planar particles are much more 
closer to those of the spheres than those of

columnar particles are. This is because, for 

planar particles, the geometric shadow area is 
larger when the shape of geometric shadow is 

closer to spherical, and vice versa for columnar 

particles. For forward scattering, however, the 
columnar particles have the diffracted intensities 

closer to that of the equivalent spheres than the 

planar particles do, as already shown in Fig. 3. 
It is worth noting that the diffracted intensities 

of hexagonal cylinders and spheroids of the same 

aspect ratio resemble each other. This similarity 

results from averaging the diffracted intensities 

over all orientation. This result suggests that 

spheroids are a useful substitute to approximate 

the diffraction by hexagonal cylinders in 3D ran-

dom orientation: computational task for spheroids 

is much less than for hexagonal cylinders. 

  Figures 8 to 11 display the distribution pat-

terns of the diffracted intensity for hexagonal 

cylinders and spheroids oriented randomly in a 

horizontal plane. Since the diffracted intensity is 

symmetrical with respect to the *=0*-180* 

plane, and the *=90*-270* plane,* the dif-

Fig.7 Normalized diffracted intensities for 
   polydispersed spheroids in 3D random ori-

   entation. k2G=*(100)2, *=0.1.

Fig. 6 Normalized diffracted intensities for 

   polydispersed hexagonal cylinders in 3D 
   random orientation. k2G=*(100)2, *=0.1.

* We can obtain the former symmetry by replacing 
 * with -* in Eqs. (16) through (19), and the 

 latter symmetry by replacing * with *-* in 
 the symmetry relation IH(*, *; *, *; ka, c/a)= 

 IH(*,*;*, *; ka, c/a).
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fraction pattern only in one quardrant is shown. 
In these figures, the diffracted intensities are nor-
malized by *(300)2. Contours of this quantity 
are drawn at every half order of magnitude. 

 Figure 8 shows contours of the diffracted in-
tensities at the source (e.g., the sun) elevation 

angle of *=10*. For oblate spheroids, the dis-
tribution pattern is elliptical: the aspect ratio of 

the elliptical pattern is given, from Eqs. (11) and 

(19), by

For prolate spheroids, the contours slightly de-
viate from elliptical patterns. 

  At very low sun elevations, the geometric 
shadows of hexagonal plates take nearly rect-
angular forms whose long sides are horizontal. 
As inferred from Fig. 4, the diffracted intensity 
of a rectangular aperture will have minima in its 
diagonal directions. Thus, for hexagonal plates 
in horizontal orientation, the diffraction pattern 
at the low sun elevation (*=10*) becomes con-
cave in intermediate * directions, and tends to 
look like a cross. On the other hand, for hex-
agonal columns, the diffraction pattern resem-
bles an asteroid or a rhombus. This is because 
many different diffraction patterns are superposed

for the case of hexagonal columns. 

  Figure 9 shows the diffraction patterns of the 

same particles as in Fig. 8, but for the sun ele-

vation *=30*. For higher sun elevation angles, 

the diffraction pattern, as a whole, becomes less 

conspicuous though the characteristic features 

mentioned in Fig. 8 are still conserved. Note 

that at the limiting case of *=90*, the diffrac-

tion pattern for particles in horizontal orienta-

tion is isotropic with respect to * with isolines 

forming concentric circles. 

  In the lower halves of Figs. 8, 9, and 10, de-

monstrated is an effect of the variance * of size 

distributions on the diffraction patterns of spher-

oidal and hexagonal particles in horizontal orien-

tation. Calculations for different values of * in-

dicate that if the variance * is large enough to 

smooth out fluctuations in the diffracted inten-

sities, it does not significantly change the diffrac-

tion patterns. 

 The upper half of Fig. 10 shows the diffrac-

tion patterns, at two elevations *=10* and 30*, 

for a mixture of hexagonal plates and columns 

in horizontal orientation as well as spherical 

particles; these particles are mixed with an equal 

proportion. The spherical particles here are sup-

posed to simulate such ice crystals having spatial 
structures as bullet rosettes. Such ice crystals 

may be oriented randomly in a 3D space regard-

less of their sizes. The concave contours of hex-

agonal plates are almost compensated by the

Fig. 8 Distributions of the normalized dif-
   fracted intensities for hexagonal cylinders 

   and spheroids in horizontal orientation. 
    *=10*, SP=4, k2G=*(300)2. The solid 

   and broken lines correspond to the cases of 
   *=0.1 and *=0.2 , respectively.

Fig. 9 Same as Fig. 8 but for *=30*. The 

   solid and broken lines correspond to the 

   cases of *=0.2 and *=0.1, respectively.
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Table 1 Average maximum dimensions of hexago-

   nal cylinders under consideration at the wave-

   length *=0.7µm and the Reynolds numbers.

Fig. 10 Distributions of the normalized dif-

   fracted intensities for mixed particles and 

   hexagonal plates in horizontal orientation. 

N 

   SP=4, k2G=*(30O)2. The solid and broken 
   lines in the lower half correspond to the 

    cases of *=0.2 and *=0.1, respectively.

circular contours of spherical particles, then the 
diffraction patterns just like those for hexagonal 
colmuns in Figs. 8 and 9 result for the mixtures. 
This implies that we can hardly discriminate 
horizontally oriented hexagonal columns from a 
mixture of various ice crystals only from their 
diffraction patterns. 

  The Reynolds number Re of planar ice crys-
tals falling in the atmosphere was estimated by 
Sassen (1980a). He concluded that planar ice 
crystals in the range 1.0<Re<100 are in stable 
horizontal orientation. On the basis of Kajikawa 
(1972) and Heymsfield (1972), we estimated the 
averaged maximum dimensions and the Rey-
nolds numbers of hexagonal cylinders of k2G= 

*(300)2 used in this calculation (see Table 1). 
Here we take the visible wavelength *=0.7*m 
and the variance *=0.1. For the hexagonal 
plates, Re is too small to satisfy Sassen's condi-
tion for horizontal orientation. So we extended 

calculations to hexagonal plates of k2G =*(600)2. 
In this case, Re is 1.9 and about 1.3 for the 
shape parameters SP=4 and 10, respectively. 
Figure 11 shows the diffraction patterns of these 
hexagonal plates in horizontal orientation for 
source elevation angles *=10* and 30*. As ex-
pected from the similarity relations in the sec-

Fig. 11 Distributions of the diffracted intensi-
   ties for hexagonal paltes in horizontal ori-

   entation. k2G=*(600)2, *=0.1.

tion 2-E, the diffraction patterns for the hex-

agonal plates of k2G=*(600)2 and *(300)2 are 

quite similar to each other: the directly calcu-
lated values of the diffracted intensity for k2G= 

*(600)2 at small scattering angles agreed with 
the estimated values obtained using the similarity 

relations from those for k2G=*(300)2. 

4. Application to optical phenomena due to ice 
  crystals 

 Sassen (1980b) displays a photograph of a 
moonrise accompanied by the moon pillar and 
"moon dogs" . Since the parhelia (moon dogs), 
without the 22* halo and upper tangent arc, can 
be seen in the picture, the suspended ice crystals 
at that time might be hexagonal plates oriented 
randomly, keeping their basal planes nearly hori-
zontal. The author attributed the light pattern
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in the vicinity of the moon to a light cross 
caused by a combination of a light pillar above 
and beneath the moon with a segment of the 
horizontal parhelic circle. According to Lynch 

(1979), however, the intensity of the parhelic 
circle is of the minimum in the direction of the 
light source at any source elevation. Therefore 
the light stripe in the horizontal direction looks 
like a diffraction pattern rather than a segment 
of the parhelic circle. Figures 8 and 11 suggest 
that the vertical light stripe may also result 

partly from the diffraction, at least in the ex-
treme vicinity of the moon. In general, the 
light cross has so far been explained as a com-
bination of the light pillar and the parhelic circle 

(e.g., Minnaert, 1954). Here we suggest that the 
light cross, at least at low source elevations, can 

partly be due to a diffraction pattern of hex-
agonal plate crystals in horizontal orientation. 

  Non-isotropic diffraction patterns with respect 
to the azimuthal direction have been observed 
by many investigators. For example, in the pic-
ture of a surface halo (Plate 19 of Kuhn (1978)), 
the diffraction pattern concave for intermediate 

* directions can be seen. Since the 22* halo 
ring caused by freshly fallen ice crystals appears 
on the ground, the sun elevation might be less 
than 22*. From the anisotropic diffraction pat-
tern, without any other optical phenomena in the 
atmosphere, we can infer that large plate crys-
tals might have been suspended in horizontal 
orientation at that time. Simultaneous occur-
rance of optical phenomena such as the 22* 
halo, parhelia, and upper tangent arc is frequent-
ly observed, and their photographs have been 
displayed by, for example, Evans and Tricker 

(1972, Fig. 3), Greenler (1980, Plate 2-18), and 
Tricker (1972). Then sun elevation angles were 
about 14, 20, and 30*, respectively, in those 

pictures. From these pictures, we can suppose 
a simultaneous presence of hexagonal planar and 
columnar crystals in horizontal orientation and 
of ice crystals in 3D random orientation. The 
diffraction patterns in these pictures look like a 
rhombus or an asteroid for the former two cases, 
and a dumpy rhombus for the last case: the 

patterns agree well with the calculated diffrac-
tion patterns for mixed particles in Fig. 10. The 
diffraction pattern recognition may also be use-
ful to infer types and fall attitudes of ice crys-
tals in such cases where ice crystals have no 
definite hexagonal structures or clear optical 
faces causing appreciable optical phenomena,

and where ice clouds are too thin to produce 
optical phenomena. 

  In calculations for horizontal orientation, we 
assumed a complete random orientation in a 
horizontal plane. In the atmosphere, however, 
falling ice crystals may flutter, more or less, 
about their stable horizontal orientation. This 
wobbling may cause a horizontal and/or vertical 
extension of optical phenomena, as well as a 
blurring of the diffraction patterns predicted by 
calculations. 

5. Conclusions 

 The explicit formulas for the Fraunhofer dif-
fraction by a hexagonal cylinder and a spheroidal 

particle in any arbitrary orientation have been 
derived. The computed diffraction patterns 
agreed quite well with photographic images of 
the Fraunhofer diffraction pattern (Smith and 
Marsh, 1974; Schemer and Hirayama, 1894). 

  Calculations for completely random orienta-
tion in a 3D space indicate that diffraction by 
randomly oriented hexagonal cylinders can be 
approximated by that of spheroids of the same 
shape parameter. For horizontally random ori-
entation, the diffracted intensity is a function 
not only of the scattering angle but of the 
azimuth angle. The diffraction patterns of hex-
agonal cylinders in horizontal orientation strong-
ly depend on the elevation angle of light source; 
the diffraction patterns are highly anisotropic 
with respect to the azimuthal direction at low 
source elevations. 

 Applications to optical phenomena due to ice 
crystals in the atmosphere were discussed. A 
suggestion is made that the light cross at low 
source elevations may be due to diffraction by 
hexagonal planar crystals in horizontal orienta-
tion rather than due to a combination of a light 

pillar and a parhelic circle. A utility of diffrac-
tion to infer shapes and fall attitudes of ice 
crystals in the atmosphere has been pointed out. 
For further studies, it is desirable to combine an 
analysis of the diffraction patterns with a simul-
taneous sampling of such ice crystals as diamond 
dusts causing the diffraction near the ground at 
the polar regions. 
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Note added in proof 

  After submission of this work, we came across 
the papers by Komrska, J., 1972: Opt. Acta, 19, 
807-816 and 1973: Opt. Acta, 20, 549-563,
where, prior to the work of Smith and Marsh, 
the computed Fraunhofer diffraction patterns for 
some regular polygonal apertures have been com-

pared with the experimental profiles. 

             Appendix 

 Liou (1972) defined an averaged quantity F(*) 
over random orientation in a 3D space as

where F(*,*) is a physical quantity depending 
on the elevation angle * and the orientation angle 

* (see Fig. 2). This scheme has been adopted 
by several investigators to calculate averaged 
values over random orientation (Stephens, 1980a; 
Coleman and Liou, 1981). Taking the projected 
shadow area of a prolate spheroid as the phy-
sical quantity, we evaluated the averaged shadow 
area over 3D random orientation both by Eq. 
(A1) and by our scheme Eq. (13). The projected 
shadow area of a prolate spheroid of size ka 
and *=c/a in an orientation (*,*) is written 
in the form (Asano, 1979):

Our scheme Eq. (13) gives

which is exactly equal to 1/4 of the surface area 
of the spheroid: the average geometrical shadow 
area of identical convex particles in 3D random 
orientation is one-fourth their surface area (van 
de Hulst, 1957). For *=4, for example , Equa-
tion (A3) gives G=3.223*a2. On the other hand , 
numerical evaluation of Eq. (A1) for the same 

prolate spheroid yields G=3.426*a2, which is a 
little larger than the exact value. Thus, the 
scheme (A1) does not accurately represent the 
average over 3D random orientation. 
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大 気 中 に 浮 遊 す る氷 晶 に よ る光 のFraunhofer回 折

高 野 精 秀

東北大学理学部超高層物理学研究施設

浅 野 正=

気象研究所高層物理研究部

任意の方向を向いた有限の長さの六角柱および回転楕円体のFraunhofer回 折の定式化を行い,3次 元空間内

および水平面内にランダムに方位する各々の粒子の回折強度を計算した。3次 元空間内にランダムに方位する六

角柱の回折強度は,同 じ縦横比の回転楕円体のそれによって うまく近似される。粒子が水平面内に長軸を保って

方位する場合の回折強度は散乱角だけではなく方位角の関数でもあ り,六 角柱と回転楕円体で回折パターソはか

なり違う。水平面方位 した六角柱の回折強度分布は光源の高度に強 く依存し,光 源の高度が低いとき方位角につ

いて著しく異方性を示す。 さらに得られた計算結果の氷晶によって生ずる大気光学現象への応用についても議論

した。


