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Abstract—The basic radiative transfer equation in three-dimensional space is expressed in terms of three
commonly used coordinate systems, namely, Cartesian, cylindrical and spherical coordinates. The concept
of a transformation matrix is applied to the transformation processes between the Cartesian system and two
other systems. The spherical harmonic method is then applied to decompose the radiative transfer equation
into a set of coupled partial differential equations for all three systems in terms of partial differential
operators. By truncating the number of partial differential equations into four along with further mathema-
tical analyses, we obtain a modified Helmholtz equation. For each coordinate system, analytical solutions in
terms of infinite series are obtained whenever the equation is solvable by the technique of separation of
variables with proper boundary conditions. Numerical computations are carried out for one dimensional
radiative transfer to illustrate the applicability of the technique developed in the present study.

1. INTRODUCTION

Various research disciplines, such as atmospheric sciences, astronomy, nuclear engineering,
engineering design, etc., are frequently involved with problems of radiative transfer. Generally,
the physical behaviors of radiative transfer are summarized in the basic transfer equation or the
Boltzmann equation. The inherent complexity of the equation leads to a wide variety of
solution methods. Crosbie and Linsenbardt!, in their study on the two-dimensional radiative
transfer involving isotropic scattering, have presented a rather comprehensive overview on a
number of methods that were used to solve the transfer equation under various physical
situations. Bayazitoglu® has also provided a general survey on the development of more refined
solution methods for the multi-dimensional transfer equation. Among these solution methods, the
spherical harmonics method is perhaps the most tedious and yet elegant approach. It was first
introduced by Jeans® in conjunction with astronomical radiative transfer problems. Later,
Marshak* applied it to the Milne problem for a sphere. Mark® also generalized the spherical
harmonics method in terms of a tensor operation to medium with cylindrical and spherical
symmetry. Dave and Canosa® and Dave’ presented a direct solution to the one-dimensional
transfer equation by means of the spherical harmonics method. More recently, Liou and Ou® and
Ou and Liov’ also developed analytical and numerical schemes based on the first-order spherical
harmonics expansion to solve the transfer of solar and infrared radiation in three-dimensional
cloud layers. On the basis of the aforementioned studies, it would appear that the spherical
harmonics method as applied to the radiative transfer equation may be generalized for arbitrary
coordinate systems and dimensions.

In this paper we first apply the spherical harmonics method to the basic three-dimensional
radiative transfer equation in terms of the three most commonly used coordinate systems
(Cartesian, cylindrical, and spherical). The finite expansion for both intensity and phase
function are inserted into the basic equation and a set of coupled partial differential equations
are obtained by means of the orthogonal property of the spherical harmonics. We then
formulate the first-order approximation together with all possible boundary conditions assuming
that the model medium considered is subject to internal emission only. The number of partial
differential equations in this case is reduced to four, and a modified Helmholtz equation is
subsequently obtained. Analytical solutions in the form of series expansion are then derived
whenever the requirements for a Sturm-Liouville type problem are satisfied. Examples of the
computation based on the first-order approximation for the three coordinate systems in
one-dimensional space are then presented to demonstrate the practicality of the method.

2M




272 Szu-CHENG S. Ou and Kuo-Nan Liou

2. BASIC RADIATIVE TRANSFER EQUATIONS IN THREE FUNDAMENTAL COORDINATE
SYSTEMS

The fundamental time-independent equation describing the transfer of monochromatic
radiation in the earth’s atmosphere can be written in the form

Qv o)+ 16,0 =2 f I(s, Q)P(S, D) dQ' + I (s, ), @.1)
ag 47 41

where I denotes the monochromatic intensity of the scattered radiation, o the extinction
coeflicient, ) a unit vector specifying the direction of scattering through a position vector s, &
the single-scattering albedo, and P the normalized scattering phase function. The source
function J in the solar and thermal i.r. radiation regions, subject to the local thermodynamic
equilibrium assumption, can be expressed separately as follows:

(1-@)B,[T(s)}] IR

I, m=1{ _ 2.2)
Z“’;P(n,no)wFé*fs o(s)ds SOL

where B,(T) is the Planck function of temperature T at wavenumber v, wF denotes the direct
solar irradiance at the top of the atmosphere, and IR and SOL represent i.r. and solar radiation,
respectively.

In Cartesian coordinates (x, y, z), Eq. (2.1) may be explicitly written in terms of the angular
system as

17. 0 . . d 0
(sm 0 cos d)ax+sm 0 sin ¢ay+cos Og)I(x, ¥,2;0,$)+1(x,v,2;0, )

I
(B 27 pl
=[] 10y z0000P0,6:0,6)dc0s 048 + TG0, 26,0). @)
0 -1

In writing this equation, we note that the directional cosines (), = sin 0 cos ¢, {1, = sin 6 sin @,
and 0, = cos 6.

In order to express Eq. (2.1) in the cylindrical and spherical coordinates, it is necessary to
perform the coordinate transformation for the directional cosines. We define the transformation
matrix T as

0 0
Q=T 9Q,]. 2.4)
Q5 Q4

Since the direction cosine between two vectors is the dot product of the unit vectors along
these two vectors, it can be shown that the direction cosine vector in the prime system is given
by

O, QO
i=e-| Q| =leenesl] N |, 2.5
(R 0,

where ¢; is the unit vector in the direction of the i(th) axis of the prime system and can be
expressed in terms of the bare vectors of the original system. It follows that the transformation
matrix is

€ € €3
T=|en en exn]|. (2.6)

€3 €3 €3
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Fig. 1. The transformation of the base vectors in Cartesian coordinates to those in cylindrical coordinates.

In reference to Fig. 1, we now perform the transformation of the base vectors in Cartesian
coordinates to those in cylindrical coordinates (r, ¢,, z) by applying Eq. (2.6). Thus,

e = ene T eey tene,
€5, = €y lx T €50, T € -0, 2.7
e, = e e te,e tee,.

In this case, e; can easily be determined from the polar angle ¢, and the transformation matrix
is simply given by

cosd, sing, 0

Tearepi= | —sing, cose, 0]. 2.8
0 0 1

In a similar manner, the transformation matrix involving Cartesian and spherical coordinates

(P, Op’ ¢p) iS

—C0s 0, cos ¢, —cos b,sin¢, sin,
—sin ¢, cos ¢, 0

cos¢,sinf, sing,sinf, cosé,
Tcar-sph = . (29)

Using Eqs. (2.8) and (2.9), the basic radiative transfer equation in cylindrical and spherical
coordinates may now be written, respectively, as follows:

é[cos(d; — ¢,) sin 0%-& sin(¢ — ¢,) sin oraa(b, +cos 06%] I(r, ¢, 2;6, )+ I(r, ¢,, 2; 6, $)
- 2 1
=ﬁfl J_] I(r,¢,,2;0', "P(0, ¢; 0, ¢")d cos 8'de’' + J(r, by, 2; 0, $), (2.10)

1(, . . d. . . ad

;{[sm 6 sin 6, cos(¢ ~ ¢,) + cos 6 cos Bp]%[sm 0 cos 6, cos(¢ — ¢,) — cos 0 sin Op]paep
. . d

+ [sin @ sin(¢ — %)]m:}ﬂp, O &5 0, &)+ 1(p, 6,, b, 6, $)

~ 27 1
= ﬁj; J’_l I(p, 0,, $,; 0, &)P(0, &; 0", ¢") d cos 8’ o'+ I (p, 8, &,; 6, B). (.11
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3. DECOMPOSITION OF THE FUNDAMENTAL RADIATIVE TRANSFER EQUATIONS IN THREE
COORDINATE SYSTEMS

In the previous section, we expressed the fundamental integro-differential transfer equation
in three coordinate systems. We would like to demonstrate in this section that Eqs. (2.3), (2.10),
and (2.11) can be decomposed into an identical set of partial differential equations for all
systems.

Let ¢, and T* be the transposes of the row vector in Cartesian coordinates ., and the
matrix T, respectively. We may then define the row vector Q = O, T' which is valid for any
coordinate system. Utilizing this definition Eq. (2.1) may be written as

Sl s )+ I, Q) = th_ f I(s, V)P(Q, ) A + J (s). 3.1)
o T Jam

At this point, we introduce the spherical-harmonics expansion for the scattered phase
function and intensity in a manner defined by Case and Zweifel'® and Liou and Ou® as follows:

P(Q, )= 20 ;, &Y™ (@)Y ™(Q), (3.2)
N li
I(s, ﬂ)=l§;6 E::_ ()Y)" (), (3.3)

where N denotes the number of terms in the spherical-harmonics expansion and the spherical
harmonics is defined by

12
Y6, )= (- 1)""*""'”2[((,'—“%] P/™(cos 8) ™, (.4)

here P™ is the associated Legendre polynomials and the complex conjugate value of the
spherical harmonics is given by

Yl (0 ¢) ( 1) “m(ﬂ), (3'5)
such that
m * 47 @
L YP@YF@) 4= 5 (.6)

with 8> and §,,® being the Kronecker delta functions. Inserting Egs. (3.2) and (3.3) into Eq. (3.1)
we obtain

—%[ﬂ car (T V)];) Z_ " (s)Y,"'(ﬂ)—~20 Z_ ™ ()Y () + I (s), (3.7

where
v =1-06/2 +1). (3.8)

Furthermore, upon carrying out the following operation
J' Eq BN)X YA (@) dQ, a=0,1,...,N,
4

B=-a,...,q
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we find

N {
—— 2 3 | 0O (T DY@ YL @I (s)

1
O =0 m=—1J4

= ol ()

" 3 L I WYL @ do 3.9)

The general recursion relationships involving Y," ()., may be expressed in the form

Y (@) = {imt AL m)Y (@) + B, m) Y 75(0)

2H_l[C(l m)Y"1'(Q)- D, m)Y "] (ﬂ)]}ex

+i{FIAG Y @) + B@, m)Y @)

§§ TFLCULmY @) + DQ, m)Y & (n)}e,
Atdgy m)Ym(ﬂ)+2l+1F(l MY e, (3.10)

where
AL, my=[(+m+ D +m+ 21221 + 3)],
B(l,m)=[(l—m+1)(I - m+2]"[21 +3)],
= —m _ 12 _
Cl,m)=[(I—m— 1)1 -m)"/[2Q2] - 1)}, 3.11)
D(l, m)=[(1+m — )+ m)]"*/[22 - 1)),

E(Lm)=[(I-m+ 1)1+ m+ D)@l +3),

F(, m)=[(-m)1+m)]"} QI -1).

We note that these coefficients may be related through the variations of the indices | and m. We
now substitute Eq. (3.10) into Eq. (3.9) and make use of the orthogonal property denoted in Eq.
(3.6). We find

1 X+ 2a+1
IV X =Y | L) =2
o 7z 4

L I QYAHQAQ,  (.12)

where
X =~Ala, B)I21i(s) + Cla, B)I**(s),
Y = B(e, B)I3i(s) — D(a, B 271(s), (3.13)
Z = E(a, B) £11(s) + F(a, B §1(s),

and the operator matrix may be defined by

L.+L L. L'L], (3.14)

(TIV)E[ 7 7
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so that Eq. (3.12) becomes

é(ux + LY +LZ)+ yLP(s) = 2%51 f I(s, Q) Y. () dQ. (3.15)
‘ 47

In Eqgs. (3.14) and (3.15), the partial differential operators in Cartesian coordinates are given by

-9 _;90
Toax oy
=2 (3.16)
0z
-9 ,.9
L, e lay' J

For cylindrical coordinates, we find

ar 'quS,
L=2 | (3.17)
a9z
io. {0 d
= l¢'
L,=e ( +'r3¢,)

For spherical coordinates, they are

N

~i 3 0
= b, —_ j——
L.=e [(sme p+cos 0,—— a0, ) lp P 9,,6d>p]’

L = cos op —sin 6 ;6, > (3.18)

; . d 3 d
L - el¢ﬂ [( p > ' i ]'
+ sin Opap +cos Bppaep + lp sin 6,36, J

Equation (3.15) represents the general decomposed radiative transfer equation with the linear
differential operators given in Egs. (3.16)-(3.18).

4. FIRST ORDER SPHERICAL-HARMONIC APPROXIMATIONS AND SOLUTIONS

Equation (3.12) represents a set of partial differential equations which, in principle, may be
solved by means of numerical methods. However, the simplest approach to the three-
dimensional radiative transfer problem would be to truncate the spherical-harmonics expansion
for the scattering phase function and intensity at the second term, i.e., letting N = 1, where N is
the maximum lower index in the truncated series. Using this first-order approximation, which is
also referred to as the diffusion approximation, we obtain the following four partial differential
equations:

<z L11°()+ﬁL I\(s) - V2L+Il 6]+ 106 = 4= f I(s, ) dQ, @1

V2

- 3 —1
S LI+ nl 0 =1 [ I6 oY@, 42




Generalization of the spherical harmonic method 277

L@+ 110 = 3= [ 16 @y T@)da, “3)
SV e+ 1‘()—if (s, )Y, " () dQ (4.4)
20—05 7115—4,“_4” s, 1 . .

Substitution of Egs. (4.2)-(4.4) into Eq. (4.1) yields

1
(LZ + -2'L+L— + %L7L+)IOO(S) - 3707102100(5)

- i—i L [Yrm(“)L + l/—2"("’(0)L- \/2 X2y, (@)L, ]J(s, Q) d0

_ 3y’
== 4ﬁ](,s,ﬂ)dﬂ, 4.5)

where vy, and vy, are defined in Eq. (3.8) and the extinction coefficient ¢ is assumed to be
constant.

By virtue of the definitions of the partial differential operators given in Egs. (3.16)-(3.18), it
can be shown that

LL+ %L+LA + %L,L+ =V 4.6)

where the Laplacian operator V? in the three basic coordinate systems is given by

Ve = a? + —(%7 + ;—Zz (4.7a)
vZ,=1 g( %) + 7%2 + ai; 4.7b)
Vsph p P (pzaap> + m a%p(sm 0,,%) + m 3%;2 4.7¢)
In addition, we also find
Y "(Q)L+ ﬁy;“(n)L_ ﬁYl’* QL. =Q-V= di (4.8)

Utilizing this simplification and applying the source function given in Eq. (2.2), analytic

integrations can be performed for the integral term in Eq. (4.5). Thus, Eq. (4.5) can now be
written in the form

3" 306F L L ayeti7a, SOL

-30”y,7B,(T) IR

VI’ (s) = 3y0y:10° Lo (s) = { (4.9)

Equation (4.9) represents an inhomogeneous modified Helmholtz equation whose solution
depends on the boundary conditions imposed.

To seek a solution for Eq. (4.9), we assume that there is no inward diffuse intensity on the
boundary of the medium. This is the so-called vacuum boundary condition, which may be
expressed as

I,,(Q) = 0 at boundary, (4.10)

where the subscript in denotes inward.
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As pointed out by Marshak* and more recently by Dave and Canosa®, Eq. (4.10) can not be
satisfied exactly when mathematical solutions are derived by virtue of a finite expansion of the
intensity. Thus, an approximate form of Eq. (4.10) is required in order to properly solve the
partial differential equations derived from the basic radiative transfer equation. From Eq. (4.10)
and in conjunction with the spherical harmonics approximations used in this study, we may
write

f Y"(Wi,()dQ2=0, [I=odd, 4.11)
o

where the domain of integration is the inner half plane. Substituting Eq. (3.3) into Eq. (4.11), we
find

N v , ,
S S [1,,'"(s) f Y™, (@) dQ]=0. @.12)
=0 m=2r 0

It should be noted that the domain of integration is a half hemisphere so that the orthogonal
properties of spherical-harmonics are no longer applicable. Consequently, the analytical in-
tegration must be carried out for each pair of (I, m) and (I’, m’) at each location on the
boundary. Since the solution of Eq. (4.9) depends on the specific geometry involved and its
associated boundary conditions, it is not possible to seek a generalized solution form for all the
three coordinate systems. Hence, we must derive separate solutions for Eq. (4.9) subject to Eq.
(4.11) for each coordinate system.

(a) Cartesian coordinates
In Cartesian coordinates, Eq. (4.9) may be written in the form

3 2 'F ~ —{z—2zp)iCOS
32100+ 8210°+ 32100_A21 0 _ ————040) (y1+ @) e g/cos 6y SOL, 4.13)
x> oy’ | ez’ 0 — A’B,(T) IR,

where A% = ~3a%y,y0, and z, is a reference value on the boundary.
To obtain the boundary conditions in this case, we zone the rectangle into six surfaces, as
shown in Fig. 2, such that each surface is represented by a single algebraic equation, i.e., x =0,

8=0

8 .0
e B

rojd

&

¢
| / $=0
i
|
”| ,,x_o I
y=0"] :
/ s
\zso
X

Fig. 2. A rectangular cubic element, where each surface plane is represented by a single algebraic equation
and the angular notation is also illustrated.
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x=a,y=0,y=b,2=0, and z=c, where a, b, and ¢ are the lengths of the rectangle. Table 1
lists the domain of integration for the six surfaces with 8 and ¢ being the zenith and azimuthal
angles, respectively. After carrying out the integrations, we obtain the following six boundary

conditions:

I()O_‘%’i(ll—1 + I]l) =0

10°+—\—;3i(1,‘ +I7h=0

110‘¥(111 - Il_l) =0
100+1/32(111 -I7)=0

at z=0,
at z=g¢,
aty=0,
aty=b,
at x =0,
at x=a.

4.14

In order to express Eq. (4.14) in terms of I.’, it is necessary to utilize Eq. (3.16) and Egs.
(4.2)-(4.4) which involve the source function J. The source function in the solar case depends
on the incident solar angle (6, ¢o) and the coordinate values at the boundary (x,, Yo, Zo). Thus, in
general, Eq. (4.13) cannot be solved analytically and the solution is only available through
numerical means.”!' However, when the sun is in an overhead “position (cos ;= 1), the
analytical solution may be obtained (Ou and Liou, 1980). In the thermal infrared case, using the
relations denoted in Egs. (4.2)-(4.4), we obtain the boundary conditions in terms of I’ as

follows:
A o_
" hly =0

0
%+h10°=0

0
a—aIyo——'hIlO'—'O
al

0
0 0_
3y +hly =0

Ao
L~ L, =0

EY A

—_— 0:
o +hly =0

at z=0,
at z=a,
aty=0,
aty=bh,
at x =0,
at x=b,

(4.15)

where h =30vy,/2. The standard procedure for the method of separation of variables *'> may
then be used to solve Egs. (4.13) and Eq. (4.15). The general form of solution for I,? is a double

infinite series in the form

L', y,2)= 3 3 (Crehm + Coe ™ + o] L) Un(x) Vin(),

n=1m=1

4.16)
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Table 1. The domain of integration in Cartesian coordinates.

Surface [:} ¢
x=0 0- -F-7
x<b 01 -3
y=0 0-7 0-m
y=b 0-m m-27
z=0 o-g 0-27
z=a 2"— T 0-2m

where

Lom = A2+ A2+ A%

_NB(T)
fn8m

nm

b b
f f Up(X)Vin(y) dx dy,
0 0
b
fn= f U, (x) dx,
0
b
g = fo V,.A(y) dy,
h .
U,(x) = cos(A.x) + x sin(A,.x),

Vin(y) = cos(Any) + )\L sin(Any).
The eigenvalues A, and A, can be found by solving the equation

200t)\,b=’\' h {ll=n0rm

hoaN =12, ..

and C. and C_ are constants to be determined from the boundary conditions given by Eq.
(4.15).

(b) Cylindrical coordinates
In cylindrical coordinates, Eq. (4.9) takes the form

1i< i@")+ i O O

2 __A210
ror r ar r“a¢,2+ Py Ay
2~
3o wF(v, +@,) exp{—al(r,”— r’ sin> ¢,)'* — r cos ¢,] sin ¢o} SOL,
= 4 .17)
—-A’B(T) IR, ’

where the exponential term of the source function in the solar case is derived based on the
assumption that the incoming solar beam is in the direction of ¢, =0, and r; is the radius of the
cylinder. An analytical solution for the solar case is again impossible, because the in-
homogeneous boundary conditions do not conform with the specifications of a Sturm-Liouville
type problem.” However, in the IR case, it is possible to derive analytic solutions under certain
circumstances, and we shall concentrate our effort in this case.
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As shown in Fig,. 3, for a cylindrical element bounded by six surfaces (r = ry, r = 13, ¢, = ¢4,
¢, = ¢y, z = 21, and z = z,) subject to monochromatic interior IR emission without any incoming
radiation, Eq. (4.17) can be used as the governing equation. With a similar approach to obtain
boundary conditions as in the case of Cartesian coordinates, we derive the following boundary
conditions based on Eq. (4.12) as follows:

I"+ %{(1.“ ~IYcos ¢, —i(I,"" +1,") sin $,] =0 atr=r,
1&’—%{(1;‘ ~I%cos ¢, —i(I, ' +1,") sin ¢,] =0 at r=r,
0 _\Q _ -1_ 1 : o -1 1 — _
Iy + 3 (-, Iiysing, —i(l; +1)cos ¢,]=0 at ¢, = ¢y,
(4.18)
o_y_z (T TN TS ! 1 _ -
I 3 (-, I)sing, ~i(l," +1;)cos ¢,]=0 at ¢, = ¢,
0 2 0
Iy +§I| = at z =z,
IO°—§I,°=() at z = 2,.

The domains of integration for obtaining Eq. (4.18) are listed in Table 2. Based on Egs.
(4.2)-(4.4) with the application of Eq. (3.17) for the definitions of differential operators, Eq.
(4.18) can be further reduced to the forms in I’ only, i.e.,

L’ io_ r=r(-),
L bl =0 at {r NS
0 = —
I =0 a S ZO0 4.19)
ol , 1o 2= 2:(-),
5z = Hlo at {z = z)(+).

We notice that the second set of equations has a term dl/rd¢,, which causes the boundary
conditions to deviate from the requirement of the Sturm-Liouville type problem, i.e., the
orthogonal property of the separated ¢,-dependent functions cannot be established. Thus, an
analytical solution at this point does not exist, but certain numerical approaches are possible.

Table 2. The domain of integration in cylindrical coordinates.

Surface 8 ¢

r=ry O-7 % * 4, - -3-211 + 9,
rer, 0-m % i % + b
o=y 0-m L |

¢r ¢2 0-m ¢r +m- ¢r + 2r
z=z) 0- % 0-2r

z-1, % -n 0-2rm

QSRT Vol. 28, No. 4—B
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Fig. 3. The same as in Fig. 2 for a cylindrical element.

If we assume the cylindrical element to be a cylinder confined by r=r;, z=z, and z = 43
only, an analytical solution is readily available. The boundary conditions are revised as follows:

I, = finite atr=r,
3l
a—;’+h10°=0 at r=r,
IOO(¢7) = Ioo(d)r + 277) at any ¢r, (420)
| _ ol
a¢, &, ad’r ¢,+21r’
ano_hIO_O {Z = Zl(_)’
Sl = t
az 0 Tl =24

This time, the third and fourth equations satisfy the orthogonal requirement of the Sturm-

Liouville problem. Thus, by the standard method of separation of variables, we can derive the
following solutions:

I(r, é 2) = 3 (Cy e + C_ e ™5 + K, )Jo(L), (4.21)
where
§m = A2+ Zm29
AZB,, T) (1
K =220 ("L ar

8m = J; i %Jo(fmr)]o(fmr) dr’

and J denotes the Bessel Function.
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Moreover, {, can be found from the equation

ho($mra) = Lud (D) = 0.

Equation (4.21) does not contain the ¢,-dependent term because the model considered is
cylindrically symmetric.

(c) Spherical coordinates
In the case of spherical coordinates, Eq. (4.9) takes the form

11 501 1 ] ( an") 1 LY 20
_ ___+ - — —_ —
229° a0 T pTsing, 96,5 O )t o7sinTe, 9g, Mo

p“sin” g,
30°@F - 2 2. 212
- - 2 (V] + (.01) CXP{_U[(PO —p s Op) —p cos BP]} SOL’ (4,22)
— A’B(T) IR,

where the exponential term of the source function in the solar case is derived based on the
assumption that the solar flux is in the direction of 6, =0, where p is the radius of the sphere.

Because of its complexity, Eq. (4.22) has not been used to its full extent to study the
transfer processes within a sphere. Simplifications, however, have been made using the
spherically symmetric property to solve the equation. The present spherical harmonic method
provides a systematic approach in reducing the basic equation to a form such that either an analytic
or a numerical solution may be possible.

As shown in Fig. 4, for a spherical element bounded by six surfaces (p = pi, p = p2, ¢, = ¢4,
é,=¢s, 6,=6,, and 6, = ¢,) and governed by Eq. (4.22), derivation of boundary conditions
involves the process of transformation of angular coordinates. We denote a new angular system
(6', ¢') such that @' is the angle between  and p, and ¢’ is the azimuthal angle on the plane
perpendicular to p, where p is the position vector. Based on these definitions, we find

QQ,=cos #,
Qgp =sin 6’ cos ¢/, 4.23)
g, =sin 6'sin ¢

In order to evaluate the domain of integration in Eq. (4.12), a corresponding coordinate change
is added to the spherical harmonic functions. We start with Eq. (3.3), and rewrite it for N =1,

’
8,0 ,/8'
6, e Q
\‘tq 1
8,0 \\' ¢
¢ =0
T~ o
AN
NN 8-6,
CA ! $= ¢,
- /¢l =
-~
¢p-0 ¢2 AN
Y
P=Py
¢=¢l 8=6;

Fig. 4. The same as in Fig. 2 for a spherical element, where the transformed angular notation is shown.
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V2

I=1+1, + 7(1;1 -IMH0, - V2,

LT+ I, (4.24)
Furthermore, by using Eq. (2.9), we may express Eq. (4.24) in terms of Q,, Qgﬂ, and Qd,p) in the
form

QP
1= 100[ 110%(1;‘ - Ill)yézi(l," + Il‘)]T;;,_s,,h Q, |. (4.25)
Q,

Consequently, Eq. (4.11) may be modified to give
f f YD) dQY' =0  for I = odd, (4.26)
o

where () is the new angular system (6, ¢). The advantage in such a transformation is that the
domain of integration can be defined easily. Table 3 lists the domain of integration based on the
six bounding surfaces which are expressed as p = p, (p,; = 0 in general), p = p,, ¢ = b1, b, = @2,
6, = 6y, and 6, = 0,. Following similar analyses as those illustrated in previous sections, we find
six equations at bounding surfaces in the forms

I()Oi%[vli(I]_l - Ill) cos d’p sin Op _VIE(I]_I + I]l) sin d’p sin Gp + 110 cos Op] =0

at p = py(+) and p = py(-),

—32-[— 12(1._1—11') cos 6, cos ¢, —{;E(Il“ +1,") cos 8, sin ¢, + I," sin 60] =0

I+
at 6, = 6,(+) and 6, = 6,(-),
1°+2[— L7 = LY sin é, + (1,7 + 1Y) cos & ]=o
0—3 2 1 1 p VE 1 i il

at ¢, = ¢1(+) and ¢, = ¢5(-). (4.27)

Table 3. The domain of integration in spherical coordinates.

Surface 9' ¢’

p=p, 0-3 0-2n
PPy % - 0 - 27
¢p=¢1 0-n 0-m
¢p=02 0-n T - 21
ep=01 0-n (- %) -%
ep=92 0-mn % - %
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Again, we consider only the thermal i.r. case where the six equations can be further reduced to
a set of homogeneous equations in terms of I,” only. Thus we find

3L,
—a-’—(;—i hI’ =0 at p = py(~) and p = p,(+),
iy’ 0
hly =0 at 6, = 60,(-) and 6, = 6(+), (4.28)
pab,
3l

p Sin 0,00, hL’=0 at ¢, = ¢1(-) and ¢, = $5(+).

Since the second and third sets of boundary conditions do not satisfy the requirements for a
Sturm-Liouville problem, an analytical solution at this point is impossible. One exception is
when the model is assumed to be a spherical ball. When the ball is bounded by the surface
p = p2, Eq. (4.20) reduces to the one-dimensional form. With the assumption of spherical
symmetry, only the first set of boundary conditions is necessary. The solution in this case will
be discussed in the next section along with other one-dimensional models of different coor-
dinate systems.

5. APPLICATION OF THE SOLUTION

As an example of the application of the solutions derived in previous sections, we shall
show the variation of the emissivity on the boundary of three model clouds, ie., the
plane-parallel, the axially infinite cylinder and the sphere. In each case, the model cloud is
assumed to be in a vacuum so that there is no incident energy from outside the boundary.
Therefore, only the cloud emission contributes to the source function. The interior composition
of the cloud is assumed to be homogeneous. Next, we define the emissivity in the form

€ = Foul[7B,(T.)], G.D

where T, is the cloud temperature and F,, is the local outward flux density normal to a
differential surface element around the point. As is evident in Eq. (5.1), the cloud boundary will
approach the behavior of a black surface if the emissivity is very close to 1.

Table 4 lists the governing equations and boundary conditions as derived from the three-
dimensional equations described in previous sections. The solution for I’ is readily available
and it is listed in Table 5. In a straightforward manner, the emissivity can be found by

Table 4. The governing equations and boundary conditions for the three model clouds considered in Section 5.

Mode Governing Equation Boundary Condition
2.0 0
d°1 dl -
2.0 2 0 0_ z=0(-)
Plane-Parallel ;;22 - A=A Bv(T) Yl hI0 = at Z=ZO(+)
T 2 0 - finit ¢ v
Cylindrical Yo "a Mgt - ABMm o = Tinite at r=
0
dI
0 0 _ .
a_r+h10_0 at r=ry
L g 20 2 2% (1) 0. ¢ t 0=0
p° — - A1 = - A"B (T L, = finite at p=l
Spherical ;ZH'E do 0 v 0
0
0 0 _ =
e + hIo = at P=0y
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Table S. The solutions for I, for the three model clouds considered in Section 5, €= A3ovy; Iy, I, = modified

Bessel functions of the first kind; iy, i, = modified spherical Bessel functions of the first kind.

0
ModeT I/, (Tu)

Az A(zo-z)
e +e

Plane-Paraliel 1- AZO AZO
(e "+1) + 28 (e “-1)

Ig(Ar)
Cylindrical 1- T (hr) + 2EL.TAF)
IO Aro + EII Aro

Spherical 1 To{o)
pherica - = .
10(A90$ + 2511(Apoi

031~ Plane -Paralle] ———
Cylindrical —— 4
Spherical ——
;; 0.2 |
s
w
i
b3
w
0.1l
0.0 ‘
oo 0.1 10 10.0 100.0
Alo
Fig. 5. Emissivity vs Aly for £=0.1, as calculated based on equations listed in Table 5.
expressing F,,, in terms of I, at the boundary as
2w dI®
Fout = 77100 +— _:g’ (52)
3o, dl

where [* = z in the plane-parallel case, [* = r in the cylindrical case and I* = p in the spherical

case. Upon using the boundary conditions, we find
F. out = 2'""100
and it follows that at the boundary

e =27l B,(T.).

(5.3)

(5.4

v
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Fig. 6. The same as in Fig. 5 for £=10.3.
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Fig. 7. The same as in Fig. 5 for £ =0.5.
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It should be noted that the emissivity is a function of two variables Alp and ¢, so that we may
plot € vs Al, with £ as a parameter. This is shown in Figs. 5-7 for ¢=0.1, 0.3 and 0.5,
respectively. The values of Al, may vary from zero to infinity, but those of £ are only between
0 and V'1/3. From these figures, we notice that the asymptotic behavior of e is dependent on {.
Thus, for & =0.1, (=) ~0.37 and for ¢ =0.5, e()~ 1.0. It is expected that e(~) may slightly
exceed unity as ¢ approaches its upper limit because of the approximate nature of the
first-order expansion. In addition, the cloud shape produces some differences in the emissivity
value for a given value of Al,. In general, a spherical cloud has the lowest emissivity value,
because it contains less emitting media than the other two models. This trend was also noted by
Liou and Ou® when a comparison between a plane-parallel model and a rectangular model was
made.

6. CONCLUSION

In this study, we have applied and generalized the spherical harmonic method to solve the
basic radiative transfer equation by means of the harmonics decomposition in such a way that a
set of partial differential equations are derived for the three fundamental coordinate systems. The
first-order approximation is then used to truncate the number of equations into four. After a
number of mathematical analyses, a modified Helmholtz equation is obtained. All possible
analytical solutions for the modified Helmholtz equations in Cartesian, cylindrical, and spheri-
cal coordinates with appropriate boundary conditions are subsequently derived in forms of
series expansion. Numerical computations are finally carried out for flux emissivities for the
three coordinate systems in one-dimensional space. Results show that the emissivity from a
spherical cloud is lower than that from a cylindrical or a plane-parallel cloud.
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