
NOVEMBER 2011 VOLUME 49 NUMBER 11 IGRSD2 (ISSN 0196-2892)
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Cloud properties derived by applying the VISST to daytime Terra MODIS data taken over western North America and the eastern Pacific.
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Abstract—The National Aeronautics and Space Administra-
tion’s Clouds and the Earth’s Radiant Energy System (CERES)
Project was designed to improve our understanding of the
relationship between clouds and solar and longwave radiation.
This is achieved using satellite broad-band instruments to map
the top-of-atmosphere radiation fields with coincident data from
satellite narrow-band imagers employed to retrieve the properties
of clouds associated with those fields. This paper documents the
CERES Edition-2 cloud property retrieval system used to analyze
data from the Tropical Rainfall Measuring Mission Visible and
Infrared Scanner and by the MODerate-resolution Imaging
Spectrometer instruments on board the Terra and Aqua satellites
covering the period 1998 through 2007. Two daytime retrieval
methods are explained: the Visible Infrared Shortwave-infrared
Split-window Technique for snow-free surfaces and the
Shortwave-infrared Infrared Near-infrared Technique for snow
or ice-covered surfaces. The Shortwave-infrared Infrared Split-
window Technique is used for all surfaces at night. These methods,
along with the ancillary data and empirical parameterizations
of cloud thickness, are used to derive cloud boundaries, phase,
optical depth, effective particle size, and condensed/frozen water
path at both pixel and CERES footprint levels. Additional
information is presented, detailing the potential effects of satellite
calibration differences, highlighting methods to compensate for
spectral differences and correct for atmospheric absorption and
emissivity, and discussing known errors in the code. Because a
consistent set of algorithms, auxiliary input, and calibrations
across platforms are used, instrument and algorithm-induced
changes in the data record are minimized. This facilitates the use
of the CERES data products for studying climate-scale trends.
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NOMENCLATURE

AD Adding–doubling.
AVHRR Advanced Very High Resolution Radiometer.
CERES Clouds and the Earth’s Radiant Energy

System.
CKD Correlated k-distribution.
CPRS Cloud property retrieval system.
ECMWF European Centre for Medium-range Weather

Forecasting.
Ed1, Ed2 CERES Edition-1 and Edition-2 CPRSs.
GEOS Global Modeling Assimilation Office Global

Earth Observing System.
IR Infrared (10.8 µm).
ISCCP International Satellite Cloud Climatology

Project.
IWP Ice water path.
LUT Lookup table.
LBTM Layer bispectral threshold method.
LWP Liquid water path.
MAST MODIS Atmosphere Science Team.
MOA Meteorology, Ozone, and Aerosol.
MODIS MODerate-resolution Imaging Spectrometer.
NIR Near IR (1.6 or 2.1 µm).
NWA Numerical weather analysis.
PATMOS-x Pathfinder Atmospheres Extended.
RGB Red, green, blue.
SINT Shortwave-infrared Infrared Near-infrared

Technique.
SIST Shortwave-infrared Infrared Split-window

Technique.
SZA Solar zenith angle.
SIR Shortwave IR (∼ 3.8 µm).
SSF Single scanner footprint.
SW Split window (∼ 12.0 µm).
TOA Top of atmosphere.
TRMM Tropical Rainfall Measuring Mission.
TWP Total water path.
UAH The University of Alabama, Huntsville.
VIRS Visible and Infrared Scanner.
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VIS Visible (∼ 0.65 µm).
VISST Visible Infrared Shortwave-infrared Split-

window Technique.
VZA Viewing zenith angle.
A2c, A2cd Cloud beam and diffuse NIR absorptances,

respectively.
B Planck function.
BTD Brightness temperature difference.
De Ice-crystal effective diameter.
do Normalized Earth–Sun distance.
Eo Solar constant.
e Error in the predicted BTD.
i, j Spectral channel and layer indices,

respectively.
K Surface type.
k Emittance model index.
kmin Emittance model yielding minimum error.
LD, LU Cumulative downwelling and upwelling radi-

ances, respectively.
PW Precipitable water.
pb, pc, pt Cloud base, effective, and top pressures,

respectively.
Q Extinction efficiency.
Ras, RTOA Parameterization and corrected model TOA

VIS reflectances, respectively.
r, re Effective particle size and water-droplet effec-

tive radii, respectively.
T , Tskin, Tp Temperature, surface skin temperature, and

tropopause temperature, respectively.
Tb, Tc, Tt Cloud base, effective, and top temperatures,

respectively.
T ′ Interim model effective temperature for itera-

tion for one τ and r.
Tnew Effective temperature after a completed

iteration.
To Sea surface or 24-h running land surface air

temperature.
T ′
3min, T ′

3max, Minimum and maximum interim SIR bright-
ness temperatures for a given model.

tD, tU Cumulative downwelling and upwelling trans-
mittances, respectively.

tW1, tO3 Layer water vapor and column ozone VIS
transmittances, respectively.

uw, u Layer water vapor and column ozone concen-
trations, respectively.

Z, zo Altitude and surface elevation, respectively.
Zb, Zc, Zt Cloud base, effective, and top heights,

respectively.
D Intermediate layer downwelling transmittance

in AD model.
Q Intermediate layer albedo-reflectance product

in AD model.
R Layer upwelling reflectance in AD model.
S Intermediate layer albedo ratio in AD model.
T , T ∗ Layer downwelling and upwelling transmit-

tances in AD model, respectively.
U ∗ Intermediate layer upwelling transmittance in

AD model.

αc, αcd Cloud beam and diffuse albedos,
respectively.

αs2, αcs1 NIR surface and VIS clear-sky albedos,
respectively.

αsd2, αcsd1 Diffuse NIR surface and diffuse VIS clear-sky
albedos, respectively.

Γ Lapse rate.
∆R VIS parameterization residual reflectance.
∆T34 BTD threshold for optically thick cloud.
∆Z Cloud thickness.
δsN , δcs1 NIR surface and VIS clear-sky normalized

directional reflectances, respectively.
ε, εt, εs, Cloud effective, cloud-top, and surface emis-

sivities, respectively.
εa, εad Cloud beam and diffuse emissivities without

scattering, respectively.
θ, θo VZA and SZA, respectively.
Θ Scattering angle.
µ, µo cos(θ) and cos(θo), respectively.
χs2, χ1 NIR surface and VIS clear-sky normalized

bidirectional reflectance distribution functions
(BRDFs), respectively.

ρc, ρR Cloud and Rayleigh reflectances, respectively.
ρs, ρcs1 Surface and VIS clear-sky reflectances,

respectively.
τa, τ IR absorption and VIS cloud optical depths,

respectively.
τgas VIS absorbing gas optical depth above the

cloud layer.
τR Layer Rayleigh scattering optical depth.
τ2a1, τ2a2 NIR absorption optical depths above and be-

low the cloud, respectively.
τij Gaseous absorption optical depth for channel

i and layer j.
φ Relative azimuth angle.
)o Single-scattering albedo.

I. INTRODUCTION

UNDERSTANDING the relationship between clouds and
solar and longwave radiation processes requires deter-

mination of the cloud distribution and radiation budget, as
well as the associated cloud microphysical and macrophysical
properties. The National Aeronautics and Space Administration
(NASA) CERES Project [1] was designed to facilitate this un-
derstanding by measuring the TOA radiation fields simultane-
ously with cloud properties using instruments onboard several
satellites to provide global and diurnal coverage. The CERES
scanners, which measure broad-band shortwave and combined
(total) shortwave and longwave radiances, operated on the
TRMM, i.e., Terra and Aqua, satellites. Data from the TRMM
VIRS [2] and the Terra and Aqua MODIS [3] are used for dis-
criminating between clear and cloudy scenes and for retrieving
the properties of clouds in the latter and the aerosols in the
former. Those cloud properties, including cloud fraction, phase,
temperature, height, optical depth, effective particle size, and
condensed/frozen water path, are the key parameters needed to
link the atmospheric radiation and hydrological budgets. The
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CERES radiation measurements and their inversion, as well as
the methods for identifying cloudy pixels and retrieving aerosol
properties in clear pixels, have been described elsewhere [4]–
[8]. This paper documents the CERES algorithms that have
been used to derive cloud properties from the TRMM, Terra,
and Aqua data taken between 1998 and 2007.

To study climate-scale trends, it was recognized that cloud
and radiation fields must be determined using consistent al-
gorithms, auxiliary input (e.g., atmospheric temperature and
humidity profiles), and calibrations across platforms to mini-
mize instrument- and algorithm-induced changes in the record.
CERES planned to measure the complete diurnal cycle of
clouds and radiation for the tropics and obtain unprecedented
sampling of those same fields in the extra-tropics by combining
data from the precessing-orbit TRMM with the late morning
Terra and early afternoon Aqua observations. The requirements
for consistency, simultaneity, and collocation between the cloud
and radiation measurements necessitated the development of a
set of algorithms and a processing system that was indepen-
dent of other global cloud processing systems that were either
operating or being developed prior to the launch of the first
CERES-bearing orbiter. Although cloud properties have been
derived from geostationary and National Oceanic Atmospheric
Administration polar-orbiting satellites since 1983 by the IS-
CCP [9], those products cannot be used because ISCCP samples
the imager data at an effective resolution of ∼32 km (larger
than a CERES footprint, i.e., ∼20 km), cloud particle size is
assumed in the retrievals, and simultaneity with the CERES
satellites is very limited. Like the ISCCP data, the AVHRR
PATMOS-x cloud products [10] were not usable because they
have little simultaneity (< 5 min) with the satellites carrying
the CERES scanners. Pixel-level cloud properties are derived
from MODIS data by the MAST, but they are retrieved with
algorithms that use many of the 36 MODIS spectral bands [11],
[12] and auxiliary input data that are not necessarily consistent
over time. The MAST algorithms, which have been used to
generate the standard MAST products, i.e., MOD06/MYD06
and MOD35/MYD35 products from MODIS data [13], would
be unable to yield cloud properties consistent with the standard
MAST results when applied to the five-channel VIRS data.
Furthermore, CERES requires complete cloud information for
each footprint, and that is not always available in the standard
MAST products.

The TRMM CERES scanner failed early in the mission,
obviating some of the consistency requirements, but other more
important factors necessitated the development of independent
cloud and aerosol analysis algorithms. CERES is an end-to-end
processing system with cloud properties feeding into subsys-
tems that determine TOA, surface, and atmospheric radiative
fluxes, including a complex time-space averaging subsystem
that employs geostationary satellite measurements [14]. The
cloud detection and retrieval algorithms had to be responsive
to the needs of the downstream processing systems and had
to be as consistent as possible with the CERES geostationary
satellite data processing system [14]. Given the limitations of
external cloud data sets and the internal team interaction and
consistency requirements, a unique set of cloud detection and
retrieval algorithms was developed for CERES, utilizing as few

Fig. 1. CERES cloud processing scheme. Algorithms corresponding to
shaded boxes are discussed in [5].

channels as possible while producing stable and accurate cloud
properties that are compatible with the CERES anisotropic
models.

This paper provides an overview of the algorithms used by
CERES to retrieve cloud properties for pixels identified as
cloudy by the CERES cloud mask [5]. Three distinct methods
are used. During daytime, VISST is used over snow-free sur-
faces, while SINT is applied when the background is identified
as being covered by snow or ice. At night, SIST is used over all
surfaces. The theoretical bases for these algorithms have been
described elsewhere [15], [16], so this paper serves to document
the actual algorithms and their updates. A companion paper
[17] presents examples of averaged results and comparisons
with other data sets.

This is the second of four papers [5], [18], [19] that describe
the CERES cloud analysis system for VIRS Ed2, Terra Ed2,
and Aqua Ed2 (also denoted as Ed1a). The initial, i.e., Ed1,
VIRS CPRS was completed in 1998 and updated, along with
Terra Ed1, to the VIRS and Terra Ed2 versions in 2003. The
Aqua Ed2 CPRS is the same as that for Aqua Ed1a. The
processing of VIRS and MODIS data for CERES using all three
of the second-edition algorithms described here began during
2004, beginning with the data taken at each imager’s start-of-
operation date.

II. DATA

Fig. 1 shows the flow of data into the CERES CPRS. The
imager radiance data (Box I, Fig. 1) are processed in groups of
pixels denoted as a tile. Each tile consists of an array of pixels
defined by 16 scan lines with 8 or 16 elements for MODIS
and VIRS, respectively. These arrays nominally correspond to
32 km × 32 km, a coverage obtained by sampling for MODIS.
Although each pixel is analyzed individually, all pixels within
a given tile use the same clear radiances and atmospheric
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corrections in the retrieval to increase computational efficiency.
The input parameters used in the retrievals are explained
hereinafter.

A. Satellite Radiances

Because of the requirement for consistent retrievals among
the various sensors, the CPRS nominally uses only five chan-
nels: 0.64 (VIS), 1.6 (NIR), 3.8 (SIR), 10.8 (IR), and 12.0 µm
(SW). For CERES, these channels are sequentially numbered 1
through 5. For Aqua, the 2.1-µm channel replaces the 1.6-µm
channel (CERES reference channel 2) in this analysis due to
shortcomings in the Aqua 1.6-µm channel. The calibrations
of the relevant VIRS and MODIS channels are only briefly
discussed here because they have already been reviewed in
detail [5].

1) VIRS: The VIRS scans in a cross-track mode out to a
nadir angle of 45◦, which translates to a maximum VZA (θ)
of 48◦. The TRMM orbit gives the VIRS a viewing perspective
that is distinctly different from either geostationary or Sun-
synchronous satellites and allows it to sample all local times
of day over a 46-day period. At the equator, this sampling
is evenly distributed over the period, but at higher latitudes
(maximum of ∼ 38◦), the sampling is primarily in darkness for
two weeks followed by two weeks of sunlight. The VIRS data
were obtained from the NASA Langley Atmospheric Sciences
Data Center.

Version-5a VIRS data are analyzed by CERES at full reso-
lution. Changes to the VIRS channel calibrations, reviewed by
Minnis et al. [5], include corrections of the NIR channel for
a thermal leak at 5.2 µm and for a large (∼18%) bias relative
to its Terra MODIS counterpart. A slight day–night calibration
discrepancy in the IR and SW channels is not taken into
account here.

2) MODIS: Terra MODIS [3] began collecting data starting
in late February 2000 from a Sun-synchronous orbit with a
1030-LT equatorial crossing time. Aqua MODIS became op-
erational in July 2002 from a Sun-synchronous orbit with a
1330-LT equatorial crossing time. CERES ingests a 19-channel
subset of the 36-channel MODIS complement with the in-
tention of using additional channels in future editions of the
algorithms and in subsystems outside the CPRS (for summary,
see [5]). The 0.25-km channel-1 (VIS) pixels corresponding to
the 1-km channel-1 pixels are also included in the ingested
data for future use. To minimize processing time, the 1-km
MODIS data are sampled by taking every other pixel and scan
line. This subsetted data set, provided by the NASA Goddard
Space Flight Center Distributed Active Archive Center, was
further reduced by sampling every other pixel during actual
processing, yielding an effective resolution of ∼2.8 km. For a
given CERES footprint (∼20 km at nadir for Aqua and Terra;
∼10 km for VIRS), this additional subsampling yields cloud
properties having small root mean square (rms) differences
(e.g., 0.013 in cloud fraction) relative to those determined using
the original subsetted sampling.

No calibration changes were applied to the MODIS data
despite some discrepancies between Aqua and Terra at certain
wavelengths. On average, the Terra SIR brightness temper-

atures are 0.55 K greater than those from Aqua during the
daytime. At night, the Aqua SIR data having brightness tem-
peratures Tb > 250 K vary linearly with Terra, in the manner
observed during the daytime, with the Terra values typically
exceeding their Aqua counterparts by 0.55 K. At lower tem-
peratures, the Terra temperatures vary exponentially with their
Aqua counterparts, asymptoting to a value of 218 K as the
Aqua values reach 197 K. The Terra VIS channel gain was
found to drop by 1.17% after November 18, 2003, but otherwise
had no trends. Prior to that date, the Terra VIS gain is 1%
less than the Aqua gain. The Aqua reflectance is 4.6% greater,
on average, than that from VIRS, a result that is consistent
with the theoretical differences between the VIRS and MODIS
spectral windows. During the day, the VIRS SIR brightness
temperatures are 1.39 K and 0.85 K less than the Terra and
Aqua MODIS values, respectively. More details about these
intercalibrations and those for other channels are provided in
[5] and the references therein.

B. Ancillary Data

1) Vertical Profiles: Vertical profiles of temperature, humid-
ity, wind, and ozone and total aerosol amounts comprise the
CERES MOA data set (Box A, Fig. 1). The CERES MOA
temperature, wind, and humidity profiles are based on NWAs:
the ECMWF reanalyses for VIRS and the GEOS Model 4.03
analyses [20] for the MODIS processing through December
2007 and GEOS 5.0 thereafter. The ECMWF profiles were
available at a nominal resolution of 0.5◦ every 6 h, and surface
skin temperature Ts was available every 3 h. GEOS profiles and
skin temperatures were made available at the same temporal
resolutions on a 1◦ grid. The ozone vertical profile and total
column concentrations are taken from the 2.5◦ National Centers
for Environmental Prediction Stratosphere Monitoring Ozone
Blended Analysis (SMOBA) [21] or from the Earth Probe Total
Ozone Mapping Spectrometer (total column optical depth only)
at a 1.25◦ resolution when SMOBA data are not available. All
input MOA data are interpolated to a common 1◦ × 1◦ grid.
These include surface skin temperature, height, total column
ozone, and profiles of temperature, specific humidity, and ozone
at up to 58 pressure levels from the surface to 0.1 hPa [22].

The impact of switching from ECMWF to the GEOS anal-
yses on long-term consistency in the CERES products was ex-
amined in [23] and [24]. During the day and night, the nonpolar
GEOS land surface temperatures average approximately 0.1 K
and 0.4 K greater than their ECMWF counterparts, respectively.
These differences had minimal impact on daytime cloud frac-
tion but caused a 2% increase in nighttime cloudiness with
GEOS input, particularly over deserts. Changes in the MODIS
cloud mask were devised to minimize that increase, which was
found to be due to false cloud detection, and any inconsistencies
produced by the change from ECMWF to GEOS-4. The change
is expected to have negligible impact on the average cloud
properties.

2) Surface Characteristics: Surface type is used to select
the surface albedos and emissivities, as well as to select which
method is employed to retrieve cloud properties. Surface type
(Box D, Fig. 1) is denoted with the variable K and given a value
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TABLE I
IGBP SURFACE TYPES (GENERAL TYPE USED FOR MODEL SELECTIONS)

of 1–19, corresponding to one of the 19 modified International
Geosphere Biosphere Programme (IGBP) surface types [25]
listed in Table I. The land percentage in each 10′ IGBP grid box
was computed from the 1-km IGBP land-water data set. Daily
ice and snow extent data (Box C, Fig. 1) are obtained from the
Near-Real-Time Equal Area Special Sensor Microwave Imager
Earth-Grid Daily Global Ice Concentration and Snow Extent
products [26] on a nominal 25-km polar stereographic grid
and supplemented by the National Environmental Satellite Data
and Information Service Interactive Multisensor Snow and Ice
Mapping System Daily Northern and Southern Hemisphere
Snow and Ice Analysis in the vicinity of coastlines [27]. All
snow and ice extent values are interpolated to a 10′ grid. If the
ice and snow map indicates that the snow or ice percentage
exceeds 0% or 50%, respectively, within a given tile and the
scene is overcast or more than 50% of the clear pixels within the
tile are identified as snow, then the surface type is temporarily
designated as K = 15, snow/ice.

The average land elevation was determined for each 10′

region from the 1-km U.S. Geophysical Survey GTOPO30
data set (http://edc.usgs.gov/products/elevation/ gtopo30/
gtopo30.html). The percentage of water surface in a given 10′

region was determined from the 1-km IGBP data set. These
data are included in Box D, Fig. 1.

3) Surface Emissivity and Albedo: Spectral surface emis-
sivities εsi, available on the 10′ grid, are used in conjunction
with the MOA skin temperatures to estimate the clear-sky
radiances for the CERES reference channels i = 3, 5, where the
wavelengths are listed in Table II. These emissivities have been
discussed in detail elsewhere [5].

When channels 1–3 are used in the retrievals during daytime,
the surface bidirectional reflectance ρs and diffuse albedo αsd
are used to determine the reflected radiation field underneath
the clouds. For channel 1, αsd and ρs are estimated, respec-
tively, from the diffuse clear-sky albedo αcsd1 at an SZA of
53◦ and from the clear-sky reflectance ρcs1, as described in
[5, eqs. (2) and (3)]. The channel-2 and channel-3 albedos and
reflectances are estimated in a more direct manner. The surface
or clear-sky reflectances and diffuse albedos for each channel

TABLE II
CENTRAL WAVELENGTHS (µm) FOR VIRS AND MODIS CHANNELS

are obtained either from the prescribed values (Boxes E and H,
Fig. 1) used in the cloud mask or from clear pixels within the
tile (Box K, Fig. 1) resulting from the cloud mask. The latter is
used if more than 10% of the tile is clear.

The prescribed values for the VIS and NIR channels over
water surfaces are taken from an updated version of the VIS
BRDF in [28]. For land and snow surfaces, the VIS overhead-
sun clear-sky albedos αcs1(µo = 1) and overhead-sun NIR
surface albedos αs2(µo = 1), based on bi-daily updated 10′

global maps, are passed through from the CERES cloud mask.
These quantities and the sources for their values are discussed
further in [5]. The variable µo = cos(θo), where θo is the SZA.

The VIS diffuse clear-sky albedo is estimated at a given SZA
for any 10′ region as

αcsd1 = δcs1(K,µo = 0.6) αcs1(µo = 1) (1)

where δcs1 is the normalized directional reflectance model that
predicts the variation of the clear-sky albedo with SZA for a
given surface type. The value of δcs1 at µo = 0.6 (SZA = 53◦)
was selected based on the diffusivity approximation (used with
VZA for thermal radiation). While this value serves as a good
approximation for some scene types, a later analysis of each
model, not shown, indicates that the value at SZA = 56◦ is
more accurate and should be used in future editions.

The VIS clear-sky reflectance is estimated as

ρcs1(µo, µ,φ) = δcs1(K,µo)αcs1(µo = 1) χ1(K,µo, µ,φ)
(2)

where χ1 is the VIS BRDF, µ = cos θ, and φ is the relative
azimuth angle.

For the NIR channels, the diffuse surface albedo for any 10′

region is estimated as

αsd2 = δsN (K,µo = 0.6) αs2(µo = 1) (3)

where the subscript “2” indicates either 1.6 or 2.1 µm. The
surface reflectance is

ρs2(µo, µ,φ) = δs2(K,µo) αs2(µo = 1) χs2(K,µo, µ,φ)
(4)

where χs2 is the NIR BRDF. The VIS and NIR BRDFs are the
same as those used in [5].
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The SIR reflectances and albedos are based on the surface
emissivity. During daytime, solar radiation in the SIR channel
reflected by the surface is added to the thermal emission from
the surface. To account for this reflected contribution, the SIR
or channel-3 surface reflectance is estimated as

ρs3 = (1− εs3) χsN (K;µo, µ,φ). (5)

The BRDFs used for the 2.1-µm channel were also used
for channel 3 because of the lack of bidirectional reflectance
measurements at SIR wavelengths. An exception is the theo-
retical 3.8-µm snow reflectance model [6], which is used here
for all snow and ice surfaces. Since the SZA dependence of
the SIR albedo is unknown, the diffuse SIR albedo is estimated
simply as

αsd3 = (1− εs3). (6)

C. Cloud Reflectance and Emittance Models

The cloud-water-droplet and smooth-solid hexagonal-
column ice-crystal distributions described by Minnis et al. [29]
were used to compute the reflectance LUTs for channels 1–3
and coefficients used in the emittance parameterizations for
channels 3–5. For the VIS channel, the same optical properties
listed in [29] were used in the AD radiative transfer model to
develop higher angular resolution LUTs: 21 regularly spaced
(0.05 intervals) µo and µ nodes between 0 and 1, and 24 φ
nodes with higher resolution near the extrema. The AD model
used 350 Legendre polynomials and 120 Fourier terms to
deconvolve the water-droplet and ice-crystal scattering phase
functions. The VIS LUTs cover the VIS optical depth τ range
from 0.25 to 128 for droplet effective radii re between 2 and
32 µm and ice-crystal effective diameters De between 6 and
135 µm. Because effective diameter is defined as in [30], it is
not directly comparable to the effective radius. However, for
comparisons to other retrievals, the equivalent effective radius
can be computed using the following formula. For ice

re =
(
7.918× 10−9 µm−2 D2

e

+ 1.0013× 10−3 µm−1 De + 0.4441
)
De. (7)

The VIS reflectance LUTs described in [31] are used to
estimate the reflectance due to Rayleigh scattering in the at-
mosphere. It should be noted that [29, Table 5] reproduced the
wrong data giving the average volume and area for each of the
effective ice-crystal sizes. The correct values are given here in
Table III. The values of De and IWP in the retrievals are not
based on those values, and therefore, the misprinted values in
Table 5 of Minnis et al. [29] have no impact on the results.

The VIS angular resolutions and deconvolutions were also
used for the NIR and SIR calculations. The NIR optical prop-
erties for ice and water were computed using Mie scattering
calculations as in [29] and ray-tracing results as in [32], cover-
ing the same optical depth range as the VIS models. In addition,
cloud absorptances A2c(r, τ, µo) were computed as functions of
particle size, optical depth, and µo. These were integrated over

TABLE III
AVERAGE DIMENSIONS OF HEXAGONAL ICE

COLUMNS USED IN RETRIEVALS

Fig. 2. Spectral filter functions for the SIR bands on several imagers. (a) Real
and (b) imaginary indices of refraction m for liquid water also plotted for two
sources: H&Q [31] and D&W [33].

µo to obtain the diffuse solar absorptance A2cd(r, τ). All of the
calculations are referenced to the VIS optical depth.

Similarly, new values for the SIR optical properties were
computed as in [29] and [32] using the MODIS and VIRS spec-
tral filter functions. In this instance, however, the reflectances
were computed separately for 0.1-µm subbands between 3.5
and 4.0 µm using the single-scattering albedos and extinction
coefficients determined from Mie scattering calculations for
liquid water droplets with the indices of refraction from [33]
for each subband. The scattering phase functions are based on
Mie scattering computations for the spectral-response-weighted
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Fig. 3. Reflectances computed for the MODIS 3.78-µm channel and subbands for a liquid water cloud. Ch 3 denotes the calculations for effective wavelength.

indices of refraction. The subband reflectances were then in-
tegrated over the spectral response function weighted by the
TOA incoming radiances [34] to obtain a single reflectance for
the band.

Fig. 2, which plots the refractive indices of liquid water
over the spectral response functions for AVHRR, VIRS, and
MODIS, shows that the real index of refraction [Fig. 2(a)] for
each of those bands varies linearly across the instruments’ spec-
tral bands. On the other hand, the value of the imaginary index
of refraction [Fig. 2(b)] is a minimum near the bands’ central
wavelengths (∼ 3.78 µm), so that the absorption is greater at all
wavelengths away from the center. Thus, when the response is
used to compute reflectance or absorption and convolved over
the incoming solar radiances or for terrestrial radiances, the re-
flectance or absorption, respectively, will be less or greater than
that if the indices of refraction were integrated over the spectral
filters to obtain an effective index of refraction for the band.
This is shown in Fig. 3 for the VIRS 3.8-µm channel. The max-
imum reflectances for a 6-µm water-droplet model [Fig. 3(a)]
are 0.29 and 0.27 using the effective indices of refraction and
the solar-weighted reflectances, respectively. Similarly, for a
12-µm droplet model [Fig. 3(b)], the maximum reflectance is
0.142 for the effective wavelength versus 0.130 for the solar-
weighted model. Thus, the retrieved value of re will be smaller
using the solar-weighted reflectances compared to that retrieved
using the effective wavelength calculated reflectances.

The subband weighting for ice is accomplished in a similar
manner using the indices of refraction from [35] to compute
the optical properties for ice spheres having the same effective
radii as the ice-crystal size distributions. The subband values
were integrated to obtain a band average that is used to compute
a normalization factor relative to the band average for the
original ice-crystal calculations. The ice-sphere subband values
were then adjusted with the normalization factor to obtain the
subband ice-crystal optical properties, and the reflectances were
computed for each subband using the AD model. The spectral
integration and solar weighting were performed in the same
manner as for the liquid droplet models. The SIR reflectance

LUTs are limited to τ ≤ 32 since the reflectances asymptoti-
cally approach their maximum values at smaller optical depths
for all of the considered particle sizes.

The channel-3 effective emittances were determined in a
similar manner using the same subbands. In this instance
[Fig. 2(b)], the blackbody curve of the cloud temperature
(not shown) substitutes for the solar spectrum to weight the
absorption and emission computed for each subband in the final
integration over the response function. The results were used to
compute the model effective emittances for each particle size,
optical depth, and pairs of surface and cloud temperatures and
to develop the emittance parameterizations as in [29].

III. METHODOLOGIES

As shown in Fig. 4, the CPRS selects one of the three
methods to retrieve cloud properties based on the SZA and
the surface type. A tile is considered to be in daylight if
SZA < 82◦. Although pixels having SZA between 82◦ and
90◦ are technically in daylight, they are processed with the
nighttime retrieval algorithm including all modeled solar re-
flectances where appropriate. For a given tile, the atmospheric
attenuation is first computed for every layer and channel for use
in any of the techniques, except where noted otherwise. The
appropriate parameterizations are then employed to estimate
the TOA spectral radiances for each pixel based on the surface
albedo or skin temperature and emissivity and the atmospheric
attenuation parameters. Each method iteratively finds the best
match between the model-predicted and observed radiances to
determine the cloud phase, cloud effective radiating tempera-
ture Tc, cloud effective height Zc, τ , and the effective particle
size r, which can be either radius re or diameter De, depending
on cloud phase. The IWP and LWP are computed as functions
of the products of τ and the appropriate effective particle size.
Using adjusted MOA temperature profiles and empirical fits for
cloud base, the algorithm computes the effective cloud pressure
pc, cloud-top height Zt, and pressure pt, and cloud-base height
Zb and pressure pb.
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Fig. 4. Overview of CERES CPRS in Box O from Fig. 1.

A. Atmospheric Absorption and Emission Corrections

The atmospheric absorption and emission corrections are
primarily based on calculations using the CKD method [36]
with coefficients developed for the VIRS and MODIS chan-
nels used here (see [37] and http://asd-www.larc.nasa.gov/
~kratz/). The NIR atmospheric corrections are discussed in
Section III-B4.

1) VIS Absorption: For the VIS channel, only ozone and
water vapor absorption are considered, although there are a few
other absorbing species with negligible impact. All ozone ab-
sorption is computed using the same approximation as in [31],
and although assumed to occur in the stratosphere above any
clouds, the ozone concentration u is computed in centimeter
STP for the layer between the TOA and 300 hPa. Thus, the
ozone transmittance is

tO3 = exp− {u(0.085− 0.00052 u)(1/µo + 1/µ)} . (8)

Further analysis after Ed2 processing began revealed that
(8) overestimates the ozone optical thickness for the MODIS
VIS channel by 13%, causing average overestimates of τ that
increase exponentially from 1% or less for µo > 0.50 up to 50%
or more for µo < 0.12. Thus, these biases become significant
only for large SZAs and mainly affect the optical depths over
high-latitude snow-free areas.

A parameterization of water vapor transmission tW1j was
developed for channel 1, based on radiative transfer calculations
using the CKD method, to compute the cumulative layer water

vapor transmissions starting from the top of the atmosphere and
working downward toward the surface

tW1j = 0.9999− 0.0046 uwj + 0.00007 u2
wj (9)

where the atmospheric path length is

uwj = PWj(1/µo + 1/µ) (10)

and PWj is the PW in atmosphere centimeters. The subscript
j denotes the layer from the TOA to pressure level j in the
atmospheric profile. The total VIS atmospheric transmittance
for layer j in the troposphere is the product of tO3 and tW1j .
Water vapor absorption below the cloud is ignored. Atmo-
spheric molecular scattering is taken into account in the VIS
reflectance parameterization. All aerosol scattering is assumed
to occur below the cloud and is implicitly included in the
surface reflectance and albedo.

2) Thermal Channels: The atmospheric transmittances for
channels i = 3−5 are calculated in a common manner for
each tile, except that the SIR solar beam transmittance is
computed separately from the atmospheric radiances and the
VIRS SIR band is broken into five subbands, while only a single
band is used for MODIS because it is much narrower [37].
The CKD method again is used to compute the layer optical
depths τij , and the transmittances and emitted radiances for
each cumulative layer are computed starting at the TOA and
working downward. The downwelling emitted radiances LDij

and transmissivities tDij are computed as cumulative diffuse
radiances from the TOA to the base of layer j, using the
radiance at µ = 0.6, while the upwelling transmissivities tUij

and radiances LUij are computed only in the VZA direction,
starting at the surface and working upward to the TOA, where
they are designated with the subscript o. The surface is denoted
with the subscript j. The downwelling SIR solar component is
computed in the SZA direction µo, using as the source term the
solar constant at 3.8 µm adjusted for the Earth–Sun distance and
SZA. The nominal values of the SIR solar constants Eo, i.e.,
10.51 and 10.77 W · m−2 · µm−1 · sr−1, for VIRS and MODIS,
respectively, are based on the spectrum of Kurucz [34]. The
uncertainties in Eo are roughly 5%, a value that translates to
potential errors in re and De of 0.5 and 1.5 µm, respectively
[38]. The CKD calculations include contributions from weak
water vapor lines for all three channels, chlorofluorocarbons
for VIRS 10.8 and 12.0 µm, the water vapor continuum for
10.8 and 12.0 µm, CO2 for MODIS 10.8 and 12.0 µm, and
CH4 and N2O for 3.8 µm. The Planck function evaluated at the
central wavelength for each channel (Table II) is used to convert
temperature to radiance and vice versa. The layer optical depths
are computed for the entire band.

B. Parameterizations of TOA Reflectance and
Brightness Temperatures

1) VIS Reflectance Parameterization: In the initial formu-
lation of VISST used in VIRS Ed1, the VIS reflectance was
estimated using the parameterization developed in [31]. Further
examination of that method found some relatively large errors
over bright surfaces at certain angles. To improve the accuracy
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of the modeled VIS TOA reflectance for clouds over dark
and bright surfaces, a new parameterization was developed
using the results from a detailed AD radiative transfer model
[31]. This parameterization is based on the AD equations
using the LUTs developed in [29] for the diffuse cloud albedo
αcd(τ, r), cloud albedo αc(τ, r, µo), and the cloud reflectance
ρc(τ, r, µo, µ,φ), where τ and r are the cloud VIS optical depth
and effective particle size, respectively. The parameterization
also uses the LUTs of atmospheric reflectance ρR(τR , µo, µ,φ),
albedo αR(τR, µo), and diffuse albedo αRd(τDR, µo) due to
Rayleigh scattering [31]. It assumes that the atmosphere is
divided into three layers with a lower surface. The top layer,
designated layer 1, and layer 3 are Rayleigh scattering layers,
while layer 2 is the cloud layer.

The reflectance for two adjacent layers is computed using
the adding equations. These are then added to the third layer
to yield the combined model surface and atmosphere TOA VIS
reflectance Ras. Since the adding process is only approximated
in this parameterization, there are residual differences between
the AD model results and the initial parameterizations. These
differences ∆R were parameterized further in terms of the
scattering angle and used to adjust Ras to estimate the TOA
reflectance

RTOA = (Ras +∆R) exp (−τgas(1/µ+ 1/µo)) . (11)

The exponential term accounts for gaseous absorption above
the cloud and, in practice, varies with the altitude of the cloud.
This formulation does not explicitly account for any aerosols;
the surface albedo and reflectance are actually more repre-
sentative of the surface and aerosols combined. Appendix A
describes the parameterizations in detail.

When used for retrievals, the values of ∆R are computed for
the specified values of αsd, pc, and r by linear interpolation and
extrapolation between the values used to create the coefficients
for (11). This equation was tested for wider ranges of various
cloud models, surface albedos, and cloud pressures than were
used in the formulation of the parameterization. The resulting
relative differences between (11) and the AD calculations for
those cases plus the original cases used in the formulation are
summarized in Appendix A.

2) IR Brightness Temperature Parameterization: The sim-
ple model of brightness temperature used here is that, for a
cloud at some layer j within the atmosphere, the observed
radiance for channels i = 3−5 can be represented as

Bi(Ti) =LUio − LUij−1

+ tUio

{
[1− εi(τi, r;µ)]

× [(1− εsi)(LDiJ − LDij) + εsiBi(Ts)]

+ εi(τi, r;µ)Bi(Tj)/tUij−1

}
(12)

where Ti is the equivalent blackbody temperature, Tj is the
cloud effective radiating temperature, B is the Planck function,
εsi is the surface emissivity, and the effective cloud emittance εi
approaches unity as the cloud becomes optically thick. The first
two terms represent the radiance contributed by the atmosphere

above the cloud; LUio is the upwelling radiance from the
surface to the TOA, and LUij−1 is the upwelling radiance from
the surface to the base of the cloud in layer j. The third term
includes the radiances from the cloud and the surface attenuated
by the atmosphere. The downwelling radiation from the cloud
is neglected. The upwelling transmissivities from the surface to
the TOA and the surface to the cloud base are tUio and tUij−1,
respectively. The downwelling radiance from the atmosphere
reaching the surface is given by LDiJ − LDij , where the first
and second terms are the downwelling radiances at the surface
for the atmospheric column and at cloud top, respectively. The
downward transmittance of the cloud and surface reflectance
are approximated as the quantities [1− εi(τi, r;µ)] and [1−
εsi], respectively. Given the cumulative transmissivities and
atmospheric radiances computed for a given tile, it is possible to
quickly compute Bi(Ti) for a model cloud placed at any height,
providing the means to iteratively solve for Tc, as discussed in
Section III-C.

If scattering in the cloud is neglected

εai = 1− exp(−τai/µ) (13)

where the absorption optical depth τai = (1−)o)τi and)o is
the single-scattering albedo. As noted earlier, Ts is taken either
from the MOA data set or from the clear portion of the tile.

3) SIR Brightness Temperature Parameterization During
Daytime: The use of the SIR data during the daytime com-
plicates (12) because of solar reflectance at those wavelengths.
The observed radiance has an additional term

B3(T3) = L′
3 + µo do Eo tU3o tD3J ρc3 (14)

where L′
3 is computed with (12), do is the Earth–Sun distance

correction, and the combined surface- and cloud-reflected com-
ponent is

ρc3 = [ρ3(τ, r;µo, µ,φ)/tU3j−1]

+ [tD3o/tD3J ] [1− εa3 − αc3(τ, r;µo)] ρ
′ (15)

where

ρ′ = [1− εa3 − αc3(τ, r;µ)] ρs3(µo, µ,φ)

+ [1− αcd3(τ, r)− εad]αcd3(τ)α2sd3 (16)

and αc3, αcd3, and ρ3, from the channel-3 reflectance LUTs,
represent the cloud albedo for a given incident angle, the
diffuse cloud albedo, and the cloud bidirectional reflectance,
respectively. The first term in (15) accounts for the reflectance
directly from the cloud, while the second term accounts for the
contribution of the surface to the reflectance. It is approximated
as a combination of primary and secondary surface reflectances.
The primary assumes reflectance of the direct beam in the
direction of the sensor, and the secondary assumes that the
second reflectance is diffuse and reflects the radiation originally
reflected by the surface and scattered back by the cloud. Since
the secondary term is usually very small relative to the first
term, it and higher order reflectances were neglected in the
VIRS, Terra, and Aqua Ed2 cloud analyses.
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4) NIR Reflectance Parameterization: Since the atmo-
spheric scattering at NIR wavelengths is negligible and all
aerosol reflectance is assumed to occur underneath the cloud,
the formulation for the model is simpler than that for either
the VIS or SIR channels. The theoretical TOA NIR reflectance,
which was formulated to match AD radiative transfer computa-
tion results over a wide range of conditions, is approximated as

ρ2 = ρ2c(m, τ, µo, µ,φ) exp (−τ2a1[1/µo + 1/µ])

+ αs2 exp (− (τ2a1[1/µo + 2.04] + 4.08τ2a2))

× (1− α2cd −A2cd)(1− α2c −A2c). (17)

The first term is the direct bidirectional reflectance of the
model cloud attenuated by the atmosphere above the cloud,
corresponding to the atmospheric absorption optical depth for
layer 1 τ2a1. The second term represents the contribution of
the surface to the TOA reflectance and only includes two-
way diffuse absorption by layer 2 under the cloud τ2a2. For
snow-covered regions, the second term is typically negligible
because the NIR surface albedos are often less than 0.1 [19].
The atmospheric absorption at NIR wavelengths is due to weak
water vapor, CO2, CH4, and, at 2.1 µm only, N2O bands.
The total atmospheric column optical depth at 1.6 µm varies
from ∼0.021 in a subarctic winter atmosphere to ∼0.024 in
a tropical atmosphere. Thus, a simple parameterization was
developed to estimate the atmospheric absorption as a function
of latitude for different levels in the atmosphere. The 2.1-µm
atmospheric absorption optical depth is greater and can range
from ∼0.05 in a subarctic winter atmosphere up to ∼0.16
in a tropical atmosphere. The absorption optical depths are
computed explicitly at 2.1 µm for each tile using the CKD
method. Unfortunately, in the Aqua Ed2 algorithm, the 1.6-µm
atmospheric absorption optical depths were mistakenly used for
the 2.1-µm retrievals. This error causes an underestimation of
the retrieved optical depths. The extent of the bias is explored
in [17].

C. Retrieval Techniques for Cloud Temperature, Phase,
Optical Depth, and Particle Size

1) VISST: The iterative process employed by the VISST is
shown schematically in Fig. 5. It is much like the approach
pioneered by Han et al. [38] for deriving liquid water cloud
microphysical properties from AVHRR data and was initially
formulated and applied to AVHRR data for both ice and liquid
water clouds by Minnis et al. [39] and Young et al. [40]. The
IR, VIS, and SIR radiances are primarily sensitive to changes in
Tc, τ , and re, respectively, a basis used for a variety of similar
techniques [13], [38], [41], [42]. Nominally, for a given pixel,
the iterative process is performed for each phase, beginning
with an initial guess of r′e = 8 µm and Tc = T (Z = 3 km)
for liquid clouds and De = 45 µm and Tc = T (Zc = 9 km).
However, if T4 < 233 K, it is assumed that the pixel contains
an ice cloud and only the ice loop (A) is executed.

The values of RTOA are computed for each case using (11)
and interpolated to match the observed VIS reflectance to yield
τ and ε4, which is then used to recompute Tc with (12). These

parameters are then used to compute T ′
3 using (14) for each

particle size model, yielding minimum and maximum values
T ′
3min, and T ′

3max, respectively. If it is the first iteration and the
observed value T3 is either smaller than T ′

3min or greater than
T ′
3max, the assumed particle size is reset to the maximum or

minimum particle size, respectively, τ and Tc are recomputed,
and the process is repeated in the second iteration. If T3 is
outside of either model extreme after the first iteration, then it
is assumed that no retrieval is possible with that set of models.
If T3 is within the extreme model values during any iteration,
then re is estimated by interpolating between the values of
T ′
3 to match T3. For water clouds, if |re − r′e| < 0.5 µm, the

iteration stops; otherwise, a new value of r′e is computed as the
average of re and the original r′e, and the process is repeated.
A no-retrieval value results if convergence does not occur after
20 iterations. The same procedure is used for the ice clouds,
except that the ice-crystal models replace their water-droplet
counterparts and the iteration stops when |De −D′

e| < 2.5 µm.
The cloud thermodynamic phase is selected using a set of

sequential tests. These are shown in Figs. 6 and 7 for the Aqua
Ed2 algorithm. If the observed reflectance is less than the clear-
sky value, it is likely a no-retrieval pixel and is assigned the
mean layer results (depending on T4), if it is not reclassified
as clear (Fig. 6). This assignment is given on the assumption
that it is a shaded cloud. If there is only one phase solution
and Tc is physically reasonable, the phase is accepted for that
solution. If Tc is unreasonable, then it follows the same path as
the no-solution case. If there are dual phase solutions, a simple
temperature check is applied: If Tc > 273 K (≤233 K) for both
results, the liquid (ice) solution is used, unless the ice cloud
is over snow. Otherwise, a more complicated series of tests is
applied. These further tests incorporate results from two other
separate algorithms: the LBTM [43] applied in less than 5% of
the cases and a supervised classifier (denoted as UAH) based
upon a back-propagation neural network [44], which is used
less than 2% of the time during the day and ∼10% of the time
at night. The latter provides an independent assessment of cloud
and surface type and is primarily used over snow surfaces. The
former uses a 2-D VIS-IR histogram to provide an estimate
of the cloud layer that includes the pixel. It also determines a
parameter, designated “hi_cold,” that indicates whether there
is at least one pixel in the high layer having T4 less than the
warmest pixel in the low cloud layer. This parameter is used
to reclassify thin cirrus pixels that would otherwise be called
liquid cloud pixels. It was introduced to minimize such clas-
sifications, which occurred in the Terra Ed2 results at certain
viewing and illumination angles. The remaining tests shown in
Figs. 6 and 7 make use of the LBTM and UAH outputs, the
particle sizes, Tc, τ , and the surface types to arrive at a final
solution. The Terra Ed2 algorithm follows a similar flow, but it
does not employ the LBTM results. It uses the ratio of the 1.6-
and 0.65-µm reflectances to aid the phase selection. Note that
the values for no-retrieval pixels (positive terminus in the upper
left section of Fig. 6) are assigned conditionally in a separate
set of algorithms described briefly in Section III-F.

Fig. 8 shows an example of the VISST pixel-level results
for Terra MODIS data taken over western North America and
the adjacent Pacific Ocean at ∼21 UTC, June 12, 2004. The
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Fig. 5. Flowchart of VISST analysis process.
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Fig. 6. Phase selection algorithm for Aqua Ed2 daytime retrieval algorithm.

pseudocolor red (VIS), green (NIR), blue (IR), or RGB image
[Fig. 8(a)] shows a complex scene with low clouds over much of
the water, high clouds over the northern part of the image, and a
mixture of high and low clouds over land. Sunglint is apparent

off the coast of southern California between cloud decks. The
phase image [Fig. 8(b)] shows the liquid water clouds in blue,
ice clouds in white, clear areas in green, and no retrievals in
pink. The effective temperatures [Fig. 8(c)] for the ice clouds
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Fig. 7. Further phase determination logic for Aqua Ed2 algorithm called from within the main decision tree in Fig. 6: Ice cloud likely check.

range from 215 K to 260 K, while the Tc for the liquid clouds
varies from 294 K to less than 265 K. The retrieved values
of De [Fig. 8(d)] are between 15 and 100 µm, compared to
a range of 6 to 27 µm for re [Fig. 8(e)]. The largest values
of re are over the water, while the smallest values of De tend
to occur where the ice clouds appear to overlap lower clouds.
This type of variation is expected if the high cloud is optically
thin because the reflected SIR radiance from the low cloud will
yield an underestimate of De [45]. The retrieved optical depths
[Fig. 8(g)] vary from slightly less than 0.5 up to the maximum
of 128. The resulting LWP ranges up to ∼ 500 g · m−2, while
the IWP is as large as 1500 g · m−2 for some pixels near the
top of the image [Fig. 8(h)]. For overlapped clouds, the IWP is
an estimate of the total cloud water path TWP, which includes
both ice and water. Typically, it overestimates TWP [45]. The
cloud effective height Zc [Fig. 8(f)] and effective pressure pc
[Fig. 8(i)] are estimated from Tc, as described in Section III-E.

2) SIST: The primary goal of the nighttime retrievals is to
adjust cloud temperature and, hence, the height for semitrans-
parent clouds to provide some consistency between day and
night. Although the SIST derives particle size and optical depth

for clouds that it identifies as optically thin, those parameters
are considered to be experimental and are only included in the
output for future study. The theoretical basis and heritage of the
SIST and relevant references are provided in [15]. The SIST
relies on the BTDs between channels 3 and 4 (BTD34) and
between channels 4 and 5 (BTD45) to solve for Tc, τ , and re
or De. The performance of the SIST relative to the VISST is
discussed in [17].

Given an optically thin cloud (τ < 6), µ, and the background
(theoretically, it can be either clear or cloudy below) tempera-
tures for channels 3, 4, and 5, it is assumed that a given pair
of BTD34 and BTD45 at a particular value of T4 uniquely
defines a cloud characterized by Tc, re or De, and τ . These
parameters are determined by matching the three measured
quantities as closely as possible to the same parameters cal-
culated using (12). Each observed quantity should fall between
the corresponding pair of discrete theoretical calculations for a
given phase. The distance in BTD from the model value to the
observed value for both channels 3 and 5 is used to interpolate
between each model and parameter to assign a value of Tc, re or
De, and τ to the pixel. In the absence of temperature constraints
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Fig. 8. Cloud properties derived by applying the VISST to daytime Terra MODIS data taken over western North America and the eastern Pacific, 21 UTC, June
12, 2004. (a) RGB image. (b) Phase. (c) Tc (in kelvins). (d) De (in micrometers). (e) re (in micrometers). (f) Zc. (g) τ . (h) IWP/LWP (in g · m−2). (i) pc (in
hectopascals).

Fig. 9. Schematic illustration of SIST iteration process for nocturnal retrievals. (a) Step 1, compute errors for model k using the first guess temperature.
(b) Step 2, compute errors for the second temperature estimate.

(Tc > 273 K or Tc < 233 K), the phase is selected based on
how closely the channel-3 and channel-5 parameters agree with
each other.

This technique attempts to determine τ , Tc, and particle
size through an iterative process that minimizes the differences
between model-derived and observed values of BTD34 and

BTD45 for the observed T4. This procedure, shown schemati-
cally in Fig. 9, begins with input values of µ and Ts and assumes
an initial value of Tc = T ′(k), where T ′(k) < T4 and k is an
index corresponding to the emittance model for a particular
particle size and phase. The first guess temperature is equal
to 0.5(T4 + 183). For each of the channel-4 emittance models,
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Fig. 10. Schematic diagram of minimum error estimation to determine most likely particle size models. (a) Determining minimum error for a given particle size
model. (b) Determining model having a minimum error.

Fig. 11. Sensitivity of retrieved optical depth, ice-crystal effective size, and Tc to errors in surface emissivity for Tc = 250 K in a standard tropical atmosphere.

τ [T ′(k), k] is determined using a secant iteration method to
match T4. The iteration is confined to temperatures between
T4 + 3 K and Tp − 2 K, where Tp is the tropopause tem-
perature. The arrow in Fig. 9(a) represents this process. The
resulting value of τ is used to compute T3 and T5 using the
channel-3 and channel-5 emittance models in (12). The model
values of BTD34[T ′(k), k] and BTD45[T ′(k), k], shown as
the intersections of the model curves and the dashed line in
Fig. 9(a), are calculated from the model-derived temperatures
and T4. Difference errors e34 = BTD34 −BTD34[T ′(k), k]
and e45 = BTD45 −BTD45[T ′(k), k] are computed for each
model. The composite error

e [T ′(k), k] = e234 + e245 (18)

is minimized in the iteration process. These operations are
repeated varying T ′(k), as shown in Fig. 9(b), until e(Tnew, re)
is minimized, yielding the best estimate of cloud temperature
for model k. In the first iteration, T ′(k) is increased by 10 K
for each step until e begins to increase. Fig. 10(a) shows how
e can vary with increasing T ′(k). Subsequent iterations repeat
the error calculations using increasingly smaller temperature

increments bounded by the last two temperatures used in the
preceding iteration. The iterations continue until the increment
is less than 0.1 K or up to 15 times. In the latter case, the results
from the penultimate iteration are accepted. If the resultant
optical depth exceeds 16, then τ is reset to 16. For the case
in Fig. 10(a), the value of Tc(k) corresponds to the minimum
error. This entire procedure is repeated again for each model,
producing final values of e[T ′(k), k], as shown in Fig. 10(b).
In practice, the algorithm begins with the smallest model for
the phase and continues until e34 and e45 switch signs, which
indicates that the observation is between the previous two
models. One of the two models kmin1 will have the smallest
value of e for the particular phase, while the other model kmin2

should also have a relatively low error. These two models are
then selected for interpolation. If Tc > 273 K or < 233 K, only
the water-droplet or ice-crystal models, respectively, are used.

The final values of re or De, Tc, and τ are computed
for channel 3 by linearly interpolating between re(kmin1)
and re(kmin2), Tc(kmin1) and Tc(kmin2), and τ(kmin1)
and τ(kmin2), respectively, using e34[T ′(kmin1), kmin1] and
e34[T ′(kmin2), kmin2] as the independent variables. The same
interpolation is repeated for channel 5. The resultant values for
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Fig. 12. Flow diagram of SIST used for cloud property retrievals during nighttime and twilight conditions.

the two channels are averaged to obtain the best estimate of
each parameter. If both phases are considered, then the results
for the phase having the smallest uncertainty

e35=

(
Tc3−Tc5

Tc3

)2

+

(
τ3 − τ5
τ3

)2

+

(
re3 − re5

re3

)2

(19)

are selected for the final parameter values. The subscripts “3”
and “5” refer to the parameter values derived using channel
4 with channels 3 and 5, respectively. The most accurate es-
timates of Tc are obtained for the larger optical depths (τ > 6),
while the most accurate values of τ and re should occur for
1 < τ < 6. There is little variation in BTD with particle size
for small and large optical depths. This method was tested using
a limited set of simulated data with superimposed noise. In
these cases, the retrieved particle sizes were within 0.1 µm of
the simulated cloud values, and the phase was chosen correctly.

Although a comprehensive analysis of errors in the SIST is
beyond the scope of this paper, additional tests of the sensi-
tivity of the retrievals to input values of surface temperature,
surface emissivity, and relative humidity were performed using
a standard tropical atmosphere with ice clouds having Tc =
250 K and 230 K. The surface emissivities for channels 3, 4,
and 5 were specified as 0.98, 0.98, and 0.98, respectively, for

the tropical cases. The surface temperatures, 11-µm surface
emissivities, and column relative humidities were perturbed by
±2.5 K, 0.02, and 15%, respectively, and used to perform the
retrievals at V ZA = 25◦ and 55◦ for ice clouds having De =
40 and 80 µm. The 0.02 εs perturbation roughly corresponds
to a 1.5-K change in Ts. The simulated retrievals used a set of
LUTs during the iterative procedure. Fig. 11 shows the results
for the surface emissivity perturbations using Tc = 250 K. The
optical depth errors ∆τ/τ are greatest for τ < 0.1, switch signs
as τ rises, and hit another peak at τ ∼ 0.4 and then decrease,
approaching zero, becoming a little unstable for τ > 3. This
instability in the results for τ > 3 is due to some nonmonotonic
changes in BTD34 as a function of De and the decreasing
separation between the particle size models as τ becomes larger
than three (e.g., [29, Fig. 15]), i.e., the information content is
minimal. The maximum errors for τ < 3 are slightly smaller at
θ = 55◦ than at θ = 25◦ and for De = 80 [Fig. 11(b)] compared
to De = 40 [Fig. 11(a)]. Underestimates of εs yield much
smaller errors in τ than the positive perturbations.

The retrieved particle size errors ∆De/De in Fig. 11(b) and
(d) are much more sensitive to uncertainties in εs. The negative
perturbations yield errors of 2 for τ < 1.0, decreasing to ∼0.7
for τ > 1 and De = 40 µm. The positive perturbations yield
underestimates of De of almost 100% for τ < 0.1 for De =
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Fig. 13. Cloud properties derived by applying the SIST to nighttime Aqua MODIS data taken over the North Atlantic, 23 UTC, May 22, 2004. (a) RGB image.
(b) Phase. (c) Tc (in kelvins). (d) De (in micrometers). (e) re (in micrometers). (f) Zc. (g) τ . (h) IWP/LWP ( in g · m−2). (i) pc (in hectopascals).

80 µm, decreasing to ∼0.1 for τ > 1.5. For De, the errors fol-
low a similar but offset curve, but lose convergence for τ > 2.
In all cases, the results are unstable for τ > 3. The effective
cloud temperature errors ∆Tc/Tc in Fig. 11(c) and (e) are
much better behaved, converging to the correct value without
instabilities. For very small optical depths, the perturbations
yield errors of −0.15 or so, dropping to absolute values less
than 0.05 for τ > 0.8 or so. A 0.05 Tc error translates to
12.5 K for Tc = 250 K. The 2.5-K perturbations in Ts and 15%
uncertainties in RH yield larger and smaller errors, respectively,
than those in Fig. 11. For Tc = 230 K (not shown), the errors in
all parameters increase for τ < 0.3 and decrease more slowly
with τ .

Since the primary goal of using the SIST is to obtain a better
estimate of Tc for thin cirrus and few clouds having τ < 0.3
are detected, the practical sensitivity of Tc to a 0.02 change
in surface emissivity varies from +8% to −5% at τ = 0.3
down to roughly ±1% or less at τ = 3 for Tc = 250 K, with
the exact value depending on VZA, particle size, and Tc. At
Tc = 230 K, the errors in surface emissivity vary from +11%

to −8% at τ = 0.3 down to roughly ±2% or less at τ = 3. The
emissivity errors used in Fig. 11 are typically much greater than
the average differences in εs at 11 µm for the εs from two
different data sets derived from the MODIS data: the CERES
values [46] and those derived by other researchers using the
MODIS data, e.g., [47]. While the 11-µm surface emissivity
differences are typically 0.01 or less, larger differences are
found over desert areas [46]. Thus, except over deserts, the
impact of using either data set would result in differences less
than half of those in Fig. 11. Uncertainties in the predicted
nocturnal Ts over land are larger than 2.5 K [23]; thus, errors
in Ts are more significant than those in surface emissivities.
Because of uncertainties in the various parameters, the overall
errors in the SIST are best evaluated by comparing with reliable
independent measurements of Tc or Zc, e.g., [17].

The iteration procedures comprise only one part of the com-
plete SIST, which is shown schematically in Fig. 12. Given the
input parameters, it is first determined if the cloud is colder than
its background. If T4 > Ts, a set of default values is applied.
Otherwise, the input parameters are checked to see if the cloud
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Fig. 14. Cloud properties derived during daytime by applying the SINT to Terra MODIS data taken over north central Canada and the adjacent Arctic Ocean,
23 UTC, May 3, 2005. (a) RGB image. (b) Phase. (c) Tc (in kelvins). (d) De (in micrometers). (e) re (in micrometers). (f) Zc. (g) τ . (h) IWP/LWP (in grams per
square meter). (i) pc (in hectopascals).

is likely to be optically thick based on BTD34, and if so, a
phase is selected based on the temperature. The threshold for
determining whether it is optically thin or thick is

∆T34 = 0.095 (T4 − Ts)− 4.175. (20)

This formula was derived from a set of radiative transfer
computations using a wide range of particle sizes and a range
of optical depths up to 16. As a relatively conservative thresh-
old, it does not eliminate all clouds having τ > 16 and is
imposed mainly to facilitate processing. The clouds determined
to be thick at this point are given a default value of τ = 32.
If BTD34 ≥ ∆T34, then the iterative procedures are applied
either using one phase or both. If solutions for both phases are
determined, then the final model selection depends on e35, as
noted earlier.

Fig. 13 shows an example of the retrieved properties from
the SIST for an Aqua image taken over the North Atlantic
(the Azores are located in lower center of the image) at ∼23
UTC, May 22, 2004. The RGB image [Fig. 13(a)], based on

T4, T5, and BTD34, reveals a swath of high clouds associated
with a frontal system at the bottom and low clouds with broken
overlapping high clouds north of the frontal system. Most of
the apparent high clouds are identified as ice clouds in the
phase image [Fig. 13(b)]. For the ice clouds, Tc varies from
205 K to 257 K [Fig. 13(c)], while it is between 253 K and
280 K for most of the water clouds. The resulting values of
De [Fig. 13(d)] range from less than 18 to 135 µm, which
is the maximum possible value. The maximum and minimum
model values occur in a variety of conditions, particularly
when τ is very low or high or in multilayered clouds. Default
values of De = 24 or 64 µm are evident over many areas,
while nonextreme retrieved values are mostly associated with
0.5 < τ < 2 [Fig. 13(g)]. The extreme values tend to occur
outside this range of τ because De is sensitive to small errors
in the atmospheric corrections and background temperatures at
smaller and larger values of τ , as seen in [15]. Most of the
water-droplet clouds yield re between 7 and 14 µm [Fig. 13(e)].
The larger values are mostly default values of re = 12 µm,
corresponding to τ = 32 [red in Fig. 13(g)].
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3) SINT: SINT is based on the method pioneered by Plat-
nick et al. [16]. It is applied when the VIS clear-sky reflectance
is extremely high, i.e., when the surface is covered with snow
and/or ice. Determination of the background surface as snow or
ice comes either from the scene classification for adjacent clear
pixels or from snow and ice maps. Because snow and ice are not
very reflective at NIR wavelengths, the NIR channel replaces
the VIS channel in the iteration used by the VISST, effectively
serving as the channel responsive to changes in cloud optical
depth. The SIR channel is still used to retrieve the effective
particle size. Thus, the iteration follows that in Fig. 5 with all
VIS reflectances replaced by their NIR counterparts using the
parameterizations and atmospheric corrections described ear-
lier. The phase selection is the same as for the VISST except no
information is available from the LBTM or the NIR/VIS ratio.

Fig. 14 shows an example of the SINT retrievals using Terra
MODIS data taken over the Arctic Ocean and part of northern
Canada at 23 UTC, May 3, 2005. The RGB image [Fig. 14(a)]
shows areas with various shades of magenta and red that usually
correspond to snow- or ice-covered surfaces. The peachy or
yellowish colors are usually due to low clouds, while the whiter
areas are generally colder liquid or ice clouds. Most of the
cloudy pixels [Fig. 14(b)] were interpreted as being composed
of liquid droplets (blue), while the optically thinner clouds
[Fig. 14(g)] were retrieved as ice clouds (white). The values
of Tc range from 243 K to 269 K [Fig. 14(c)], indicating that
all of the clouds could be comprised of supercooled liquid
droplets. The effective ice diameter values [Fig. 14(d)] vary
from less than 18 µm to more than 109 µm, while re is generally
between 6 and 16 µm. The overlap in particle size between
the ice and liquid clouds suggests that some of the ice clouds
could actually be liquid or vice versa, or mixed phase. These
potentially ambiguous phase results are typical for optically
thin clouds over snow. The values of Zc [Fig. 14(f)] and pc
[Fig. 14(i)] indicate that the liquid clouds are quite low, being
mostly above 900 hPa and below 1 km in the top half of the
image. The ice clouds may be as high as 6 km, corresponding
to pc < 500 hPa. The cloud optical depth ranges from 0.5 to 32,
while the corresponding cloud water paths [Fig. 14(h)] reach up
∼ 500 g · m−2.

In Fig. 14(h) and other panels, some areas appear as clear
rectangles in obviously cloudy areas. These are regions where
the ice/snow map was read improperly and the surface was
classified as free of snow and ice but the background albedo
was that of permanent snow and ice. Thus, the VISST was used,
and all the observed VIS radiances were less than the clear-sky
predicted values; thus, no retrieval could be performed, and the
tile was classified as clear. This snow–ice map mismatch was
mainly a problem for Terra Ed2a and was reduced significantly
for Aqua Ed2.

D. Cloud Water Paths

The values of IWP and LWP are computed based on the
assumption that the retrieved effective particle sizes represent
the average over the entire cloud thickness. For liquid water

LWP = 4 re τ/3Q (21)

where the extinction efficiency Q ranges from 2.03 to 2.19 for
re ranging from 32 to 4 µm [29]. The IWP was computed for
each De model using the ratios of the cross-sectional areas to
volumes in Table II and the values of Q found in [29, Table 8].
A cubic equation was fit to the results, yielding a smooth
function in terms of De with an rms error of 1%

IWP =τ
(
0.259De+0.819× 10−3 D2

e−0.880× 10−6 D3
e

)
.

(22)

E. Cloud Heights and Pressure

Several different cloud heights and pressures are derived
to estimate the vertical extent of the detected clouds. These
parameters are cloud effective height and pressure, cloud-top
height and pressure, cloud thickness, and cloud-base height and
pressure.

1) Cloud Effective Height: The cloud effective height Zc

and pressure pc are defined as the lowest altitude and cor-
responding pressure, respectively, where Tc is found in the
profile. Vertical profiles of temperature and pressure measured
by radiosondes and output from NWAs often fail to miss the
extreme temperature changes near the tops of the boundary-
layer inversions [48]–[51]. The results typically overestimate
cloud-top height for low clouds because the cloud-top tem-
perature observed by the satellite is often found higher in the
temperature profile than at the actual location of the boundary-
layer inversion. To overcome this sounding bias when relating
cloud temperature to altitude, the lower portion of the temper-
ature profile in the CPRS is first adjusted based on the surface
temperature and a fixed lapse rate.

The temperature profile is adjusted using an adaptation of
the techniques developed in [49] and [52]. For p > 700 hPa, a
simple lapse rate anchored to a surface temperature To is used
to define the temperature profile. That is

T (z ± zo) = To + Γ(z − zo) (23)

where zo is the surface elevation above mean sea level and Γ
is the lapse rate. Over ocean and land surfaces, the value of
To is respectively the sea surface temperature and the running
24-h mean surface air temperature from NWA reanalyses. Fol-
lowing Minnis et al. [49], Γ = −7.1 K km−1. Between 700 and
500 hPa, Γ is adjusted to ensure that the resulting temperature
at 500 hPa equals that in the NWA profile. For p ≤ 500 hPa,
the NWA vertical profile of atmospheric temperature remains
unchanged. If To < Tc, then Zc is set, as a default, to 0.5 km
above the surface elevation. The pressure corresponding to Zc

is assigned to pc.
2) Cloud-Top Height: Because the value of Tc corresponds

more closely to the center of the cloud in optically thin cases
[53] and to some depth below the cloud top for optically thick
clouds, e.g., [51], it differs from the actual physical top of
the cloud. For cirrus clouds, a strong correlation was found
between emissivity defined relative to the physical cloud-top
temperature Tt and the cloud effective temperature [53]. Here,
that type of relationship is used to estimate Tt and, thereby,
the physical cloud-top height Zt and pressure pt from the



MINNIS et al.: CERES CLOUD PROPERTY RETRIEVALS USING TRMM VIRS AND MODIS DATA—PART I 4393

temperature profile. In many cases, the value of Tt is found for
channel 4 by substituting the cloud-top emissivity εt for ε4, Tt

for Tc, and T4 for Ti in (11) and then solving for Tt.
For ice clouds having Tc < 245 K and τ < 2, the regression

fit from Minnis et al. [54] is used to find εt

εt = ε4 (2.966− 0.009141 Tc). (24)

If εt > ε4, εt is set equal to ε4. If 2 < τ ≤ 6, εt is found
by linearly interpolating in τ between the result of (24) and
ε4 using τ values of two and six as the respective independent
variables. For all clouds having τ > 6, εt = ε4. Similarly, for
ice clouds having Tc > 245 K and τ ≤ 2

εt = ε4 (0.00753 Tc − 1.12). (25)

This equation is based on linear interpolation between the
results of (24) and the water cloud values at 280 K. For other
clouds having Tc > 245 K and τ > 2, εt is found in the same
manner as for clouds having Tc ≤ 245 K, except (25) is used in
place of (24) for the interpolations.

For liquid water clouds having τ>6, εt=ε4. Otherwise, εt=
0.99 ε4. This difference between εt and ε4 is very small for
water clouds because the differences between the cloud-top and
effective heights for water clouds are usually less than 0.2 km,
which is less than the accuracy of the height determination.

After the initial value of Tt is computed for clouds having
Tc < 265 K, additional adjustments are made if 2 < τ ≤ 6. A
new value of Tt is found by linearly interpolating in τ between
the original value of Tt and T ′

t using τ values of two and six as
the respective independent variables, where

T ′
t =0.622 Tc + 77.7 K, for Tc < 242 K (26a)

T ′
t =1.012 Tc − 14.0 K, for 265 K < Tc ≤ 242 K (26b)

If T ′
t > Tc − 2 for Tc < 242 K, T ′

t is reset to Tc − 2. The
adjustments represented by (26) and the interpolations were
developed from additional unpublished comparisons of sur-
face radar and satellite-based cloud-top temperatures. Finally,
Tt is constrained to be less than or equal to the tropopause
temperature.

One final adjustment is made after Zt is determined from Tt

to ensure that there is a reasonable depth to the layer above Zc

in high clouds. If Zt > 6 km, Zt − Zc < 0.333 km, 0.5 K is
subtracted from Tt, and Zt is recomputed only if Tt remains
greater than the tropopause temperature.

3) Cloud-Base Height and Thickness: Cloud-base height is
estimated as Zb = Zt −∆Z. The cloud-base pressure pb is
determined from Zb and the NWA vertical pressure profile. The
cloud thickness ∆Z is computed in kilometers using empirical
formulas. For all liquid water clouds

∆Z = 0.39 ln τ − 0.01 (27)

if τ > 1. Otherwise

∆Z = 0.085 τ1/2. (28)

The minimum allowable ∆Z is 0.02 km. Equation (27) is taken
from [55], while (28) is based on the results in [49]. For ice

Fig. 15. Illustration of CERES SSF constructed for a scene containing two
cloud layers and some clear imager pixels.

clouds with Tc ≤ 245 K

∆Z = 7.2− 0.024Tc + 0.95 ln τ. (29)

This parameterization is a blend of the results from [55] and
[56]. The minimum thickness for these clouds is also 0.02 km,
with a maximum of 8 km. For ice clouds with Tc > 245 K,
the cloud thickness is estimated by linearly interpolating in
temperature between ∆Z for a liquid cloud at 275 K and for
an ice cloud at 245 K.

F. Pixel-Level and CERES SSF Products

The pixel-level data are convolved with the individual broad-
band CERES radiative fluxes to obtain the SSF data set, as
described briefly in [1]. Fig. 15 shows the structure of an SSF.
When obtaining the mean properties for each CERES footprint,
each imager pixel is assigned a weight corresponding to the
point spread function of the footprint. The weights are greatest
near the pixel center and decrease outward from the center in
an asymmetrical fashion. The weights are used in computing
cloud fraction and all other associated parameter values within
the footprint. In addition to a wide range of radiative parameters
and ancillary information, the SSF includes the cloud fraction
and means of the associated properties for up to two cloud lay-
ers. The overlapping clouds shown in Fig. 15 are interpreted as
a single cloud layer and assigned to either the low or high layer,
depending on the thickness of the upper layer. Values for Zt,
Zb, and ∆Z are not included but can be estimated from pt and
pb, which are part of the SSF complement. The content of the
SSF and other CERES products is described in detail in [57].
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To account for the no-retrieval pixels within a footprint, the
SSF convolution assigns the mean cloud properties from cloudy
pixels in the footprint with retrieved values to the no-retrieval
pixels, if more than 1/9 of pixels in the footprint have valid
cloud retrievals. Otherwise, only the valid cloudy pixels are
used, and the no-retrieval pixels are not considered as part of the
total number of pixels in the footprint. Cloud properties could
not be retrieved for 5.6% of pixels classified as cloudy during
the daytime, 4.9% and 6.4% for Terra and Aqua, respectively.
At night, only 1.4% of the cloudy pixels are inconsistent with
the parameterizations. No-retrieval pixels occur most often in
polar regions over snow-covered surfaces or at the edges of
bright deserts. In the former instance, the SINT is unable to
find a match, probably because of the uncertainties in the clear-
sky reflectance fields. In the latter case, the pixels detected as
clouds may actually be heavy concentrations of aerosols that
are misclassified as clouds.

Imager pixel-level results are retained for image granules
containing data that correspond to a selected number of lo-
cations around the globe. These granules are used for visual
assessment and for comparison to independent validation data
sets obtained from several research facilities around the world,
e.g., [51]. The pixel-level results are also used to compute
various statistics for quality control purposes. The statistics
include monthly, seasonal, and longer term averages of the
various properties. (The quality control products are available
at http://lposun.larc.nasa.gov/~cwg/.)

IV. CONCLUDING REMARKS

This paper has documented the CERES Ed2 cloud property
retrieval algorithms, which have been applied to both Terra
and Aqua MODIS data through December 2007 and to TRMM
VIRS data through July 2001. The Ed2 processing will continue
through 2010. Thereafter, CERES Edition-4 processing will be
used. The Ed2 algorithms, based on radiatively consistent cloud
effective temperatures and optical depths, utilize a variety of
empirical methods to crudely characterize the cloud vertical
structure. A more refined approach is being developed for
CERES Edition 4 that will have new parameterizations and
explicit retrievals of some overlapping cloud systems. Since
the techniques described herein primarily rely on the few chan-
nels that are common to most modern meteorological satellite
imagers, they can be applied to analyze the radiance data and
obtain cloud properties for many of those satellites, e.g., [58].

Examples of the instantaneous results were shown to il-
lustrate the techniques. The companion paper [17] provides
examples of the cloud property averages derived from the
quality control products. Known systemic problems (e.g., ozone
transmittance) have been identified here and will be corrected
in CERES Edition 4. Further discussion of the uncertainties
and validation of the Ed2 results is also provided in [17], along
with the comparisons of the results to those from other sources.
Alone, the available Ed2 data should be quite valuable for
studying cloud variability. The combined CERES clouds and
flux products (e.g., SSF) are unique and are already helping to
improve our understanding of the relationships between clouds
and the radiation budget.

APPENDIX A

VIS Reflectance Parameterization: A VIS reflectance pa-
rameterization was developed to improve the accuracy of the
estimated TOA reflectances for clouds over both dark and bright
surfaces. This parameterization is based on the AD method and
replaces terms in the AD equations using values in the LUTs
developed in [29] for the diffuse cloud albedo αcd(τ, r), cloud
albedo αc(τ, r, µo), and the cloud reflectance ρ(τ, r, µo, µ,φ),
where τ and r are the cloud VIS optical depth and effective
particle size, respectively. The relative azimuth angle is repre-
sented by φ. The parameterization also uses the LUTs of atmo-
spheric reflectance ρR(τR , µo, µ,φ), albedo αR(τR, µo), and
diffuse albedo αRd(τdR, µo) due to Rayleigh scattering [31].
The parameterization assumes that the atmosphere is divided
into three layers above a surface. The top layer, designated
layer 1, and layer 3 are Rayleigh scattering layers, while layer
2 is the cloud layer.

The reflectance for two adjacent layers is computed using
the adding equations. The combined reflectance for the top
Rayleigh layer and the cloud layer is

R12 = ρR1 + α
′
cD1(1− αRd1) + tR1(µ) [tR1(µo)ρc + S1]

(A1)

where

α′c =αc tR1(µo) + [1− tR1(µo)]αcd (A2a)

D1 =T1 (1 + S1) (A2b)

S1 =αRd1 αcd/(1− αRd1 αcd) (A2c)

T1 =1− tR1(µo)− αR1 (A2d)

µ, µo = cos θ, cos θo. (A2e)

tR is the direct Rayleigh transmission, as defined in [31], and
the numeric indices refer to a layer or combination of layers.
The downward transmittance of the two layers is

T12 = D1 [T2 + tc(µ)] + T2tR1(µo) (A3)

where

T2 = 1− α′c − tc(µo) (A4)

and tc is the direct transmittance of the cloud [31].
The combined reflectance for the three layers is

R123 = R12 + αRd2 D2 T
∗
12

+(ρR2 tc(µo) tR1(µo) + S2) tc(µ) tR1(µ) (A5)

where

D2 =T12(1 + S2) (A6a)

S2 =Q2/(1−Q2) (A6b)

Q2 =αRd2 R
′
12 (A6c)

R′
12 =αR1 + (1− αRd1)D1 αcd + tR1(µ)

× [αcdtR1(µo) + S1) (A6d)

T ∗
12 =U ∗

1(1− αRd1) (A6e)

U ∗
1 =(1− αcd)(1 + S1). (A6f)
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The downward transmittance for the three layers is

T123 = D2 [T3 + tc(µ)] + T2 tR1(µo) (A7)

where

T3 = 1− αRd2 − tR2(µo). (A8)

The combined atmosphere and surface reflectance is

Ras = R123 + αsdT
∗
123 D3 + t123(µ) [ρs t123(µo) + S3]

(A9)

where αsd and ρs are the diffuse surface albedo and surface
bidirectional reflectance, respectively,

t123(µ) = tR1(µ) tc(µ) tR3(µ) (A10a)

t123(µo) = tR1(µo) tc(µo) tR3(µo) (A10b)

D3 =T123 (1 + S3) (A10c)

S3 =Q3/(1−Q3) (A10d)

Q3 =αsd R
′
123 (A10e)

T ∗
123 =T ∗

12 U
∗
2 (A10f)

U ∗
2 = (1 + S∗

2) (1− αRd2) (A10g)

S∗
2 =R∗

12 αRd2/ (1−R∗
12 αRd2) (A10h)

R∗
12 =αcd + U ∗

1 αRd1 (1− αcd) (A10i)

R′
123 =R′

12 + αRd2D2T
∗
12

+ [S2 + αR2 tc(µo) tR1(µo)] tR1(µ)tc(µ).

(A10j)

Values for αsd and ρs are estimated from the input clear-
sky diffuse albedo αcsd [30] and the observed clear-sky
reflectance ρcs

αsd =1.149 αcsd − 0.0333 (A11)

ρs = ρ
′
s −D αsd/ exp(−τR13/µo) (A12)

where

ρ′s = [ρcs/ exp (−τgas(1/µ+ 1/µo))− ρR13] /(1− αRd13)

(A13a)

D =(1+S)(1−αR13−exp(−τR13/µo) +S exp(−τR13/µo)

(A13b)

S =αsd αRd13/(1− αsd αRd13) (A13c)

and τgas is the absorption optical depth for the gaseous ab-
sorbers, such as ozone and water vapor, for the particular VIS
channel being used. This formulation does not explicitly ac-
count for any aerosols, so that the surface albedo and reflectance
are actually more representative of the surface and aerosols
combined.

Equation (A9) was evaluated by comparing the values of Ras

based on the LUTs with detailed AD computations for the same

TABLE IV
RELATIVE DIFFERENCES IN TOA REFLECTANCE BETWEEN

PARAMETERIZATION AND AD CALCULATIONS

set of surface, cloud, and viewing and illumination conditions.
These conditions are composed of a total of 12 surface albedos
ranging from 4% to 90%, 12 cloud optical depths between
0.5 and 128, 8 values of θ from 0.0◦ to 72.5◦, 10 values of
θo from 0.0◦ to 81.4◦, and 15 values of φ. Two water-droplet
clouds with effective droplet radius re = 6 and 16 µm were
used at cloud pressures pc = 500 and 900 hPa. Two ice cloud
models with effective ice-crystal diameter De = 24 and 123 µm
were used at pc = 200 and 600 hPa. To minimize the error in
the parameterization, the residual differences ∆R(r, τ, pc,αsd)
between the results from the AD calculations and (A9) were
fitted to the following polynomial:

∆R = ao +
3∑

i=1

aiµ
i
o +

3∑

i=1

biµ
i +

6∑

i=1

ciΘ
i (A14)

where Θ is the scattering angle in radians. The TOA reflectance
for this parameterization, then, is

RTOA = (Ras +∆R) exp (−τgas(1/µ+ 1/µo)) . (A15)

The exponential term accounts for gaseous absorption above
the cloud and varies with the altitude of the cloud.

When used for retrievals, the values of ∆R are computed for
the specified values of αsd, pc, and r by linear interpolation and
extrapolation between the values used to create the coefficients
for (A14). Equation (A15) was tested for a wider range of
various cloud models, surface albedos, and cloud pressures.
The resulting relative differences between (A15) and the AD
calculations for those cases plus the original cases used in the
formulation are summarized in Table IV under the heading
“new parameterization.” Results from the old parameterization
[31] are also shown to demonstrate the increase in accuracy and
precision over the full range of surface albedos. The largest
instantaneous errors occur for extreme values of θ, while the
largest average errors for a given parameter occur for τ < 0.1.
For example, the greatest average difference for a given φ
in the low albedo range is 0.9% for τ = 0.5 at φ = 180◦.
Thus, if the AD TOA reflectance ρTOA is 6% at φ = 180◦,
the average value from (A15) is 6.1%. Overall, the differences
are comparable to those between a high-resolution AD model
and a discrete-ordinate radiative transfer model (Y. Hu, personal
communication, 2001).
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