
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Journal of Quantitative Spectroscopy &
Radiative Transfer

Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 1980–1989
0022-40

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jqsrt
On geometric optics and surface waves for light scattering
by spheres
K.N. Liou a, Y. Takano a,�, P. Yang b

a Joint Institute for Earth System Science and Engineering, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,

CA 90095, USA
b Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77845, USA
a r t i c l e i n f o

Article history:

Received 14 February 2010

Received in revised form

6 April 2010

Accepted 8 April 2010

Keywords:

Geometric optics

Surface waves

Ray-by-ray tracing

Lorenz–Mie scattering
73/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jqsrt.2010.04.004

responding author. Tel.: +1 310 206 4937.

ail address: ytakano@atmos.ucla.edu (Y. Taka
a b s t r a c t

A geometric optics approach including surface wave contributions has been developed

for homogeneous and concentrically coated spheres. In this approach, a ray-by-ray

tracing program was used for efficient computation of the extinction and absorption

cross sections. The present geometric-optics surface-wave (GOS) theory for light

scattering by spheres considers the surface wave contribution along the edge of a

particle as a perturbation term to the geometric-optics core that includes Fresnel

reflection–refraction and Fraunhofer diffraction. Accuracies of the GOS approach for

spheres have been assessed through comparison with the results determined from the

exact Lorenz–Mie (LM) theory in terms of the extinction efficiency, single-scattering

albedo, and asymmetry factor in the size–wavelength ratio domain. In this quest,

we have selected a range of real and imaginary refractive indices representative of

water/ice and aerosol species and demonstrated close agreement between the results

computed by GOS and LM. This provides the foundation to conduct physically reliable

light absorption and scattering computations based on the GOS approach for aerosol

aggregates associated with internal and external mixing states employing spheres as

building blocks.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The geometric optics approach has been used to
compute the angular distribution of scattered light
involving interactions of a plane electromagnetic wave
with a particle much larger than the incident wavelength.
This approach is based on the postulation that the light
beam may be thought of as consisting of separate
localized rays that travel along straight-line paths; an
asymptotic approximation to the exact wave equation
that becomes increasingly accurate as the size parameter
x approaches infinity, where x is defined as 2pa/l with a

the particle’s radius and l the wavelength. The physical
ll rights reserved.

no).
processes of geometric optics include geometric rays
externally reflected by the particle and rays refracted into
the particle (see Fig. 1a), which may be absorbed in it or
may undergo, in principle, an infinite number of internal
reflections. The energies of a ray reflected and refracted
can be evaluated by Fresnel’s and Snell’s laws, while the
total energy scattered and absorbed by the particle is
equal to that impinging on the particle’s cross section
perpendicular to the incident light beam.

A particle much larger than the incident wavelength
also scatters light by which energy is removed from the
light beam passing by the particle, referred to as
diffraction, which is concentrated in a narrow lobe in
the forward direction (see Fig. 1a). It contains an amount
of energy equal to that incident on the particle’s cross
section, exactly the same as geometric reflection and
refraction. The theoretical foundation of diffraction begins
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Fig. 1. (a) An illustrative geometry for a modified ray-by-ray geometric optics approach including surface wave contributions (GOS) for light scattering by

a sphere and (b) a non-deflected ray and internally reflected ray paths involving a concentric spherical particle. The notations are defined as follows: êp

denotes a ray propagation vector; Qp is an incident point; mcore and mshell denote refractive indices for core and shell, and acore and ashell are respective

radii; and ti and tc are incident angles.
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with Babinet’s principle, which states that the diffraction
pattern in the far field, referred to as Fraunhofer
diffraction, from a circular aperture is the same as
that from an opaque disk or sphere of the same radius.
When the size parameter is very large, the total extinction
(cross section), the sum of scattering and absorption
cross sections, is twice the geometric cross section area in
reference to the incident beam, known as the extinction
paradox [1]. Liou and Hansen [2] undertook a study to
understand limitations of the geometric optics approach
in the scattering phase matrix calculation for homoge-
neous spheres through comparison with the results
computed from the exact Lorenz–Mie theory, and showed
that the two methods are in close agreement when
x4400.

The laws of geometric optics have been extensively
employed to evaluate the scattering, absorption, and
polarization properties of nonspherical ice crystals, which
cannot be solved by rigorous electromagnetic wave
equations because it is not possible to impose suitable
coordinate systems so that a variable separation method
can be implemented. The geometric optics approach
coupled with the Monte Carlo photon tracing has been
proven to be a powerful and efficient method for light
scattering and radiative transfer calculations involving ice
particles [3–7]; see also the references cited in Yang and
Liou [8]. The conventional geometric optics approach has
fundamental limitation in its application to small size
parameters, in addition to the assumption of equal
partition of total incident energy between geometric
reflection and refraction and Fraunhofer diffraction.

Yang and Liou [9] developed an improved geometric
ray-tracing approach for the calculations of the single-
scattering and polarization properties of arbitrarily or-
iented ice crystals in which the near field on the ice crystal
surface is solved by geometric reflection and refraction.
This is followed by mapping the tangential electric and
magnetic currents on the particle surface to far field by
means of the basic electromagnetic wave theory in three-
dimensional space. In this matter, the extinction paradox
in the context of geometric optics is removed and, at the
same time, reliable accuracies in practical terms can be
achieved for the single-scattering and phase matrix
results for randomly oriented ice particles with size
parameters as small as �20. The accuracy assessment
was based on comparison with the results computed
from a more exact numerical technique, known as the
finite-difference time domain (FDTD) method [10,11].
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The concept of applying the principle of geometric optics
to the computation of near field on the particle surface
has been reported in an early paper [12]. Yang and
Liou [13] further developed a geometric optics method,
referred to as the ray-by-ray (RBR) integration algorithm,
which is particularly useful for the calculation of extinc-
tion and absorption cross sections for hexagonal ice
crystals with size parameters as small as �15. More
recently, ‘‘exact’’ equations for the computations of Snell’s
refraction angle and Fresnel’s coefficients have been
derived [14,15] for large absorbing particles which take
into account the inhomogeneous properties of internal
waves within an absorbing particle.

In this paper, we have investigated applicability of the
RBR approach to a homogeneous sphere and compared
the scattering and absorption results to those computed
from the exact Lorenz–Mie theory. We found substantial
differences in the results between the two for all size
parameters, caused by the neglect of surface waves
(see Fig. 1a), which are generated by interactions of the
incident waves at the grazing angles near the edge of a
sphere and propagate along its surface into the shadow
region [1,16]. We further applied the RBR approach
coupled with surface wave contributions to spheres with
layer structure for potential application to aggregate
particles involving internal and external mixing states.
In Section 2, we outline the physical and mathematical
fundamentals of a geometric optics approach including
surface wave contributions. Subsequently, we present in
Section 3 a comprehensive comparison of the single-
scattering properties (extinction efficiency, single-scatter-
ing albedo, and asymmetry factor) determined from the
present geometric-optics surface-wave theory and the
exact Lorenz–Mie results and discuss deviations between
the two. Conclusions are given in Section 4.

2. Formulation of the geometric optics approach
including surface wave contributions

2.1. A modified geometric optics approach

We have developed a RBR method for the computation
of extinction and absorption coefficients for homogeneous
and concentrically coated spheres on the basis of the
approach presented in [13]. As pointed out in that paper,
this RBR geometric optics method is a generalization form
of the anomalous diffraction approximation (ADA) [1] and
that the RBR approach reduces to ADA in optically
tenuous cases. In this subsection, we should capture a
number of key physical and mathematical steps involving
RBR for computational purposes. Using the notations in
[13], the amplitude scattering matrix Sðr̂Þ, required for
single-scattering calculations, is the sum of the contribu-
tions from all localized rays as follows:

Sðr̂Þ ¼
X
g

X
p

Spðr̂Þ, ð1Þ

where the first summation covers all the incident rays
impinging onto the sphere denoted by g, while the second
summation is over the internal localized ray denoted by
the subscript index p (=1, 2, 3, y), as shown in Fig. 1(a),
based on the localization principle. The amplitude
scattering matrix for an individual ray can be written in
the form

Spðr̂Þ ¼
X

q

Sp,qðr̂Þ

¼
k2

4p
X

q

ð1�eÞ
m�r̂ � êp

KpUpCfexp½izpþ1ðr̂Þ��exp½izpðr̂Þ�g

� �
q

,

ð2Þ

where the phase of a ray is defined by

zpðr̂Þ ¼ k

 
ê0 rQ1

þ
Xp�1

j ¼ 1

mjdj�r̂ rQp

!
, ð3Þ

and m denotes an average complex refractive index in a
general inhomogeneous case. For a concentrically coated
sphere (see Fig. 1b), this value can be determined, for
example, by the Maxwell–Garnett mixing rule [17]. The
term mj represents the complex refractive index for the
inhomogeneous layer in a sphere; e is the permittivity; k

is the wavenumber; r̂ is the scattering direction; Q1, Qp,
and êp are defined in Fig. 1(a); and dj is a distance between
the two points Qj and Qj + 1 defined by jrQjþ 1

�rQj
j. The

summation over q signifies the travel of a ray through
homogeneous segments of an inhomogeneous particle.
Because our main objective is to effectively compute
extinction and absorption cross sections, we have simpli-
fied the preceding matrix formulation by replacing the
factor KpUpC by 71 such that the coordinate transforma-
tion for polarization denoted in Eq. (2) is neglected. Thus,
the diagonal elements of the scattering matrix Spðr̂Þ can
then be written in the form

Sjj,pðr̂Þ ¼ 7
k2

4p
X

q

1�e
m�r̂ � êp

fexp½izpþ1ðr̂Þ��exp½izpðr̂Þ�g

� �
q

,

ð4Þ

where the terms 7 correspond to the sign of the
cumulative product of Fresnel coefficients, t2

j rp�1
j ; rj can

take + or � sign; and j=1 or 2, denoting parallel (1) or
perpendicular (2) components.

The extinction cross section is defined by the sum of
the two diagonal elements in the forward direction as
follows:

se ¼
2p
k2

Re½S11ðê0ÞþS22ðê0Þ�, ð5aÞ

where ê0 denotes the incident direction and the absorp-
tion cross section is given by

sa ¼
X
g

X1
p ¼ 1

expð�2k
Xp�1

j ¼ 1

mi,jdjÞ½1�expð�2kmi,pdpÞ�

�ðt2
1rp�1

1 þt2
2rp�1

2 Þ=2, ð5bÞ

where mi,j(or p) represents the imaginary part of the
refractive index for an inhomogeneous sphere. Note
that the absorption cross section defined in Eq. (5b)
is numerically equivalent to the expression developed
for the conventional geometric optics approximation
[6,18].

For a spherical particle, Eq. (4) is evaluated as if the
path of twice refracted ray (p=1) were not deflected at all
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such that the phase of a ray in Eq. (4) is given by

z2 ¼ 2ka cos tiðm�1Þ: ð6aÞ

This term is the dominant exponential term for extinction
in Eq. (4), where ti is the incident angle and a is the radius
of a sphere. Note that z1=1, and zp (p42) terms vanish
due to phase cancellation. For a sphere with layer
structure, we must formulate z2 to account for internal
inhomogeneity. When sin ti is larger than acore/ashell, as
shown in Fig. 1(b), a ray propagating without being
deflected does not intersect the inner sphere so that the
ray’s phase is given by

z2 ¼ 2kashell costi ðmshell�1Þ: ð6bÞ

If ashell and mshell are replaced by a and m, respectively,
Eq. (6b) is exactly the same as Eq. (6a). In the case when
sin tiracore/ashell, a ray intersects the inner sphere so that
two split rays occur due to internal reflection between the
boundaries of inner and outer spheres. In this case, z2 can
be expressed as follows:

z2 ¼ ð1�rÞz21þrz22, ð6cÞ

where r¼ ðjrlj
2þjrrj

2Þ=2, and rl and rr are Fresnel reflection
coefficients when the incident angle tc is sin�1

fsin ti=

ðacore=ashellÞg. Considering the path lengths AB, BC, and CD

denoted in Fig. 1(b), the phase of a transmitted ray can be
expressed as

z21 ¼ 2k½ðashell cos ti�acore cos tcÞmshell

þacore cos tc �mcore�ashell cos ti�, ð7aÞ

while for an internally reflected ray (defined by AB and
BE), the particle’s phase is given by

z22 ¼ kfðashell cos ti�acore cos tcÞ½1þcosðp�2tcÞ�ðmshell�1Þg:

ð8Þ

The conventional geometric optics approach [6,18] can
be employed for calculation of the asymmetry factor for
homogeneous and layer spheres, which in combination
with known extinction and absorption coefficients will be
used to evaluate a term referred to as radiation pressure
[1] in conjunction with the discussion presented in
subsection 2.2. Light rays can carry momentum as well
as energy. The part of the forward momentum that is
removed from incident rays, which is not represented
by the forward momentum associated with scattered
rays, is related to the hemispheric average of the phase
function weighted by cos y, where y denotes the zenith
angle in the Cartesian coordinates. This term is referred to
as the asymmetry factor. We can express the radiation
pressure term as follows:

QprðGOÞ ¼QextðGOÞ�gðGOÞ½QextðGOÞ�QabsðGOÞ�, ð9Þ

where g represents the asymmetry factor, Qext(=se/pa2) is
the extinction efficiency, Qabs(=sa/pa2) is the absorption
efficiency, and the index GO denotes the terms evaluated
by the geometric optics approach.

2.2. Surface wave adjustment (the edge effect)

For a spherical particle, the extinction and absorption
efficiencies and radiation pressure evaluated from the
geometric optics approach generally deviate from the
results computed from the exact Lorenz–Mie theory,
due principally to the neglect of surface waves along the
edge of a spherical particle. These waves are produced by
means of interaction of the incident waves at grazing
angles near the edges of a sphere and continuation of the
wave motion along its surface into the shadow region. If
the sphere is relatively small, the waves may move
around and encompass the entire spherical surface.

Nussenzveig and Wiscombe [16, hereafter referred to as
NW] in their pioneering work, presented physical equations
for the calculation of surface waves based on the complex
angular momentum theory. This theory makes use of the
transformation of the Debye expansion of two scattering
functions in a complex domain, allowing the mapping of
localized incident rays into a complex domain such that the
Airy integral can be incorporated in analysis. In the
following, we should capture key elements in the contribu-
tion of surface waves to light scattering processes.

The surface wave term for extinction in order of the
size parameter x can be written in the form

DQext ¼ c1x�2=3þ2Im½ðm2þ1Þðm2�1Þ�1=2
�x�1�c2x�4=3

�c3Im½eip=3ðm2�1Þ�3=2
ðm2þ1Þð2m4�6m2þ3Þ�x�5=3,

ð10Þ

where c1=1.99239, c2=0.71535, c3=0.66413, and Im
denotes the imaginary part of the term (after NM with
modification). The size parameter appears in the denomi-
nator of Eq. (10). For this reason, DQext diverges when x

approached small values and specific corrections must be
made to ensure its physical continuity (see below for
further discussion).

The surface wave contribution to the absorption
coefficient is governed by the following two integrations:

DQabs ¼ 2�1=3x�2=3
X2

l ¼ 1

(Z ya

0
jðrþjl Þdyþ

Z yb

0
½jðr�jl Þ�jð~r

�

jl Þ�dy

)
,

ð11Þ

where l denotes two polarization components and defini-
tions of all the terms and integration limits are listed in
the Appendix.

The radiation pressure term, which is required for
calculation of the asymmetry factor for a spherical
particle, is also defined by two integrations as follows:

DQpr ¼�2�1=3x�2=3Re
X2

l ¼ 1

(Z ya

0
ðrþl �t

þ

l þ1Þdy

þ

Z yb

0
½ðr�l �r̂

�

l Þ�ðt
�
l �t̂

�

l Þ�dy

)
: ð12Þ

where Re denotes the real part of the term and all
parameters are also defined in the Appendix. This term is
generally negative.

A combination of the geometric optics term and the
surface wave adjustment (denoted by GOS) should, in
principle, constitute a solution close to the exact solution
derived from the exact Lorenz–Mie theory (denoted by
LM) such that

QwðGOSÞ ¼ QwðGOÞþDQw � QwðLMÞ, w¼ ext, abs, or pr,

ð13Þ
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where linearity between geometric optics (GO) and sur-
face wave (D) terms is implicitly applied. Moreover,
based on Eq. (9), the asymmetry factor can be written in
the form

gðGOSÞ ¼
QextðGOSÞ�QprðGOSÞ

QextðGOSÞ�QabsðGOSÞ
: ð14Þ

As noted previously, because the size parameter x

appears in the denominator in the right-hand side of
Eq. (10), DQext breaks down when x approaches zero. To
investigate applicability of the surface wave term derived
from the complex angular momentum theory, we have
conducted analysis of DQext in terms of the phase shift
parameter, a function of both refractive index and size
parameter, defined by

r¼ 2jm�1jx: ð15Þ

The surface wave adjustment term DQext (normally on the
order of 0.1) approaches an unrealistic large number
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0.01, and 0.1. The solid (red) and dashed (blue) curves denote LM and GOS, res
(a factor of more than 10) when r�2.86. Additionally, we
also found that the extinction efficiency results computed
from the RBR geometric optics approach outlined above,
without including the surface wave effect, match closely
with those determined from the exact LM theory when
ro2.86 so that surface wave adjustments are not
required in this region.
3. Computational results and discussion

We have conducted a series of comparisons between
the extinction efficiency, the single-scattering albedo (the
ratio of the scattering efficiency to the extinction
efficiency), and the asymmetry factor determined from
GOS, and those computed from the LM equations for
homogeneous spheres with size parameters up to 100
[19]. Note that the scattering efficiency Qsca=Qext�Qabs. A
range of real refractive indices (mr) have been selected for
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this purpose including 1.3, 1.5, 1.7, and 2 coupled with
imaginary parts (mi) of 0.0, 0.01, 0.1, and 1. Only selected
results will be presented.

Fig. 2 displays comparison results as a function of size
parameter for cases involving 1.3 and three imaginary
parts indicated in the figure, representing the general
optical properties of water and ice. Both the extinction
efficiency and single-scattering albedo values computed
from GOS compare remarkably well with those from the
exact LM. Without absorption, the extinction efficiency
and asymmetry factor curves display major maximum
and minimum oscillations [20] as a result of wave
interferences. As absorption increases (mi=0.01 and 0.1),
fluctuations are damped and for the latter case, only a
single peak exists in the extinction efficiency and single-
scattering albedo curves. Fig. 3 displays the results for a
real refractive index of 1.5 coupled with three imaginary
parts depicted in the figure, representing the general
aerosol optical properties. As the real index of refraction
increases from 1.3 to 1.5, oscillations increase more
GO
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frequently and their strengths enhance for size
parameters less than about 20. The GOS’s extinction
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Again, as absorption increases, all the oscillations are
damped, except the one located at about x�5.

Fig. 4 illustrates cases with a real refractive index of 2
coupled with imaginary parts of 0.01, 0.1, and 1, which
could represent the optical properties of soot and the type
of aerosols with larger absorption. In comparison with the
results shown in Figs. 2 and 3, the amplitude and
frequency of oscillations for extinction substantially
increase when mr=2. The amplitudes of extinction
involving osillations for xo10 computed from GOS are
less intense as compared to those from LM. For the case of
mi=1, there is only one extinction peak at x�3. Although
the extinction efficiency is smaller in GOS, the single-
scattering albedo results closely agree with those
calculated from LM. For the asymmetry factor,
deviations are shown at xo5 due to small contributions
from the surface wave component. We have also
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performed computations for mr=1.7 with mi=0.0, 0.01,
and 0.1; the results of which are in between mr=1.5 and 2,
and thus are not shown here.

We have applied the GOS approach to cases involving
concentrically coated spheres and compared the resulting
single-scattering properties to those computed by the
theoretical expressions presented in [21,22] on the basis
of the equations developed in [23]. In [21], numerically
stable algorithms for the spherical Bessel functions in the
Lorenz–Mie solution were developed. For illustration
purposes, we have selected three cases. In the first case
(Case a), which involves non-absorption aerosols coated
by water, we use mr(core)=1.5 and mr(shell)=1.3, along
with the relative dimension of a12=acore/ashell=0.8.
The second case (Case b, dust coated by water) involves
m(core)=1.53�0.008i and mr(shell)=1.33 with a12=0.8.
The third case includes soot coated by nonabsorbing
aerosols (Case c), which employs m(core)=2.0�1.0i and
mr(shell)=1.5 with a12=0.2.
Fig. 5 shows comparison results for the preceding three
cases computed by GOS and the analytical LM-like
solution [21], referred to as ‘‘Exact’’. In Case a, which
corresponds to no absorption, we see an overall
agreement between the two for the extinction
efficiency and the asymmetry factor. Similar to the
homogeneous cases displayed in Figs. 2 and 3, the GOS

approach shows smaller amplitudes in oscillations. In
Case b, absorption substantially enhances as the size
parameter increases because core radius is relatively large
(80% of the shell). The single-scattering albedo values
ranging from �0.9 (x�10) to �0.6 (x�100) computed
from the ‘‘Exact’’ and GOS approaches appear to compare
quite well. The asymmetry factor curves display
differences between the two results at x�7 (minimum)
and x�10 (maximum). Regarding Case c, absorption by
dark soot (20% of the shell) shows that the single-
scattering albedo values fluctuate around �0.9 with
slight deviations between the two methods. Except the
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minimum located at x�8, the asymmetry factor values
appear to be in close agreement between the two
approaches.

4. Conclusions

In this paper, we have developed a geometric optics
approach including the contribution from surface waves
for homogeneous spheres and spheres with layer struc-
ture. In this development, we modified the ray-by-ray
approach [13], which is particularly useful for the
computation of extinction and absorption cross sections
for a particle composed of a spherical core surrounded by
a concentric shell. This geometric-optics surface-wave
theory for light scattering by spheres considers the
surface wave contribution as a perturbation term to the
geometrics optics core that includes Fresnel reflection–
refraction and Fraunhofer diffraction. For surface wave
contributions, we followed the analytical expressions
derived for the terms involving the extinction and
absorption cross sections and radiation pressure on the
basis of the complex angular momentum theory [16]. We
specifically focused on the calculations of three basic
parameters: extinction efficiency, single-scattering albe-
do, and asymmetry factor. The last parameter is related to
the radiation pressure term [1].

Reliability and accuracy of the present geometric-
optics surface-wave (GOS) approach have been assessed
by comparison with the results determined from the
Lorenz–Mie (LM) theory. For homogeneous spheres, we
have selected a range of real (1.33–2.0) and imaginary
(0.0–1.0) refractive indices in association with water/ice
and aerosol species. We demonstrated that the extinction
efficiency, single-scattering albedo, and asymmetry factor
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results computed by GOS and LM are in close agreement
for a combination of aforementioned real-imaginary
refractive indices as functions of size parameter. The
oscillations in the single-scattering properties for larger
real refractive indices (e.g., mr=2) and size parameters
smaller than about 20 generated by GOS are less intense
as those produced by the exact LM theory.

The GOS approach was further applied to spheres
composed of a spherical core and a shell with a number of
real and imaginary refractive indices and size combina-
tions. We assessed the resulting computations with those
evaluated from the efficient algorithms presented in [21]
based on the analytical LM solution for spherical core–
shell structure, and demonstrated the same order of
accuracy as in the cases involving homogeneous spheres.
The close agreement between GOS and the ‘‘Exact’’ LM-like
solution provides the foundation to conduct physically
reliable light absorption and scattering for aerosol
aggregates with internal and external mixing, which can
be built from homogeneous and inhomogeneous spheres.
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Appendix

The surface wave term for absorption efficiency
defined in Eq. (11) contains a function j given by

jðrjlÞ ¼ ð1�e�bÞð1�r2lÞ=ð1�r1le
�bÞ, ðA1Þ

where r2l and r1l are, respectively, the external and
internal reflectivities for polarization l, which are given by

rjl ¼ jRjlj
2, j,l¼ 1,2; Rj,l ¼ ð�1Þjðzj�uelÞ=ðzþuelÞ, ðA2Þ

z¼ cosy, u¼m cosy0, siny¼m siny0, e1 ¼ 1, e2

¼m�2, z1 ¼ z, z2 ¼ z� , ðA3Þ

where z� denotes the complex conjugate of z and
b=4xIm(m cos y0+y0 sin y). The term r7

jl in Eq. (11) is
obtained from rjl such that z is replaced by

z7 ¼�ð2=xÞ1=3eip=6Ai0ð7ye2ip=3Þ=Aið7ye2ip=3Þ, ðA4Þ

where Ai is the Airy function, prime signifies derivative,
and y is related to y by

siny¼ 172�1=3x�2=3y, ðA5Þ

where the + and � signs apply to the first and second
integrals in Eq. (11), respectively. The integration limits
are given by

ya ¼ 21=3
ðm�1Þx2=3, yb ¼ ðx=2Þ2=3: ðA6Þ

The term ~r�jl is obtained from r�jl such that z� is replaced
by (2/x)1/3y1/2.

The surface wave term for radiation pressure DQpr in
Eq. (12) contains the following terms:

rl ¼ f1ðzÞR2l
�R02l, ðA7Þ
tl ¼ f1ðzÞf2e�bð1þR1l
� Þð1þR01lÞð1þR2l

� Þð1þR02lÞ

�ð1þR1l
�R01lf2e�bÞ

�1, ðA8Þ

R0 j1 ¼ ðfjÞ
�1
½m2zj�uþð�1ÞjiM2�ðm2zþuþ iM2Þ

�1, ðA9Þ

R0 j2 ¼ ðfjÞ
�1
½ðm2þM2Þzj�uþð�1ÞjiM2ð1�uzjÞ�

�½ðm2þM2Þzþuþ iM2ð1þuzÞ��1, ðA10Þ

f1ðzÞ ¼ ð1þ iz� Þ=ð1�izÞ, f2 ¼ e�2iy0 , ðA11Þ

with M2=m2
�1. In all the parameters with 7 upper

indices defined in Eq. (12) in the text, substitutions
denoted by Eqs. (A5) and (A6) are required. The terms r̂�l
and t̂�l are obtained from r�l and t�l such that z� is
replaced by ð2=xÞ1=3

ð
ffiffiffi
y
p
þ i=4yÞ. Note that the preceding

equations are modifications based on those presented
in [16].
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