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The discrete-ordinate method for radiative transfer is applied to an inhomogeneous atmosphere
containing molecules and aerosols. The unknown coefficients in the analytic solution to the transfer equa-
tion are determined from boundary conditions of the diffuse intensity at the top and bottom of the at-
mosphere and from continuity conditions of radiation at the interface of the predivided homogeneous
layers. The assumption of the homogeneity of the atmosphere is shown to overestimate the reflection
(local albedo) and to underestimate the diffuse transmission at the bottom of the atmosphere. On the basis
of calculations for the transfer of solar radiation in inhomogeneous hazy atmospheres we also show that
the increase or decrease of the local albedo, due to the additional load of aerosols in the atmospheric

boundary layer, depends on the characteristics of the surface albedo._

1. INTRODUCTION

The discrete-ordinate method for radiative transfer was in-
troduced originally by Chandrasekhar [1950]. It has been sub-
sequently developed by Piotrowski [1956], Lenoble [1956), Kel-
ler [1958], Samuelson [1967], and recently by Yamamoto et al.
[1971] and Liou {1973) with applications to cloudy and hazy
atmospheres.

The primary advantages of the discrete-ordinate method
may be summarized as follows:

1. The solution of the transfer equation may be derived ex-
plicitly and, consequently, the intensity and flux calculations
are independent of the total optical depth of cloud and aerosol
layers.

2. The method yields the internal radiation field as well as
the reflection and transmission without the additional com-
putation effort.

3. Analytic two-stream and four-stream solutions can be
derived in closed forms [Liou, 1974} which are particularly
useful for calculating the radiation fluxes in the atmosphere.
(The two-stream approximation for radiative transfer in-
troduces large errors for optically thin cases. In a recent paper,
Coakley and Chylek [1975] developed a modified two-stream
technique which seems to be fairly accurate for optically thin
atmospheres.) The computer time requirement for these two
approximations is relatively small as compared with other
transfer techniques.

The discrete-ordinate method described above applies to an
atmosphere which is vertically homogeneous with respect to
the concentration of molecules and/or particles. In such an at-
mosphere a nondimensional optical depth is employed to
describe the optical 'property of the entire atmosphere.
However, in realistic cloudy and hazy atmospheres the con-
centrations of cloud agd aerosol particles, as well as molecules,
normally vary with height, so that the assumption of the ver-
tical homogeneity may not be valid. In this paper we explore
the applicability of the discrete-ordinate method for radiative
transfer to inhomogeneous atmospheres.

In section 2 we discuss analytjc solutions for homogeneous
layers on the basis of the discrete-ordinate method. In section
3 the boundary and continuity equations for the diffuse in-
tensity are derived, so that a complete set of linear equations
can be employed to determine the unknown constants of pro-
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portionality in the analytic solutions. Some computational
problems associated with an atmosphere containing aerosols
and molecules are further discussed in section 4. Finally, re-
sults of the reflected and transmitted fluxes for aerosol at-
mospheres are presented, and some comparisons with those
obtained from the assumption of the vertical homogeneity are
carried out.

2. SOLUTIONS OF THE TRANSFER EQUATION FOR
HOMOGENEOUS LAYERS

We first divide the entire atmosphere into N layers (Figure
1) according to the height Z. Within each layer the atmosphere
is considered to be homogeneous with respect to the single-
scattering albedo &, and the phase function P(®), where © is
the scattering angle.

For the simplicity of discussion in this paper we shall neglect
the azimuthal dependence of the scattered intensity (or
radiance) and consider the following transfer equation for a
plane-parallel homogeneous layer
+1

dr'(r, p) _ I

_.l_ i nrt ' ’
B (r, p) 2 P'(u, u" ) (7, p') du

- }FoP‘(ﬂ, #o) exp (—7/p) (1)

where I represents the intensity, 7 the optical depth, xF, the in-
cident solar flux, and ¢ and pu, the cosine of the emergent and
solar zenith angles, respectively.

Following the procedures described by Liou [1973], the
analytic solutions for (1) based upon the discrete-ordinate
method for radiative transfer are given by

I'tr, w) = 2 Li'¢,'(uo) exp (—k,'7)
§

+ Z'w) exp (—7/p)  i=—n, - ,n (2
in (2), Z, denotes j from —n to n (n # 0), and the eigenfunc-

tions are derived from the associated homogeneous system as

l M
14+ #;k,-l zo &M'Evn(ki')pm'(ﬂi) 3)

[
& () =
where M denotes the number of terms in the Legendre
polynomial, p,,', expansion, &' is a set of M + 1 constants,

and &, is a constant of proportionality and can be determined
by
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Fig. 1. The inhomogeneous atmosphere is divided into N
homogeneous layers with respect to the single-scattering albedo and
phase function. Here fy (= nF,) denotes the solar flux at the top of the
atmosphere.
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By taking £, = 1, all values of £ can be evaluated. The eigen-
value k' may also be determined from

&' =1— i; adi'w) =0 )

The last term in (2) represents the particular solution where

i e M
Z'w) = quok, LU C M) 525

and the H function [Chandrasekhar, 1950]

» L3 -1
—L— T+ u.-)[II a+ k,-'u)] ™
Bifa * 0 Hp Tal jm1

Note that in the above equations the superscript / denotes the
value for a given layer. Finally, L/ are unknown constants of
proportionality to be determined from the boundary and con-
tinuity equations discussed in the following section.

The solution expressed in (2) is valid only for nonconserv-
ative scattering. For conservative scattering a slightly
different form can easily be derived, but we neglect the solu-
tion here for simplicity.

(owo @

m=0 Mo

H'@) =

3. BOUNDARY AND CONTINUITY EQUATIONS

In reference to Figure 1, at the top of the atmosphere there is
no diffuse downward intensity, so that

IO, —u) = 0 8)

Within the atmosphere the upward and downward inten-
sities have to be continuous at the interface of each
homogeneous atmosphere. Thus we shall have

i = ]'2’...’,,
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Note that 7' represents the optical depth from the top of the at-
mosphere to the bottom of the / layer, and u_; = —u;. The
above relations have been previously noted by Shettle and
Weinman [1970], Weinman and Guetter {1972], and Hunt and
Grant [1969].

At the bottom of the atmosphere, assuming an isotropic
reflection surface with an albedo A,, the upward diffuse inten-
sity can be expressed in terms of the downward diffuse fiux
plus the downward direct flux as

—n, -+ ,n

)

16", +w) = 2 (PG + por By exp (= 1"/

i=1,2,--- (10)

» n

where

FE") =2r f: 1", —pda,

t=1

(in)

with a; being the Gauss quadrature weight.
Substituting (2) into (8)-(10), we obtain the following set of
equations for the determination of L}

» B

T L' (—m) = —2Z(=u) i=1,2, (12)
2 LMY @)+ L W = = w) (13)
i=—n,:---,—1,1, .- , n
I=1,2--,N—1
2 L8 (+u) = —€"(+n) (14)
i= l, 2’ e
where .
Y/ W) = ¢/ (u) exp (—k/t) (15)
6,”1([11) = _¢]l+1(#‘) CXp (—kJHlTl) (16)
B:"(+u) = [¢i”(+ui> — 24, Z; ¢,-N(—u.~)a.-n.]
X exp (=k;Y7")  AD)

W) = [Z) — 2] exp (—7'/w0)  (18)

() = [Z"(+n.~) — 24, X Z(—pda.p

f-]
A, N
- yorFo] exp (—7 /mw)  (19)

Hence we have N X 2n equations for the determination of N X
2n unknown constants L;. In terms of matrix operations we

may write
®L =g (20)

The coeflicient matrix in (20) is
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@n

L."

LN
The matrix denoting the contribution due to solar flux may be
written as

2 (=) |

Zl("‘lh)
! nz(_”n)
. (22)
"0°(+pa)

eN(+M1)

Le"(4ua)
And finally, the N X 2rn by N X 2n matrix
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4. COMPUTATIONAL ASPECTS AND RESULTS

In an atmosphere containing molecules and aerosols the
single-scattering albedo and the normalized phase function for
the layer / may be written as

Arp + ATy,
Arp + Aty , + Aty.a

ATRPR(®) + ATM,RPM(G)
ATR + ATM.A

respectively, where Px(®) and P, (®) are phase functions for a
volume of molecules and aerosols, respectively, Arz denotes
the Rayleigh scattering optical depth, and A7y, and A1y,
represent the optical depths due to the scattering and absorp-
tion of acrosol particles, respectively. All the above quantities
are for a monochromatic wavelength. Since the phase function
and scattering cross section for Rayleigh molecules are well
known, we shall make no further discussion about them. The
phase function and optical depths for a volume of aerosol par-
ticles are evaluated on the basis of the following assumptions:

1. Aerosols are spherical homogeneous particles.

2. The particle size distribution of aerosols n(r) in the at-
mosphere may be described by

-~ 1
W =

e2))

P'©®) = (25)

) _ ./t 04 <r<10mm

dr

de" =¢10" 0.02<r < 0.1 um (26)
an() _ 0 otherwise

dr

where r denotes the particle radius and the constant ¢, = 0.883
X 1072,

3. The real and imaginary parts of the refractive index are
taken to be 1.5 and 0.00714, respectively, for a visible
wavelength of 0.7 um.

(6-a'(—aa) -+ ' (— )
¢—ni(—“'1) e ¢nl(_”l)
'Y—nl(_“n) e ‘Ynl(—ﬂn) a—n’(_”il)‘ tt 6»‘2(_“0)
o = : . . . 23)
7—1:1(”11) e 'Ynl(ﬂn) 8—n2(ﬂn) ' 8112(“!&)

where the blank spaces denote zero elements.

With all the above information we may now carry out the
computations for the evaluation of L/} simultaneously by
means of any matrix inversion method. Then we may insert
values of L/ into (2) to obtain the intensity distribution within
each layer.

B () -+ B ()

Bn () =+ B ()

With the hypothetical information of the shape, the size,
and the refractive index of aerosol particles we may then carry
out single-scattering computations employing the well-knawn
Mie scattering theory [e.g., Liou and Hansen, 1971] to obtain
the phase function and the scattering and absorption cross sec-
tions. Furthermore, with the additional information on the
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Fig. 2. The number density of aerosols and molecules as

functions of height in model atmospheres. Two aerosol con-

centrations are shown.

vertical distribution of aerosol and molecular concentrations
(Figure 2, after McClatchey et al. [1971]) the scattering and ab-
sorption optical depths for a layer / may be evaluated.

In the discrete-ordinate method for radiative transfer the
phase function for the azimuthal independent case is expanded
in Legendre polynomials p,, as follows:

M
P'(u, p') = E om' Pm()Pm(n") @n
where &, is a set of M + | constants that can be determined
by

-l _ 2m + 1 1

"2
Note that for the convenience of discussion the phase func-
tions in this section are all normalized such that their integra-
tions over the solid angle become 1. Thus in (27) we shall have
& = 1. Consequently, in order to insert the single-scattering
properties of a mixture of aerosols and molecules into the
transfer program, multiplication of the phase function in (27)
by the single-scattering albedo in (24) is required.

Figure 3 shows the normalized phase functions ‘for Mie
aerosols and Rayleigh molecules. The former case is for a
wavelength of 0.7 um. It is clear that aerosols scatter much
more radiation in forward directions at the expense of

P' (cos ©) p,, (cos @) d cos ® (28)

-1

backward directions. The phase function for a volume of

aerosols and molecules has to be evaluated according to (25).

In the transfer calculations the inhomogeneous atmosphere
is divided into 10 layers (i.e., N = 10). For each layer, mean
concentration values for aerosols and molecules are obtained
by averaging the values at the top and bottom layers. Thus the
phase function, the single-scattering albedo, and the total op-
tical depth may be evaluated on the basis of the discussions

102 T T T T T
== —=— RAYLEIGH
MIE (AEROSOLS)
A=O0Tum

= 10!
1]
-]
=
o
g
b=}
[T
w
(7]
<
I
a

w0°

107! 1 1 ] 1 1

(] 30 60 90 120 150 180

SCATTERING ANGLE @

Fig. 3. The phase function of aerosols (solid line) for a visible
wavelength of 0.7 um calculated from the Mie scattering theory. The
phase function (dotted line) of Rayleigh molecules is presented for
comparison,
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above. Then these values are incorporated into the radiative
transfer program to obtain the reflected and transmitted inten-
sity and flux. In this study, discrete streams of eight are
employed in the calculations. We further define the reflection
and diffuse transmission as

- FO
Mo Fo

FI(TN)
por Fo

R
(29)

respectively.

Figure 4 illustrates the reflection and diffuse transmission of
the hazy atmosphere for the surface albedos of 0 and 0.4. The
dotted lines represent results for an inhomogeneous at-
mosphere where heavy concentrations of aerosols are placed
near the ground level. The solid lines in this figure denote those
obtained from the assumption that the atmosphere is
homogeneous in which single values of the phase function, the
single-scattering albedo (&, = 0.934), and the total optical
depth of the atmosphere (r = 1.104) are derived. Comparisons
between these two cases show that the assumption of the
homogeneity of the atmosphere apparently overestimates

0.8 ———T—
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values of the reflection and underestimates values of the diffuse
transmission. The differences are much more pronounced
when the surface albedo 4, = 0, because contributions of the
scattered and absorbed radiation arise from the atmosphere
alone. However, when a larger surface albedo of 0.4 is in-
troduced, the effect of ground reflections compensates
somewhat the errors produced by the homogeneity assump-
tion. We note that smaller values of the reflection for the in-
homogeneous hazy atmosphere are physically due, in part, to
the fact that most of aerosols concentrate near the earth’s sur-
face. Other interesting results obtained from these calculations
may be summarized as follows: First, increasing the surface
albedo from 0 to 0.4 produces a large increase of the reflection
from 0.12 to 0.35 when the sun is overhead. Second, the effect
of the ground reflection is gradually reduced as the solar zenith
angle increases (u, — 0). Finally, an increase of the ground
refiection also introduces larger values for the diffuse trans-
mission.

Figure 5 illustrates the reflection and diffuse transmission
of the clear atmosphere. The effect of the inhomogeneity
appears more significant, particularly for 4, = 0. A difference
by as much as 5% is seen for both the reflection and diffuse
transmission for almost all solar zenith angles. The total
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Fig.4. The reflection and diffuse transmission (see text for definitions) as functions of the solar zenith angle for hazy in-
homogeneous (dotted lines) and homogeneous (solid lines) atmospheres. Two surface albedos of 0.0 and 0.4 are employed

in the calculations.
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optical depth for the homogeneous clear atmosphere is 0.302
with a single-scattering albedo of 0.940. In this case the
aerosol atmosphere is essentially optically thin, so that the
underlying surface albedo plays a dominant role for the
transfer of solar radiation in the atmosphere. Note that
in the lower diagrams the direct transmission [= exp
(—7/u,)] of the solar radiation has not been included. This
component represents important contributions to the
downward flux within the atmosphere. The diffuse transmis-
sion for the inhomogeneous clear atmosphere seems to have a
maximum value at u, of about 0.2 regardless of the values of
the surface albedo.

5. CONCLUSIONS

In this paper we have demonstrated the extension of the
discrete-ordinate method for radiative transfer to an in-
homogeneous atmosphere. The unknown coefficients in the
analytic solution to the transfer equation are determined from
boundary conditions for the diffuse intensity at the top and
bottom of the atmosphere and by matching the diffuse inten-
sity at the interface of the predivided homogeneous layers.
Calculations of the reflected and transmitted intensity and flux
based on the matrix formulation are carried out for hazy and
" clear atmospheres containing aerosols and molecules.

In view of the calculations illustrated in Figures 4 and 5 it

Same as Figure 4 but for a clear atmosphere.

appears that effects of the inhomogeneity of the atmosphere
cannot be ignored, especially for low surface albedos. The as-
sumption of the homogeneity of the atmosphere overestimates
the reflection (local albedo) at the top of the atmosphere and
underestimates the diffuse transmission at the bottom of the
atmosphere.

great interest to the study of the effect of man-made aerosols
on the solar radiation and the possible implications of climatic
changes. Assuming that the visible wavelength of 0.7 um may
be employed to denote the solar spectrum, we note from the
upper graphs of Figures 4 and S that for 4, = 0 an increase of
aerosol concentrations in the atmospheric boundary layer is to
increase the local albedo by as much as 10% for most of the
solar zenith angles. Consequently, it would cause a cooling
effect for the earth-atmosphere system as a whole. On the con-
trary, however, the local albedo decreases by about 5% (u, =
1) owing to the additional load of aerosols to a surface whose
albedo is 0.4, Hence we would anticipate a slight warming for
the earth-atmosphere system. ‘
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