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ABSTRACT

The delta-four-stream polarized (vector) thermal radiative transfer has been formulated and numerically
tested specifically for application to satellite data assimilation in cloudy atmospheres. It is shown that for
thermal emission in the earth’s atmosphere, the [I, Q] component of the Stokes vector can be decoupled
from the [U, V ] component and that the solution of the vector equation set involving the four-stream
approximation can be expressed in an analytic form similar to the scalar case. Thus, the computer time
requirement can be optimized for the simulation of forward radiances and their derivatives. Computations
have been carried out to illustrate the accuracy and efficiency of this method by comparing radiance and
polarization results to those computed from the exact doubling method for radiative transfer for a number
of thermal infrared and microwave frequencies. Excellent agreement within 1% is shown for the radiance
results for all satellite viewing angles and cloud optical depths. For polarization, differences between the two
are less than 5% if brightness temperature is used in the analysis. On balance of the computational speed
and accuracy, the four-stream approximation for radiative transfer appears to be an attractive means for the
simulation of cloudy radiances and polarization for research and data assimilation purposes.

1. Introduction

Satellite data assimilation requires an efficient and
accurate radiative transfer model for the computation
of radiances and the associated derivatives. The ther-
mal radiative transfer model that has been used for data
assimilation in numerical weather prediction models
was primarily developed for clear conditions, that is, for
pure absorbing atmospheres, such that the atmospheric
transmittance and the gradient of radiance relative to a
state variable are parameterized or derived analytically.
However, more than 50% of the satellite data are con-
taminated by clouds, thus making the incorporation of
scattering effects in transmittance calculations an im-
portant but challenging issue. In the microwave region,
polarization is a significant factor affecting the transfer
of radiation in the surface–atmosphere system (Liu and
Weng 2002; Weng and Liu 2003). In view of the fact

that many advanced infrared and microwave sensors
have been and will be built and deployed in space, it is
essential to develop an accurate radiative transfer
model that can be effectively applied to cloudy atmo-
spheres for satellite data assimilation and to test its
impact in terms of the improvement of forecast models
(Matricardi et al. 2004; Chevallier et al. 2004).

In our previous work, we presented a systematic de-
velopment of the delta-four-stream (D4S) approxima-
tions for radiative transfer, specifically designed for ap-
plication to cloudy and aerosol atmospheres (Liou et al.
1988; Liou 2002). We demonstrated that an analytic
solution for this approximation can be derived explic-
itly for homogeneous layers with a minimal computa-
tional effort for flux calculations. Fu and Liou (1993)
have shown that D4S can achieve an excellent accuracy
in spectral radiative flux calculations for a wide range of
cloud optical depth, single-scattering albedo, and the
phase-function expansion terms. However, our D4S
method has been derived for the intensity (or radiance)
component without accounting for polarization. The
transfer of thermal infrared radiation in the earth’s at-
mosphere generates little polarization, except in high-
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level clouds that contain horizontally oriented ice crys-
tals (Takano and Liou 1993). But the transfer of micro-
wave radiation is highly polarized, particularly over the
ocean surfaces.

In this paper, we first formulate the basic equations
governing the transfer of the Stokes vector in a plane-
parallel atmosphere for thermal emission. We show
that, for thermal emission in the earth’s atmosphere, it
suffices to use the I and Q components of the Stokes
vector in polarization analysis, as presented in section 2.
In section 3, we formulate the four-stream approxima-
tion for polarized thermal radiative transfer in which
the elements in the scattering phase matrix are ex-
panded into four terms in line with the four radiative
streams. The solution of a set of differential equations
is expressed in terms of a homogeneous plus a particu-
lar solution. Eigenvalues associated with the solution,
critical in the four-stream analysis, are determined by
an efficient numerical scheme. Section 4 contains some
computational results for illustration of the accuracy
and speed of the D4S method in comparison to exact
calculations based on the doubling method, discussed in
this section. Summary is given in section 5.

2. Formulation of polarized thermal radiative
transfer and the phase matrix

The basic equation governing the transfer of the
Stokes vector, I � [I, Q, U, V ], in a plane-parallel at-
mosphere for thermal emission can be expressed in the
form (see, e.g., Takano and Liou 1993)

�
dI��, �, ��

d�
� I��, �, �� � J��, �, ��, �1�

where � � cos�, � is the zenith angle, � is the azimuthal
angle, � is the optical depth, and the source function is
given by

J��, �, �� �
�

4� �
0

2� �
�1

1

Z��, �; ��, ���I��, ��, ��� d��

d�� 	 �1 � ��B, �1a�

where 
 is the single-scattering albedo, B is the Planck
function vector [B�(T), 0, 0, 0], T is temperature, � is
wavenumber, and the phase matrix with respect to the
local meridian plane is defined in the form

Z��, �; ��, ��� � L�� � i2�P���L��i1�, �2�

with L(� � i2) and L(�i1) the linear transform matrices,
which are required to rotate the meridian plane con-
taining the incident and outgoing vectors to the scatter-
ing plane (Hovenier 1969). In general, the scattering
phase matrix, P, contains 16 nonzero elements.

For a plane-parallel atmosphere, the emitted thermal
radiation from the surface and the atmosphere is sym-

metrical with respect to the azimuthal angle. Thus, we
can perform azimuthal average over � to obtain

�
dI��, ��

d�
� I��, �� � J��, ��, �3�

where the azimuthally averaged source function can be
written in the form

J��, �� �
�

2 �
�1

1

Z��, ���I��, ��� d�� 	 �1 � ��B. �3a�

The azimuthally averaged phase matrix Z(�, �) is
given by

Z��, ��� �
1

2� �
0

2�

Z��, �; ��, ��� d�� � ���. �4�

The phase matrix inside the integral is the product of
three terms denoted in Eq. (2). Each term can be ex-
panded in terms of the Fourier series. Because of the
orthogonal properties of sine and cosine functions in
the expansion, we can prove that Zij � 0 for ij � 13, 14,
23, 24, 31, 32, 41, and 42. In this manner, the Stokes
vector, [I, Q, U, V ], can be decomposed into [I, Q] and
[U, V ] independently. Van de Hulst (1980, chapter 15)
also discussed the expansion of the phase matrix ele-
ments using the Fourier series and presented equations
for them in terms of sine and cosine. The emitted
Stokes vector from clouds and the surface generally con-
tains only the [I, Q] component and thus we can safely
neglect the [U, V ] component for analysis of the polar-
ized thermal radiative transfer. We can then use [I, Q]
in the analysis of the transfer of polarized radiation, as
described in Takano and Liou (1993). Thus, the 2 by 2
phase matrix elements can now be expressed as follows:

Z � �Zij��, ����2�2

� � P11 P12 cos2i1

P21 cos2i2 P22 cos2i1 cos2i2 � P33 sin2i1 sin2i2
�,

�5�

where the bars represent the azimuthally averaged
value. We can further expand this matrix Z in terms of
the associated Legendre polynomial Pm

l (�) in the form

Zij��, ��� � �
m�0

N

�
l�m

N

��ij�l
mPl

m���Pl
m����, �6�

where (
ij)
m
l are the expansion coefficients averaged

over the relative azimuthal angle � � �. Details on the
derivation of Eq. (6) along with the expressions for
(
ij)

m
l are given in appendix A. The Zij(�, �) values

calculated from Eq. (6) are identical to those deter-
mined on the basis of a direct azimuthal averaging ac-
cording to Eq. (5). Note that we require these coeffi-
cients to develop the four-stream approximation.
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To simplify the radiative transfer equation, we define

bi,j � � ci,j��i, i 	 j

�ci,j � E���i, i � j
�7�

ci,j �
�

2
aj �

m�0

N

�
l�m

N ���11�l
m ��12�l

m

��21�l
m ��22�l

m�Pl
m��i�Pl

m��j�,

�8�

where E is the 2 � 2 identity matrix and aj are the
Gaussian quadrature weights. Based on the property of
Legendre polynomials, we find the following symmetric
relationships:

b�i,�j � �bi,j, b�i,j � �bi,�j. �9�

These symmetry relationships have also been discussed
by de Haan et al. (1987) and Hovenier and van der Mee
(1983). By replacing the integral by summation accord-
ing to the Gaussian quadrature and using the phase
matrix expansion expressed in Eq. (6), we can decom-
pose Eq. (1) into 4 � n linear first-order differential
equations in the form

d

d� � Ii

Qi
� � � �

j��n

n

bi,j� Ij

Qj
� � �Si1

Si2
�, i � �n, · · ·, n,

�10�

where n is the number of upward and downward
streams and the source term is given by

�Si1

Si2
� � �1 � ���B
�T���i

0 �. �11�

3. Four-stream approximation for polarized
thermal radiative transfer

We consider two radiative streams in the upper and
lower hemisphere (i.e., let n � 2). At the same time, we
expand the scattering phase matrix in four terms (N �
3) so that the total number of streams is equal to the
total number of phase matrix expansion terms, a math-
ematical requirement in the discrete-ordinates method
for radiative transfer (Chandrasekhar 1950). Using the
relation denoted in Eq. (9), eight first-order differential
equations can then be written in matrix form as follows:

d

d� �
I�2

Q�2

I�1

Q�1

I1

Q1

I2

Q2

� �

��
��b2,2�11 ��b2,2�12 ��b2,1�11 ��b2,1�12 ��b2,�1�11 ��b2,�1�12 ��b2,�2�11 ��b2,�2�12

��b2,2�21 ��b2,2�22 ��b2,1�21 ��b2,1�22 ��b2,�1�21 ��b2,�1�22 ��b2,�2�21 ��b2,�2�22

��b1,2�11 ��b1,2�12 ��b1,1�11 ��b1,1�12 ��b1,�1�11 ��b1,�1�12 ��b1,�2�11 ��b1,�2�12

��b1,2�21 ��b1,2�22 ��b1,1�21 ��b1,1�22 ��b1,�1�21 ��b1,�1�22 ��b1,�2�21 ��b1,�2�22

�b1,�2�11 �b1,�2�12 �b1,�1�11 �b1,�1�12 �b1,1�11 �b1,1�12 �b1,2�11 �b1,2�12

�b1,�2�21 �b1,�2�22 �b1,�1�21 �b1,�1�22 �b1,1�21 �b1,1�22 �b1,2�21 �b1,2�22

�b2,�2�11 �b2,�2�12 �b2,�1�11 �b2,�1�12 �b2,1�11 �b2,1�12 �b2,2�11 �b2,2�12

�b2,�2�21 �b2,�2�22 �b2,�1�21 �b2,�1�22 �b2,1�21 �b2,1�22 �b2,2�21 �b2,2�22

�
�

I�2

Q�2

I�1

Q�1

I1

Q1

I2

Q2

� ��
S�21

S�22

S�11

S�12

S11

S12

S21

S22

� . �12�
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The conventional Gauss quadratures and weights
in the four-stream approximation are �1 � 0.339 981
and �2 � 0.861 136 3, and a1 � 0.652 145 2 and a2 �
0.347 854 8. However, because of the isotropic emission
source in the thermal IR and microwave radiative
transfer, the double Gauss quadratures and weights (�1

� 0.211 324 8 and �2 � 0.788 675 2, and a1 � a2 � 0.5)
have the advantage of producing higher accuracy in in-
tensity calculations. The 8 � 8 matrix in Eq. (12) rep-
resents the coupled multiple-scattering contribution to
the I and Q components.

To find eigenvalue and eigenvector matrices for Eq.
(12), we define the sum and difference for the upward
and downward intensity vectors in the form

M1,2
� � � I1,2

�

Q1,2
� � � � I1,2 � I�1,�2

Q1,2 � Q�1,�2
�. �13�

Following some algebraic manipulation, Eq. (12) can be
converted into the following four matrix equations:

�
dM2

�

d�
� b22

� M2
� 	 b21

� M1
� � S2

�, �14�

�
dM1

�

d�
� b12

� M2
� 	 b11

� M1
� � S1

�, �15�

where the coefficient matrices are defined by

bij
� � ��bij

��11 �bij
��12

�bij
��21 �bij

��22
�

� ��bi,j�11 � �bi,�j�11 �bi,j�12 � �bi,�j�12

�bi,j�21 � �bi,�j�21 �bi,j�22 � �bi,�j�22
�, �16�

and the modified source term is given by

Si
� � �Si1 � S�i1

Si2 � S�i2
�. �17�

Differentiating both sides of Eqs. (14) and (15) yields
the following second-order differential equation set:

d2

d�2�M2
	

M1
	���a22 a21

a12 a11
��M2

	

M1
	�	�d2

d1
�, �18a�

where

a22 � b22
� b22

	 	 b21
� b12

	 , a21 � b22
� b21

	 	 b21
� b11

	 , �18b�

a12 � b12
� b22

	 	 b11
� b12

	 , a11 � b12
� b21

	 	 b11
� b11

	 , �18c�

d1 � b12
� S2

� 	 b11
� S1

�, d2 � b22
� S2

� 	 b21
� S1

�. �18d�

Further differentiation of Eq. (18a) leads to two fourth-
order vector differential equations in terms of M	

2 and
M	

1 separately as follows:

d4Mi
	

d�4 � ai

d2Mi
	

d�2 	 biMi
	 	 ci, i � 1, 2,

�19a�

where

a1 � a11 	 a12a22a12
�1, a2 � a22 	 a21a11a21

�1,

�19b�

b1 � a12a21 � a12a22a12
�1a11,

b2 � a21a12 � a21a11a21
�1a22, �19c�

c1 � a12d2 � a12a22a12
�1d1,

c2 � a21d1 � a21a11a21
�1d2. �19d�

The complete solution for M	
i is composed of a ho-

mogeneous and a particular solution. Thus,

�M2
	

M1
	�� �

j��2

2 �exp��kj�� 0

0 exp��kj����G2j

G1j
�

	��2

�1
�, �20a�

where Gij is a vector associated with the ith quadrature
angle and the jth eigenvalue, �i is the particular solution
vector for M	

i , and the term

exp��kj�� � R�exp���kj�1�� 0

0 exp���kj�2��
�R�1,

�20b�

where R and R�1 are the eigenvector matrix and its
inverse, respectively, and (kj)1 and (kj)2 are the jth set
of eigenvalues. On substituting Eq. (20a) into Eq. (19a),
we obtain a set of characteristic matrix equations for
the solution of eigenvalues and a set of relationships for
determining the particular solutions. The particular so-
lutions are

�2 � �c2
�1�a21d1 � a21a11a21

�1d2�, �21a�

�1 � �c1
�1�a12d2 � a12a22a12

�1d1�. �21b�

The characteristic equation is given by

�
j��2

2

�kj
4 � aikj

2 � bi� exp��kj��Gij � 0, i � 1, 2.

�22�

To have nontrivial solutions for Gij, we must have

f�k� � k4 � aik
2 � bi � 0, i � 1, 2. �23�

By setting each element of f(k) to 0 leads to four alge-
braic equations. Although Eq. (22) appears to be qua-
dratic, it cannot be solved using the quadratic formula,
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as having been done in the scalar delta-four-stream
method (Liou 2002). For this reason, we have devel-
oped a Newton–Raphson numerical iteration method
for the solution of eigenvalues k2, which is given in
appendix B.

Since G1j and G2j in Eq. (20) are defined from high-
order differentiations, they are mutually dependent.
We can determine their relationship from the homoge-
neous part of Eq. (18a). A straightforward substitution
yields

exp��k11��G11 	 exp�k11��G1,�1 �

A1�exp��k21��G21 	 exp�k21��G2,�1�, �24�

exp��k12��G12 	 exp�k12��G1,�2 �

A2�exp��k22��G22 	 exp�k22��G2,�2�, �25�

where Ai � a�1
21 (k2

2i � a22), i � 1, 2, and kij are the
eigenvalue solutions of Eq. (23). Following the same
procedure as in the case of Eq. (19a), we can obtain the
fourth-order differential equations for M�

1,2 in the form

d4Mi
�

d�4 � a�i
d2Mi

�

d�2 	 b�iMi
�, i � 1, 2, �26�

where the expressions for the coefficients ai and bi are
the same as those of ai and bi given in Eqs. (19a)–(19d),
except that the superscripts 	 and � in Eqs. (18a)–
(18d) are replaced by � and 	, respectively. It is noted
that there are no particular solutions for M�

1,2, because
the source terms are eliminated during the differenti-
ating process. Substituting Eq. (20) into Eqs. (14) and
(15), and assuming that the homogeneous solutions for
M�

1,2, are similar to the homogeneous part of Eq. (20a),
we obtain

M2
� � �a���1 �

j�1

2

��b11
� ��1Aj � �b21

� ��1�k2j

� �G2,�j exp�k2j�� � G2j exp��k2j���, �27�

M1
� � �a���1 �

j�1

2

��b22
� ��1 � �b12

� ��1Aj�k2j

� �G2,�j exp�k2j�� � G2j exp��k2j���, �28�

where a� � (b�
21)�1b�

22 � (b�
11)�1b�

12 and a�

* �
(b�

12)�1b�
11 � (b�

22)�1b�
21.

Finally, by combining Eqs. (20a), (24), (25), (27), and
(28), the complete solutions for Ii � [Ii, Qi] (i � �2, �1,
1, 2) are given by

�
I1

I�1

I2

I�2

� ��
�1

	 exp��k21�� �1
� exp�k21�� �2

	 exp��k22�� �2
� exp�k22��

�1
� exp��k21�� �1

	 exp�k21�� �2
� exp��k22�� �2

	 exp�k22��

�1
	 exp��k21�� �1

� exp�k21�� �2
	 exp��k22�� �2

� exp�k22��

�1
� exp��k21�� �1

	 exp�k21�� �2
� exp��k22�� �2

	 exp�k22��
��

G2,1

G2,�1

G2,2

G2,�2

� 	
1
2�

�1

�1

�2

�2

� ,

�29�

where the eigenvector matrices are

�j
� �

1
2

�E � �a���1��b21
� ��1 � �b11

� ��1Aj�k2j�, �30�

�j
� �

1
2

�Aj � �a�

* ��1��b12
� ��1Aj � �b22

� ��1�k2j�. �31�

To circumvent computational overflow problems, we
remove the positive exponential terms in Eq. (29) and
define new coefficient vectors G2,�1 and G2,�2 in the
forms

G�2,�1 � exp�k21��G2,�1, G�2,�2 � exp�k22��G2,�2.

�32�

Equation (29) then contains four sets of integration
constants (G2,1, G2,�1, G2,2, G2,�2). These integration
constants are to be determined from boundary condi-
tions. Consider a homogeneous layer having an optical
depth �1. We may assume that there is no diffuse ra-
diation from either the top or the bottom of this layer
so that the boundary conditions are

I�1,�2�� � 0� � 0

I1,2�� � �1� � 0	. �33�

Substituting Eq. (33) into Eq. (29), we obtain the fol-
lowing equation for the solution of the four integration
constants:
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�
0

0

0

0
� ��

�1
	 exp��k21�1� �1

� �2
	 exp��k22�1� �2

�

�1
� �1

	 exp��k21�1� �2
� �2

	 exp��k22�1�

�1
	 exp��k21�1� �1

� �2
	 exp��k22�1� �2

�

�1
� �1

	 exp��k21�1� �2
� �2

	 exp��k22�1�
��

G2,1

G�2,�1

G2,2

G�2,�2

� 	�
B

B

B

B
� .

�34�

Note that �1/2 and �2/2 derived in Eqs. (21a) and (21b)
are equivalent to B. Once the four integration constants

are solved from Eq. (34), we can compute the outgoing
intensity parameters at the layer boundaries as follows:

�
I1�� � 0�

I�1�� � �1�

I2�� � 0�

I�2�� � �1�
� ��

�1
	 �1

� exp��k21�1� �2
	 �2

� exp��k22�1�

�1
� exp��k21�1� �1

	 �2
� exp��k22�1� �2

	

�1
	 �1

� exp��k21�1� �2
	 �2

� exp��k22�1�

�1
� exp��k21�1� �1

	 �2
� exp��k22�1� �2

	
��

G2,1

G�2,�1

G2,2

G�2,�2

�
	�

B

B

B

B
� . �35�

Because I1 � I�1 and I2 � I�2 for a homogeneous
layer, Eqs. (34) and (35) can be further reduced to the
forms

�0

0��

��1
	 exp��k21�1� 	 �1

� �2
	 exp��k22�1� 	 �2

�

�1
� 	 �1

	 exp��k21�1� �2
� 	 �2

	 exp��k22�1�
�

��G2,1

G2,2
�	�B

B� �36�

and

�I1�� � 0�

I2�� � 0�
��

��1
	 	 �1

� exp��k21�1� �2
	 	 �2

� exp��k22�1�

�1
� exp��k21�1� 	 �1

	 �2
� exp��k22�1� 	 �2

	�
��G2,1

G2,2
�	�B

B�. �37�

Although the preceding analysis used the vacuum
boundary condition to determine the unknown coeffi-
cients, surface contribution can be included in a
straightforward manner (except for rough ocean sur-

faces). Within the context of the four-stream approxi-
mation, we may carry out the delta-function adjustment
for the phase function having a strong diffraction peak
to achieve a higher accuracy in radiative transfer com-
putation based on the similarity principle (Liou et al.
1988; Liou 2002). The optical depth, the single-
scattering albedo, and the Legendre expansion coeffi-
cients of the phase function can be scaled according to
the following equations:

�� � �1 � f���, �� �
�1 � f��

1 � �f
,

��l � ��l � f�2l 	 1����1 � f�, for l � 0 � 3, �38�

where f is 
4/9. The similarity principle has been de-
veloped for the scalar intensity and its general applica-
bility to the Stokes vector remains to be proven. How-
ever, it would be physically reasonable to apply the
delta-function adjustment if the phase matrix elements
exhibit strong forward peaks, similar to the phase func-
tion, to provide a better representation of the four-
stream fitting.

Finally, since D4S only provides two upward and two
downward radiative streams, we shall employ the inte-
gration technique to obtain the radiances in other di-
rections for satellite application. The upward and
downward Stokes vectors can be expressed as follows:
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I	�0; �� � I	��*; �� exp���*���

	 �
0

�*

J���; �� exp�������
d��

�
, �39a�

I���*; ��� � I��0; ��� exp���*���

	 �
0

�*

J���; ��� exp����* � ������
d��

�
,

�39b�

where the source function is given by

J��; �� �
�

2 �
�1

1

Z��, ���I��; ��� d�� 	 �1 � ��B�T����.

�39c�

On substituting the Stokes vector I�4(�; �) computed
from D4S into the I(�; �) term in the source function
expression [Eq. (39c)], the Stokes vectors in Eqs. (39a)
and (39b) can be determined at any satellite scanning
angles. We then integrate the downward Stokes vector
for each model layer progressively to the surface. Sub-
sequently, we apply the surface reflection and emission
boundary conditions to determine the upward Stokes
vector from the surface. Finally, we integrate the up-
ward Stokes vector for each model layer progressively
to obtain the upward Stokes vector at the top of the

atmosphere. These procedures can be accomplished ef-
ficiently in numerical computations.

4. Computational results and discussions

As an illustration of the accuracy and speed of D4S,
we first show a comparison of the total solar spectral
albedo (� � 0.2 � 5 �m) at the top of the atmosphere
computed from D4S and the exact method for an at-
mosphere containing a water cloud located between
0.83 and 2.75 km having a vertical optical depth of 10.
The atmosphere extends from 0 to 50 km with a 1-km
resolution. The exact method is based on the 16-stream
doubling method to obtain the reflection and transmis-
sion for an atmospheric layer. Both methods employ
the adding procedure to compute the spectral albedo in
which the line-by-line equivalent radiative transfer
model (Liou et al. 1998) uses the correlated k-
distribution method for the sorting of absorption lines
in the solar spectrum with a spectral resolution of 50
cm�1. The water cloud contains an effective radius of 8
�m and a midlatitude summer atmosphere with a sur-
face albedo of 0.1 is used in the calculation along with
two solar zenith angles of 30° and 75°. The D4S results
are in excellent agreement with those computed from
the exact method, as shown in Fig. 1. The mean relative
differences are �0.192% and 0.682% and the root-
mean-square differences are 0.00108 and 0.00377 for
the two solar zenith angles, respectively. The required

FIG. 1. Comparison of the total spectral albedo (� � 0.2–5 �m) computed from D4S and the 16-stream doubling method for a water
cloud located between 0.83 and 2.75 km having a vertical optical depth of 10 and comprising of an effective radius of 8 �m in a
midlatitude summer atmosphere with a surface albedo of 0.1 for two solar zenith angles of 30° and 75°.
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CPU times for these results are 14.5 and 668 s in the
SUN workstation Ultra 80 (a ratio of about 1 to 46) for
D4S and the 16-stream doubling methods, respectively.

For illustration of the computational speed and ac-
curacy involving thermal radiances, Fig. 2 shows com-
parison of the radiances at the discrete angles, �1 �
0.211 325 and �2 � 0.788 675, computed from D4S and
a 40-stream doubling method (exact) for ice clouds hav-
ing vertical optical depths between 0.01 and 10 with a
mean effective ice crystal size of 24 �m for a thermal IR
window frequency of 926 cm�1 [one of the Atmo-
spheric Infrared Sounder (AIRS) channels]. The single-
scattering albedo in this case is 0.410 99 and the asym-
metry factor is 0.939 73. Again, agreement is excellent
with a mean relative difference of �4.30 � 10�5

(�0.25%) and a root-mean-square difference of 6.99 �
10�5 (0.4%). The required CPU time for these results
are 0.01 and 0.61 s in the SUN workstation Ultra 80
(roughly at a ratio of 1 to 60) for D4S and the exact
doubling method, respectively. Our doubling method
was developed in Takano and Liou (1989a,b) and Liou
and Takano (2002) for solar radiative transfer including
polarization in which some computational results were
checked with those listed in van de Hulst (1980). Sub-
sequently, the doubling/adding program was extended
to include polarized thermal emission, as presented in
Takano and Liou (1993).

To check the accuracy and computational speed of
the polarized D4S method outlined in section 3, we
used a microwave frequency of 183 GHz [one of the
channels in the Advanced Microwave Sounding Unit
(AMSU)] and three ice cloud optical depths of 0.1, 1,
and 10. Note that for thermal emission, Stokes param-
eters reach asymptotic values rapidly and the results for
optical depths of 10 and 50 (as an example) are almost
the same and will not be duplicated here. The ice cloud
is composed of randomly oriented ice crystals with a
maximum dimension of 300 �m and a width of 100 �m.
The cloud temperature is 240 K corresponding to a
Planck function of 7.268 19 � 10�5 [W m�2

(cm�1)�1sr�1]. The 2 � 2 phase matrix elements are
approximated by a four-term Legendre polynomial ex-
pansion [N � 3 in Eq. (6)]. The two Stokes parameters
computed from D4S are compared to those from the
doubling method, which employs 40 streams (exact) in
the calculation.

Figure 3 shows comparison of the phase matrix ele-
ments P11, �P12/P11, P22/P11, and P33/P11 in the exact
functional form and the two-term and four-term expan-
sions in terms of the scattering angle. The exact phase
matrix elements were computed using the finite-
difference time domain method developed by Yang and
Liou (2000). The element P11 shows a peak at both

forward and backward directions. The forward peak in
this case is not sufficiently strong to require a delta-
function adjustment. The angular distribution of �P12/
P11 is opposite to that of P11 with 0 at the forward and
backward directions, but reaches a maximum value at
the 90° scattering angle. The element P22 has the same
values as P11 for all scattering angles. Finally, P33/P11 is
positive in the forward direction, but negative in the
backscattering direction. These four elements com-
puted from the four-term expansion are almost identi-
cal to the exact values, as shown in Fig. 3. However, the
two-term expansion results associated with the two-
stream approximation significantly differ from the ex-
act calculation. This comparison suffices to illustrate
that using the 4-term expansion for the phase matrix
elements is sufficiently accurate for microwave radia-
tive transfer. In contrast, however, the two-term expan-
sion for the phase matrix elements can produce large
errors in radiance calculations.

Figure 4 illustrates comparison of I and Q Stoke pa-
rameters as functions of viewing zenith angle and cloud
optical depth computed from D4S and the exact dou-
bling method. The total radiance I increases and de-

FIG. 2. Comparison of the radiances at the two discrete angles
in the four-stream approximation, computed from the D4S and
the exact doubling programs as a function of optical depth.
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creases with increasing viewing zenith angle for thin (�
� 0.1) and thick (� � 10) ice clouds, respectively. The
radiances computed from D4S and the source function
integration technique closely agree with those from the
exact doubling method. The Q parameter increases
with increasing viewing zenith angle, reaching a peak
between 60° and 90° for the three optical depths em-
ployed in the calculation. We see some deviation of the
D4S approximation from the exact results, particularly
for thin optical depth of 0.1 (about 10%). Note that the
Q parameter is associated with difference of the two
radiance components and is a small quantity. If bright-
ness temperature (directly converted from radiance via
the Plank function) is used, however, differences be-
come less than 4%. The two-stream method was found
to produce large deviations from the exact calculations,
and for small optical depths the Q parameter displays
unrealistic negative values. Calculations for other cases

demonstrate that the D4S approximation can achieve
an overall accuracy of within 5% for radiance and lin-
ear polarization (in terms of brightness temperature).
Finally, we note that the computational speed for D4S
is about 150 times faster than the exact doubling
method.

5. Summary

In this paper, the fundamental equations governing
the transfer of the Stokes vector in plane-parallel at-
mospheres for thermal emission are formulated and we
show that the [I, Q] component can be decoupled from
the [U, V ] component. Subsequently, we develop the
four-stream approximation for the transfer of polarized
radiation in which the scattering phase matrix elements
are expanded into four terms in association with the
predetermined four radiative streams. Similar to the

FIG. 3. Comparison of the exact and two-term (N � 1) and four-term (N � 3) expanded phase matrix elements
for hexagonal ice crystals with a length of 300 �m and a width of 100 �m using a microwave frequency of 183 GHz.
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scalar radiative transfer case, the solution of this ap-
proximation in vector form can be derived analytically
so that an efficient computational method can be de-
veloped for radiance and polarization calculations.
Moreover, by means of the source-function integration

technique, the emergent radiation associated with sat-
ellite scanning angles other than the four-stream direc-
tions can be determined.

We provide a variety of illustrative cases to test the
accuracy of D4S in comparison to the exact radiative

FIG. 4. Comparison of the I and Q components as a function of viewing zenith angle computed from the
D4S and the exact doubling method for a number of ice cloud optical depths.
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transfer calculations based on the doubling principle.
We first compare the total solar spectral albedos (0.2–5
�m) computed from a line-by-line equivalent D4S and
the exact method developed previously for an atmo-
sphere containing a water cloud and show that differ-
ences between the two are less than 1%. Second, the
D4S radiance calculations are shown to yield excellent
accuracy for the transfer of thermal infrared radiation
in the 10-�m window covering a spectrum of ice-cloud
optical depths from 0.01 to 10. Third, employing the
183-GHz microwave frequency, we demonstrate that
the four-term expansion of the four-phase matrix ele-
ments corresponding to the [I, Q] Stoke component
matches closely with the exact values, whereas the two-
term expansion associated with the two-stream ap-
proximation produces significant deviations. Finally, we
compare the I and Q values computed from the D4S
polarized radiative transfer program developed in this
paper to those from the exact doubling method using
the 183-GHz frequency for an ice cloud containing
large ice columns and plates. The radiances computed
from the two methods match closely with differences
less than 0.5% for all optical depths, while the polar-
ization results show deviations of about 10% for thin
optical depths from 0.01–0.1 because of small quanti-
ties. However, in terms of brightness temperature, the
polarization deviation is less than 4%. Overall, in con-
sideration of the computational speed and accuracy re-
quirement the D4S approximation is shown to be the
best solution for the simulation of infrared and micro-
wave radiance and polarization for satellite data assimi-
lation purposes.
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APPENDIX A

Azimuthally Independent Expansion of Phase
Matrix Elements

The scattering phase matrix element Zij(cos �) can
be expanded in terms of Legendre polynomials in the
form

Zij�cos�� � �
l�0

N

��ij�lPl�cos��, for i, j � 1, 2, �A1�

where Pl(cos �) is the Legendre polynomial of the lth
order, and (
ij)l is the expansion coefficient. Once the
phase matrix elements are determined from the light-
scattering theory, the value of (
ij)l can be numerically
determined based on the orthogonal property of Leg-

endre polynomials. Using the addition theorem, we fur-
ther expand Zij in terms of the spherical harmonic func-
tion as follows:

Zij��, �; ��, ��� � �
m�0

N

�
l�m

N

��ij�l
mPl

m���Pl
m����

� cosm�� � ���, �A2�

where

��ij�l
m � �2 � �0,m���ij�l

�l � m�!

�l 	 m�!
, for i, j � 1, 2.

�A3�

Substituting Eq. (A2) into Eq. (5) in the main text, and
performing azimuthal averaging, we obtain the ex-
panded form of the azimuthally independent phase ma-
trix elements in terms of the associated Legendre poly-
nomials as follows:

Zij��, ��� � �
m�0

N

�
l�m

N

��ij�l
mPl

m���Pl
m����,

for i, j � 1, 2, �A4�

where Eq. (A4) is identical to Eq. (6) in the main text.
The expression for the coefficient (
ij)

m
l differs for each

phase matrix element and is given below.
The element Z11 is identical to the scattering phase

function. It is independent of the azimuthal angle for
thermal emission wavelengths so that

Z11��, ��� � �
m�0

N

�
l�m

N

�lm��11�lPl
m���Pl

m����

� �
l�0

N

��11�lPl���Pl����. �A5�

According to Eq. (A5), (
11)m
l � �0m(
11)l. The coef-

ficient for the other three elements contains an azi-
muthal integration term. Thus

��12�l
m � ��12�l

m

�
1

2� �
0

2�

cos2i1 cosm�� � ��� d�� � ���,

�A6�

��21�l
m � ��21�l

m

�
1

2� �
0

2�

cos2i2 cosm�� � ��� d�� � ���,

�A7�

2552 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 62



��22�l
m � ��22�l

m

�
1

2� �
0

2�

cos2i1 cos2i2 cosm�� � ��� d�� � ���

� ��33�l
m

�
1

2� �
0

2�

sin2i1 sin2i2 cosm�� � ��� d�� � ���.

�A8�

The azimuthal integration terms in Eqs. (A6)–(A8) can
be numerically evaluated by the Simpson rule.

APPENDIX B

Numerical Solution of the Characteristic Equation
for Eigenvalues

Based on the similarity between Eq. (23) and the
scalar quadratic equation, the following formula is sup-
posed to be the solution

kj
2 � �aj � �aj

2 	 4bj��2, j � 1, 2. �B1�

However, we are unable to obtain f(k) � 0 by substi-
tution of Eq. (B1) into Eq. (23) because matrix multi-
plication is not commutable. As an alternative, the
Newton–Raphson numerical method (Press et al. 1986)
is used to obtain the solution for Eq. (23).

Let k2 � K, Eq. (23) can be rewritten as

K2 � aiK � bi � 0, i � 1, 2. �B2�

Further, let K � [Kij]2�2, ai � [(ai)jk]2�2, and bi �
[(bi)jk]2�2, we can obtain four algebraic equations from
Eq. (B2) for each i as follows:

K11
2 	 K12K21 � �ai�11K11 � �ai�12K21 � �bi�11 � 0,

�B3�

K11K12 	 K12K22 � �ai�11K12 � �ai�12K22 � �bi�12 � 0,

�B4�

K21 	 K22K21 � �ai�21K11 � �ai�22K21 � �bi�21 � 0,

�B5�

K22
2 	 K12K21 � �ai�21K12 � �ai�22K22 � �bi�22 � 0.

�B6�

To apply the Newton–Raphson method, let Kij � xn for
n � 1–4, and let the left-hand side of Eqs. (B3)–(B6) be
denoted as fm(xn) for m � 1–4, in which we approxi-
mate fm(xn) as the first-order truncated Taylor series
expansion in the form

fm�xn� � fm�xn0� 	 �
n�1

4
fm

xn



xn0

�xn � xn0�,

for m � 1 � 4. �B7�

We may let the left-hand side of Eq. (B7) to be 0 to
obtain a set of four simultaneous linear equations in xn

�
n�1

4
fm

xn



xn
�p�1�

�xn
�p� � xn

�p�1����fm�xn
�p�1��, �B8�

where the superscript [p] denotes the iteration index.
Using k2

j obtained from Eq. (B1) as initial values for xn,
we proceed to solve Eq. (B8) for xn iteratively. The
iteration stops when the following convergence crite-
rion is satisfied:

�
m�1

4

| fm�xn
�p��| � 10�6 or |xn

�p� � xn
�p�1�| � 10�6. �B9�

Normally, five iterations are sufficient to achieve con-
vergence.
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