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1. Introduction

In a previous paper in this journal [Liou (1973),
hereafter referred to as DOM ], discussions were made
on the theoretical and computational aspects of the
discrete-ordinate method for radiative transfer with
applications to cloudy and hazy atmospheres. We in-
dicated that the discrete-ordinate method is one in
which the solutions of radiative transfer in cloud layers
may be derived with numerical procedures required
only in evaluating the constants of proportionality in
the analytic solutions. Consequently, such a method
may be employed to obtain simplified radiative transfer
approximations whose accuracy can be checked with
more exact computations and whose computer time
requirements can be limited to a minimum. Therefore,
the approximate but reliable solutions may be effec-
tively incorporated into dynamic models as well as
climatic studies for the purpose of parameterization
for the reflected and transmitted solar fluxes emergent
from cloud layers [see, e.g., discussions by Manabe
and Strickler (1964), Joseph (1971), Arakawa (1972)
and Lacis and Hansen (1974)].

On the basis of the theoretical analyses described in
DOM, we found that it is not possible to obtain
analytic equations for discrete-streams of more than
four without involving complicated numerical methods.
This is because of the complexity in solving the simul-
taneous differential equations and in evaluating the
corresponding eigenvalues. The concept of finite dis-
crete-streams for radiative transfer has been noted
previously by Chandrasekhar (1950), Lenoble (1956),
and recently by Weinman and Guetter (1972) and
Zdunkowski and Korb (1974). We also cited other con-
tributors in DOM. The purpose of this note is to derive
explicitly the analytic equations in closed forms for
cases of the two-stream and four-stream approximations
from the exact solutions provided in DOM.

2. Analytic solutions for radiative transfer

The appropriate equation describing the diffuse solar
radiation field when the vertical distribution of fluxes
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is considered may be written as
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where I denotes intensity, 7 the optical depth, Fo the
solar flux, and u and g, the cosine of the emergent and
the solar zenith angles respectively. Expanding the
phase function p in Legrendre polynomials P; and not-
ing that the cosine of the scattering angle (cos®) can
be denoted as uu’ in the azimuth-independent case, we
have
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where the coefficients @; can be determined by noting
the orthogonal property of Legendre polynomials:
241
&>z=—2— PP (X)dX.

-1

©)

In the case of the two-stream approximation, N=1 in
Eq. (2). For the four-stream approximation, however,
it is necessary to expand the phase function in four-
term polynomials (i.e., N'=3) to obtain higher accuracy.

The boundary conditions for the diffuse solar radia-
tion in the atmosphere may be taken as

I(Oy _/") =0
I(rau)=0 ’

i.e., no diffuse radiation from the top and the bottom of
the cloud layer whose optical depth is 7y. Egs. (1),
(2) and (4) form the basis in deriving the following
analytical solutions.

©)

a. Two-stream approximalion

Replacing the integral term in Eq. (1) by summation
according to the Gaussian quadrature of two, the up-
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ward and downward flux at any given level can be
readily written as

F T (T) = 27ry1[:L1W1 (#1) €Xp ( _kl"') +L—1W1(—ﬂ1)
Xexp(krr)+Z (w) exp(—7/p0)], (5)
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—muoFo exp(—7/po), (6)

where:
| m= (3
irc+ C-
o b 2
irct C-
L_1=E[;—Z_‘:| exp(—kirw) (®)
A=W, (—p1)=W;1(u1) exp(—Ekiry) )
Ct=—[Z(—m)=£Z () exp(—7n/m)] (10)
1
ki=— (1 —&¢) (1 —owH ]t (11)
M1
Wi(uy) = [@o—@1(1—@o)u1/ k1] (12)
puiks
" poFo (u1—wo)[@o—a1 (1 —&0o)u1po
Z(y1)=# (k1—n0)[ (1—&o)uip ]. 13)
4 u2(1—kuo”)

b. Four-stream approximation

Following the theoretical analyses described in DOM,
it is also possible to derive explicitly the analytic solu-
tion for the transfer of solar radiation with discrete-
streams of four when higher accuracy is required. With
the phase function of cloud particles characterized by
the four-term expansion in Legendre polynomials,
the upward and downward flux at any level 7 in clouds
are given by

Fl(r)=2xLawd (7,p1) +aousl (7,u2) ], (14)
Fl (T) = "‘2'”[(11#1[ (1', —M1)+d§#21 (7': _ﬂ2)]
—muoFo exp(—7/uo). (15)

In Egs. (14) and (15), the emergent intensity

I(r,X) =3 [LW(X) exp(~k;r)

AL_W;i(—X) exp(k;r) JHZ(X) exp(—17/uo), (16)

where the argument X stands for either value of =-u; .
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The cosine of the discrete-emergent angles ug
=0.3399810 and u,=0.8611363, the weighing factors
a1=0.6521452 and ¢,=0.3478548, and

Ly2=(M1,2+N12)/2 (17)
L_y,_s=(My3—N1,) exp(—Fi,a7n)/2 (18)
M= (CrtBs* —CytBiY)/ (Ar+Bst — A3+ BY)  (19)
My=—(CitAst—CostA4:)/
(4Bt — A B)  (20)
Ni=(CrBi—CiBi-)/ (ArBi—ArBi)  (21)
No=—(Cr A —CyAr)/
 (ArBr—45Br) (22)
A=W 1(—p1,2)E=W1(u1,2) exp(—kirw) (23)
Biz=Wa(—u1,2)=EWs(u1,2) exp(—karn) . (24)
Cto=—[Z(—p1,2)EZ(u1,2) exp(—7n/ue)]  (25)
Wi (X)= - é@ziz(kl,z)Pz(X) (26)
Z(0)= roF o (ur® —pe?) (o —1o®)
4 (uotX) pr’ug?(1—kiPue?) (1 —k’ud?)
3 1 '
XEO 45:&(:0)1’ (X). (27)

The polynomials and £ functions for an argument X are
respectively as follows:

Po(X)= 1

Pi(X)=X
Py(X)=33X—1) [
P3(X)=3(5X°—3X)

LHX)=1 1

(28)

£ (X) = — (1—@0)/X
£(X)= (3—an) (1—~a0)/ (2X7) —3 . (29
£4(X) = — (5—as) (3—ior) (L—0),/ (6X) J

+L(5—a)+4(1—a0) 1/ (6X)
By noting that (see Chandrasekhar, 1950, pp. 62)

251 51 = 1,
Z ai/”jl =
i I+1

l=even
Lo oo
01 =0, l=0dd

the eigenvalues &’s can be determined from

b
B = (40, (31)
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where
b= (av1—1)/u+ (asta—1)/us?, (32)
c= (1—asts—asts)/ (ui’us?)
+ (@t /) + (aots /us?),  (33)
t1,2=&0t61(1—&o)u1,2P1(u1,2) —302 P2 (11,2)
'—%&)3[(5 —'5)2)‘*“4(1—6—00)]#"1,2-?3(# 1,2); (34)
tll_2= %(3—(:)1) (1 ‘—(:’0)[(-:’2[)2 (#1.2)
+36:(5—do)p1,2Ps(u1,2) ] (35)

It should be noted that when &y=1 (conservative
scattering), one of the eigenvalues becomes zero. As a
result of singularity, neither Eq. (26) nor (12) can be
evaluated. However, by assuming &=0.99999, the
above formulas are all valid and errors produced are
practically insignificant.

3. Some remarks

The equations presented in Section 2 which involves
only simple algebra were programmed for values of the
reflection 7[=FT(0)/muoFy] and the transmission
I[=F| (rn)/muoFo] in the computer to check with the
numerical results discussed in DOM. The computer
time required to obtain the reflection and transmission
for a number of optical thicknesses rx and solar zenith
angles ug is on the order of a few seconds with the CDC
6400 computer. The accuracies of the two-stream and
four-stream approximations as discussed in DOM are
within 3-109, and 19 respectively.

In cases of Rayleigh scattering, wy=ws;=0, the pre-
vious equations in Section 2 for both approximations
are reduced to somewhat simpler forms. However,
since the two-stream approximation produces low
accuracy particularly for optically thin layers, it would
be advisable to employ the four-stream approximation
which also correctly describes the phase function of
Rayleigh scattering.

From the previous formulas, the upward and down-
ward flux for any given level 7 in clouds depend on the
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solar flux =F,, the solar zenith angle uq, the coefficients
@; (evaluated from the phase function and the single
scattering albedo), and the optical depth 7y of a cloud
layer. The last two variables are to be determined from
the composition and structure of clouds, and are func-
tions of the wavelengths in the solar spectrum. At a
wavelength of 0.55 um, values of &, &; and &; are
about 2.55, 3.85 and 4.50 respectively for fair weather
cumulus based on Mie computations. For clouds com-
posed of larger particles such as cumulonimbus, values
of &; increase slightly.
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