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ABSTRACT

A computational approach for the multiple backscattering from spherical cloud droplets for a collimated
pulsed radar system has been developed, based on the geometry of the system. The radiative transfer
relationships include a complete set of Stokes’ parameters. The depolarization ratio of the multiple back-
scattering from a volume of spherically symmetrical and uniformly distributed water drops is obtained.

Calculations are performed for secondary backscattering from water clouds in terms of wavelength,
cloud height, beam width and particle number density. It is found that the depolarization does not have a
significant dependence on the wavelength in the visible and near visible, or on the distance between the
target and receiver. However, the receiver beam width and particle number density significantly affect the

depolarization as well as the returned power,

A small receiver beam width, on the order of 10~ rad, is recommended for measurement of the depolariza-
tion due to ice crystals in clouds to avoid depolarization caused by multiple scattering from the liquid drops.

1. Introduction

While efforts have been made to investigate the dis-
tribution of ice or water in clouds, success has been
limited. One of the objectives of a research program
initiated at New York University has been to develop
a means for distinguishing between ice and water clouds
utilizing optical laser radar techniques. It was proposed
that a measurement be made of depolarization in the
backscattered laser return to separate ice crystals from
cloud drops.

The depolarization technique is not new. Several
radar meteorologists such as Atlas ef al. (1953) and
Newell ef al. (1957) have used this technique for iden-
tifying nonspherical raindrops and snowflakes. It has
been shown that the backscattered radiation from
spherically symmetrical and uniform elements such as
water drops retains the polarization of the incident
energy, while the scattered radiation from nonspherical
ice crystals is partially depolarized (see, e.g., Battan,
1959).

However, the return energy from a “volume” of
spherically symmetrical and uniformly distributed cloud
drops will be partially depolarized due to multiple
scattering. In order to investigate the effect of multiple
scattering on depolarization in a collimated pulsed radar
system, a theoretical study has been undertaken. It is
the purpose of this investigation to estimate on a time-

1This paper is based on portions of a dissertation submitted by
the senior author to New York University in partial fulfiliment of
the requirements for the degree of Doctor of Philosophy.

dependent basis the depolarization of the higher orders
of scattering for spherically symmetrical and uniformly
distributed cloud drops with a linearly polarized laser
source.

The effects of multiple scattering on the backscattered
radar return were first discussed by Herman (1965)
assuming a steady-state condition. Time-dependent
multiple scattering has been studied by Dell-Imagine
(1965) directly, using radiative transfer relationships.
Recently, Weinman and Ueyoshi (1969) have calculated
the double scattering of a light pulse scattered from a
thin turbid medium by adopting the Laplace transform
technique which was developed by Bellman et ol. (1964)
for time-dependent transfer problems. Polarization is
not considered in either case.

Since the duration of the light pulse considered in this
research is on the order of nanoseconds, it is a time-
dependent transfer problem. An approach has been
developed, based on the physical geometry with a time
restriction, to evaluate the returned power and depolar-
ization of the secondary backscattered radiation in a
collimated pulsed radar system for a polarized laser
source. A generalized time-dependent multiple scatter-
ing model for this problem is presented separately by
Liou (1971). It is shown that the returned power and
depolarization due to photons scattered more than twice
is insignificant in most collimated systems.

The cloud particle size distribution chosen for gen-
erating the Mie phase functions (scattering diagrams)
in this study is the cloud model used and discussed by
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Deirmendjian (1964, 1969). This cloud model or a linear
combination of two such cloud models reproduces fairly
well some of the observed distributions such as those
found in cumulus and stratiform clouds typical of mete-
orological conditions in the atmosphere,

2.Phase function and cloud particle size distribution

The phase function (scattering diagram) may be
physically described as a quantity which indicates the
angular distribution of energy from a scattering element.
The phase function for a complete sct of Stokes’ param-
eters is a four by four matrix. If no assumptions are
made at all for the scattering medium, the phase matrix
contains 16 independent coefficients. However, as shown
by Perrin (1942) and van de Hulst (1957, Chap. 5), if a
sample of particles is randomly oriented and has a plane
of symmetry, then the number of independent coeffi-
cients is reduced to six. Furthermorc, for particles hav-
ing spherical symmetry, the number of independent
coefficients is further reduced to four. Thus, the phase
function for a polydispersion of spherical particles can
be written as

P,(6) 1 " dn(r)
= 1;(6) P dr, j=1,2,34, (1)
¥

dr Bk U

where £;{8) and 7;(8) are dimensionless quantities [ the
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Fi6. 1. Comparison of the cloud model with mode radius at 4u
to the observed size distribution of fair weather cumulus: solid
line, Diem (1948) fair weather cumulus; dash-dotted line, Battan
and Reitan (1957) 19 fair weather cumulus [N=293 cm 7,
dashced line, cloud model C4[ N =100 cm™].
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F16. 2. Comparison of the bimodal distributions to the observed
size distributions of cumulus and layered clouds: solid line, Durbin
(1959), cumulus type I, thickness 230-2100 m; dash-dotted line,
Singleton and Smith (1960), layer cloud, thickness 210-230 m;
dash-dashed line and dashed lines, bimodal distributions, with
re=4, 7 u and 4, 10 p, respectively, and N =100 cm™3.

1;(#) numbers being defined in the usual manner for a
single particle (see, e.g., Diermendjian, 1961)7], 6 is
the scattering angle, £ the wavenumber, r; and 7, the
lower and upper limits of particle radius, respectively,

2 dn(r)
ﬁs=/ oy dr=¢&:N, (2)

" dr

where 8, (length™) represents the volume scattering
cross section, o, the scattering cross section for a single
particle, ., the averaged value with respect to the par-
ticle size distribution, and N the total number of par-
ticles per unit volume, which for a homogeneous cloud
is a constant. The assumption is made that the particle
size distribution is the same throughout the cloud.

The particle size distribution, dn(r)/dr, chosen in
generating the phase functions is the cloud model or
“modified gamma” distribution suggested by Deir-
mendjian (1964). This size distribution function is a gen-
eralization of that first proposed by Borovikov et al.
(1961) for clouds and can be written as

dn(r) 681 /7\¢
=N—-— _.—(-_> 6‘67‘/7'0, (3)
dr Stre\r,

where dn(r)/dr represents the number of particles per
micron interval at size 7, and 7, is the mode radius at
which the concentration is at a maximum.
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F16. 3. Two cloud models with mode radii at 4 and 8u.

The cloud model with r,=4 u, and ¥ =100 cm™ de-
scribes some of the averaged observed spectra for fair
weather cumulus reported by Diem (1948) and Battan
and Reitan (1957), shown in Fig. 1. As indicated, the
size distribution for at least some fair weather cumulus
is very narrow and drops off very rapidly, with the num-
ber of particles in the tail being negligible. ‘

However, the observed size distributions for clouds
normally contain more droplets in the tail region than
is predicted by the modified gamma distribution. A
linear combination of two modified gamma distributions
was used to fit some of the observed size distributions.
As shown in Fig. 2, the composite distribution with two
mode radii at 4 and 7 u fits the observed distribution of
the cumulus type 1 reported by Durbin (1959), while
mode radii at 4 and 10 u fit the observed distribution of
the layered cloud with thickness from 210-300 m re-
ported by Singleton and Smith (1960). The particle
number density used for the cloud models in Fig. 2 is
also 100 cm—3. It should be noted that in Fig. 2 the ver-
ticle axis is dn/dr [em™ p '], while in Fig. 1 it is
dn/d lnr [coo—®]. The size distributions of the cumulus
congestus, cumulonimbus and tropical cumulus ob-
served by Weickmann and aufm Kampe (1953), Diem,
and Battan and Reitan are very broad. The mean radii
for these distributions have a range from about 7-9 u
which approximately corresponds to the modified
gamma distribution with mode radius at 8 u. Fig. 3
shows the size distributions for two cloud models with
mode radii at 4 and 8 g. It is seen that the cloud model
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for r,=8 u denotes the size distribution for large par-
ticles compared to that for r,=4 u.

The particle concentration and water content of
layered and convective clouds reported by Singleton
and Smith (1960) and Squires (1957) vary from about
50-500 cm~? and about 0.1-3 gm m~3, respectively, for
different layers in the cloud. The cloud droplets are not
homogeneously distributed in the horizontal or vertical
directions. Our knowledge of the spatial variation of the
drop size distribution is still quite limited. We have
assumed for the purposes of the scattering computation
that the cloud droplet parameters are uniform through
the cloud.

We have made computations? to examine how sensi-
tive the resulting phase functions are to the large par-
ticle cutoff of the size distributions. For mode radii r,=4
and 8 u, with wavelength 0.6943 i, the ranges of the
size distribution have been selected to be 0-17 ¢ and
0-30 u. Little difference is found between the results of
computations of these two ranges for two mode radii.
Thus, it appears that these phase functions are not too
sensitive to the cutoff in the tail of the size distribution.
It is felt that the reason for this is that the size distri-
bution drops very rapidly, so that not many larger par-
ticles remain in the tail. The phase functions were also

A=6943u

UPPER CURVES rp=4u
er4p,Tp
fc*4u ,0p

MIDDLE CURVES
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Fic. 4. Single-scattering phase functions perpendicular (solid
lines) and parallel (dotted lines) to the scattering plane for water
drops illuminated by 0.6943 u radiation. In Figs. 4-6 the vertical
scales apply to the lowermost curve, while the scales for the other
curves may be obtained by multiplication by a power of 10 such
that the horizontal bar on each curve occurs at unity.

2 The Mie scattering program was kindly supplied by Dr. J.
Hansen at the Institute for Space Studies.
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TacoLe 1. Index of refraction and mean scattering
cross section for water clouds.

C8(0-24x)

C4(0-17)
A &, &,
() e i (104 m?) (10~ m?)
03472 1.349 8 X10  0.01637  0.06394
06943 1330 3.3 X107 001682  0.06551
1.06 1325 1.07X10" 001721  0.06606

Note: The single-scattering albedo &, is nearly unity (2 0.999)
for all cases.

computed for two composite distributions. One has
modes at 4 and 7 u, a model corresponding to Durbin’s
cumulus type 1, and the other one has modes at 4 and 10
4 which is similar to one of the layer clouds reported by
Singleton and Smith. Fig. 4 shows the phase functions
for the two composite distributions at a wavelength
of 0.6943 u. When these arc compared in Fig. 4 to the
phase functions for a gamma distribution with r,=4 g,
in general no considerable change is found.

The analysis of the effects of size distribution on the
scattering computations is quite complicated. It is felt
that at least two parameters for the size distribution
have to be considered, i.c., the mean size and the dis-
persion. While more detailed studies are required for
the purpose of estimating the returned power and de-
polarization of multiple backscattering in this study, we

o C4 (0-17p)
UPPER CURVES 1061
MIDDLE CURVES . .6943p
LOWER CURVES 3472 p

PHASE FUNCTON P/4w

17—

o i { i 1 1 il L
[¢] 20 40 60 80 100 120 490 160. 180
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Fis. 5. Single-scattering phase functions perpendicular (solid
lines) and parallel (dotted lines) to the scattering plane for water
drops illuminated by 1.06 » (upper curves), 0.6943 u (middle
curves), and by 0.3472 u (lower curves). Lhe size distribution has
the mode radius at 4 u.
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F16. 6. Same as in Fig. 5 except for a mode radius at 8 .

choose 7. =4 u to represent the less dense clouds such as
fair weather cumulus, while ,=8 u represents larger
and denser clouds such as cumulus congestus and cumu-
lonimbus. The cloud models for 7.=4 and 8 u are de-
noted as C4 and C8, respectively, for simplicity. Three
typical laser wavelengths [0.6943 4 (ruby), 1.06
(neodumium) and 0.3472 u (doubled ruby) ] are used in
generating the phase functions for two clouds for r.=4
and 8 u. For the index of refraction of water drops at
each wavelength, we have used the summary data pub-
lished by Irvine and Pollack (1968). As shown in Table
1, the imaginary part »; of the index refraction is neg-
ligibly small compared to the real part , for wavelengths
in the visible and near visible. The single scattering
albedo (2>0.999) is nearly unity for all three wave-
lengths, and the mean scattering and extinction cross
sections are approximately equal. Hence, the absorption
in the water clouds may be ignored, so that in those
spectral regions water clouds may be considered as
non-absorptive medium.

Figs. 5 and 6 show the phase functions for C4 and C8
respectively, for three different wavelengths, For a fixed
cloud model, the rainbow, the glory, and the forward
diffraction peak due to single scattering become less
pronounced for longer incident wavelengths. Moreover,
the features for C8 are more pronounced than those of
C4. These features can be examined in terms of the non-
dimensional parameter, the ratio of the circumference
of a drop to the incident wavelength.
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T16. 7. The left-hand side represents a three-dimensional outgoing pulse which is divided into four sub-pulses in the hori-
zontal plane for simplicity of illustration. The number of sub-pulses is denoted as 7, while the black dots along the z direction
inside the cloud represent the number of pulses 7. The right-hand side is a two-dimensional diagram for the secondary back-
scattering. The transmitter and receiver cone are assumed to be the same in this figure. The line 00’ is the vertical direction
in the ;7 coordinate system (i.e., z;7). The lower central figure represents the coordinate system of the receiver. All symbols

are explained in the text.

3. Physical system

In a collimated pulsed light system, the transmitter
and receiver are coaxial. The transmitter sends out a
linearly polarized pulse of energy for a period on the
order of nanoseconds. One measures, in general, all
orders of backscattering at a given instant of time in
addition to the primary backscattering. In order for the
primary and secondary backscattered radiation to reach
the receiver at a given instant in time, there must exist
a geometric relationship between Ry, R;, and R, (as in-
dicated in Fig. 7) such that

)

Le.,

R1+R2 = ZR()'—Z,

where R is the distance at which the scattering occurs
for the primary backscattering. For the secondary back-
scattering, z(x,y) is the height at which the first scatter-
ing occurs at the point (x,y) in the horizontal plane, R,
the distance from the first scattering to the second
scattering, R, the distance from the second scattering to
the receiver, and ¢ the velocity of light.

Schotland et al. (1965) have indicated that (4) essen-
tially corresponds to a trace of ellipses with two foci at
points 0 and z. Referring to Fig. 7 we divide the pulse
into several sub-pulses, the base of the pulse passing
through the “fixed positions” z, P at times ¢, and f,
respectively, and returning to the receiver at time .
Meanwhile, some of the light will have been scattered
from the top of the pulse, as it passes the fixed positions
at times (h1—AR/c), (fa—Ak/c). In order for all the
secondary backscattered light of a sub-pulse to return
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to the receiver at a given instant of time, the following
condition must be satisfied:

1 AR
~(Ry —Ryta)=—y )
c c

where Ry and ¢ are quantities which can be calculated
in terms of the variables y, 2, Ry and R; by means of
geometrical relationships, together with (4) and (5).
For given Ry, %, ¥, and 2,(R1+R,) is constant with re-
speet to the base of the pulse, On the other hand,
(Rita+R."y= (Ri+Ro-+Ak) is constant with respect
to the top of the pulse. Hence, they correspond to two
confocal ellipses with foci at 0 and z. The separation of
the confocal ellipses is approximately A%/2. If we define
0" as the center of the ellipse, then the corresponding
volume for secondary backscattered radiation which
will return to the receiver at the same time as the pri-
mary backscattering is a shell bounded by these two
confocal cllipsoids with a complete revolution with re-
spect Lo the 00 axis.

Let us refer to Fig. 7. For the inner ellipse, the major
axis @1 and minor axis by are

b4
a1=Ro—~
2

’ ©)
bi=[a®*—(/2)* ]t

while the corresponding axes for the outer ellipse are

Ak z
a2=(zeo+——)—-
2 2t )

by=[as?— (z/2)]t

The two ellipses with respect to the coordinate axes
with origin at O can be represented as

E=1.2. (8)

[)k ar

To obtain the volume corresponding to secondary
backscattering in the pulsed light system, we first eval-
uate the area between the two ellipses. A small receiver
beam width 2¥,, is assumed so that the maximum
receiver half-becam width ¥g for cach pre-divided sub-
pulse may be cvaluated from the geometry. Let
(Y1m,21m) and (Yam,22m) represent the values for the
points (y4,21) and (ys,35), respectively, on the edge of
the receiver cone, wherc the secondary backscattering
is limited. Then we have the relationships

Vem~=V¥szrm, k=1, 2. (9)

We substitute (9) into (8) to determine the values of

Vim and Yon. The area bounded by two confocal ellipses
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may be obtained by integrating the following boundaries
in the ¥, Z coordinate system:

y1=0 h
Yu= (y1m+y2m)/2

2 v
zl=——|—al(1 ——> rs
2 by

2 Y2\ #
zu=—+az(1——->
2 by/ )

where the values (v3,2;) and (yu,2.) represent the lower
and the upper limits in the y and z directions, respec-
tively. It is seen that the integration over the shell has
variable boundaries in the z direction. Since the infini-
tesimal volume bounded by the two confocal ellipsoids
can be denoted as dV =yd¢dyds, where ¢ is the azimuth
angle, we can then integrate over a complete revolution
in ¢. The volume formed by the two confocal ellipsoids
may therefore be evaluated. It should be noted that the
scattering distances R;, R, and scattering angles 61, 6-
can be evaluated in terms of the values of y and 2z by the
geometry indicated in Fig. 7.

(10)

4, Formulation

To formulate the total secondary backscattered flux
density, we divide the outgoing pulse into several sub-
pulses from geometry. The volumes of the pre-divided
sub-pulses are denoted as Aw;;, and the coordinate sys-
tem for each ¢ sub-pulse is named 5 coordinate, where
1 represents the number of sub-pulses in the vertical
direction and j the number in the horizontal plane. The
flux density due to the first-order scattering at the ¢
position for an element volume of sub-pulse Av,;; may
be evaluated as

Bs
—-—2P(91) L(¢) F© exp(~r)d(Avy;)

Apij 4Nl

Fo=3%"

1
%Z A‘ZJV,']‘.B,,E‘;P(Ol)L(dn)F(O) CXp(—Tl), (11)
H 1

where
(F,®
F,®
FO= | 7oy |
40
(P2(6) 0] 0 0
Lo me o 0
PO=1 0 "0 pr@ -PO|
L o 0 P P
cos’¢p sin’ep 3sin2¢ O
_ | sin’¢ cos’d —31sin2¢ O
Lg)= —sin2¢ sin2¢ cos2¢  O}°
0 0 0 1
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In the above F© is the outgoing flux matrix at the point
of first scatter; P(6) represents the four by four phase
matrix for a volume of spherically symmetrical scat-
terers, where each phase element was defined in Section
2; L(¢) is the coordinate transformation defined by
Chandrasekhar (1960, p. 35) for a complete set of
Stokes’ parameters. The remaining parameters are the
azimuth angle ¢ and the nondimensional optical thick-
ness 7; for the path R;.

Let V;; be the volume formed by the revolution of the
two elliptic traces with respect to the ij coordinate sys-
tem. The mean flux density due to the secondary radia-
tion returned to the collecting aperture at the same in-
stant of time as the primary backscattering can be
expressed as

Bs
F@):Z/ —P(0:) FO© exp(~ry,)dV, (12)
iJ vy R?

where 73, is the optical thickness for the backscattering
path Rs, inside the cloud. It can be evaluated by using
the simple sine law. For a co-axial transmitter and re-
ceiver system, the secondary backscatter is in the same
scattering plane as the first scattering, so that the rota-
tion of coordinates is not necessary. The summation
over ¢ in (11) sums all the possible pulses which can
contribute secondary scattering along the vertical direc-
tion, while summation over j in (12) sums over each
sub-pulse element in each 7 position. Thus, by substitut-
ing (11) into (12), we have

FO=T T angl [ —P@IP0)L) P

vi; ;K1°Ry
Xexp[—(r1it+720) V. (13)

Since dV =yd¢idydz, and the initial outgoing radia-
tion is assumed to be independent of the azimuth angle,
as a result of integration over a complete revolution, the
cos’p; and sin’p; terms will equal 7, while the sin 2¢; and
cos 2¢; components appearing in the coordinate trans-
formation will vanish. Thus,

Yu 2y 1
F(2) =Z z ‘R'A?),jjﬁszf /
i w Ja Ri*R,?

Py(02) Po(01)[Fi\ O+ F, @]
P1(82)P1(61)[FiV +F, @]
—2[P3(02) P4(01)+P1(82) P3(61) JV ©
2[P3(02)P3(61) —P4(0:) P4(61) JV @
Xexp[ — (114 72p) Jydzdy,

(14)

where (y1,21) and (y.,2.) represent the values for each
ij sub-pulse, and the sub-index ij is neglected for
simplicity.
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For a vertically polarized outgoing radiation F,©
=V®=0, and we may let F,®=F;©, Furthermore,
in order for the results to be useful in the remote radar
problems, we would like to express (14) in the form of
a power transfer function. By integrating the Poynting
vector over the perpendicular aperture, we found

Pp® P;©
T® = =4, 3 7|-< > exp(—70)AkB,2
Pr i T
P2(02)P2(91)
Yu  pru 1 P1<02>P1(01)
“J, /
ul zy R12R22 ()
0

(15)

It should be noted that P;®=F;®A,g:; A; and
g:; being the cross-section area and the weighting func-
tion of the transmitted power for each i sub-pulse. The
weighting function is assumed to have Gaussian distri-
bution. T® represents the power transfer function for
the secondary backscattered radiation. The double sum-
mation sums over all possible energy which is scattered
by each ij sub-pulse for an outgoing beam, each sub-
pulse being considered as a point source. The factor = is
due to the integration over a complete revolution. Other
symbols in (13) are as follows: P;;® /Py represents the
portion of the power without attenuation in each sub-
pulse; exp(—ro) is the attenuation factor up to position
i;and Ak is the vertical length of the pulse in which the
top of the pulse and the base of the pulse will be scat-
tered twice and returned back to the receiver simul-
taneously. The square of the volume scattering cross
section (B) demonstrates that the scattering events
have occurred twice. Finally, 1/R and 1/Rs? represent
the solid angle of a unit area which receives the first
scattering and secondary backscattering, respectively.

The phase matrix in (15) represents two components
of linear polarization, namely, perpendicular and paral-
lel to the scattering plane. It can be shown that those
two components may be considered as approximately
in the x and y directions for a small beam width as a

Xexp[ ~ (r1472,) Jydzdy.

- result of mapping the scattered Poynting vector on the

receiver coordinate. It is seen that for a linearly po-
larized beam in a preferred plane the depolarization
from secondary backscattering will be due to those two
components which essentially arise from the coordinate
transformation.

The depolarization ratio for the secondary backscat-
tered radiation, assuming a vertically polarized outgoing
beam, may be défined as

P,®

A@D=—""
P,O4p.@

(16)
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where P,® is the power received due to primary back-
scattering which retains the polarization of the incident
energy (it can be calculated from the radar equation
presented elsewhere), while P,® and P,® are the
power received on the vertical and horizontal apertures
caused by the secondary backscattering, respectively.
The vertical aperture transmits the incident beam.

Similarly, the depolarization ratio for a horizontally
polarized outgoing beam is defined as

2)
Ah(g) =" _]):c

P,04p,@

(n

5. Discussion of results

In the numerical computations, we have assumed
that 809, of the total energy is contained within the
transmitted beam width. The effect of side lobes is
neglected. Morcover, a vertically polarized outgoing
beam is assumed in the calculations.

For a beam width on the order of 10-2-10° rad, the
computation shows that the predominant mode of
double scattering in this model consists of forward scat-
tering coupled with backward scattering. This is ex-
pected because the scattering from clouds due to wave-
lengths in the visible and near visible is strongly aniso-
tropic with a sharp forward diffraction peak of the phase
function at least three or four orders of magnitude
larger than the value of the phase function at any other
angle.

The phase function near 180° is very sensitive to
depolarization. Therefore, for the purpose of this prob-
lem, detailed information on the phase function in the
forward and backward dircctions is required. The sec-

10
(2) e T T s s — (8
Ay T
Tt g
. —— 3472
10%~— 6943
- »®
———- 106
1000m
1078 RAD.
L_. ! | | j
[ 1] 30 45 60 7

L {m}

F16. 8. The resulting value of the second-order depolarization
ratio as a function of distance L (in meters) abeve the cloud base
II for three different wavelengths: 0.3472, 0.6943 and 1.06 . The
upper and lower curves are for cloud models with mode radii at
8 and 4 g, respectively. The beam width is 1072 rad, the cloud
height 1000 m, and the number density 100 cm™3,
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F16. 9. The second-order power transfer functions 7% for two
cloud models with mode radii at 4 and 8 u. The solid and dotted
lines represent the vertical and horizontal components of second-
order power transfer functions, respectively. The particle number
density is 100 cm™.

ondary scattering calculation indicates that the pre-
dominant scattering is from 0-2°, and scattering back
with an angle of 178-180° (the elevation angle is so
small that it may be taken to be zero). The effect of
the secondary scattering computations for other angles
is found to be at least one order of magnitude smaller
than those of the two regions indicated above,

For convenience in discussing the wavelength depen-
dence of secondary backscattered radiation, we assume
a cloud height of 1000 m, a beam width of 102 rad, and
a particle number density of 100 cm~®. No significant
differences in the values of 77® and A,® are found in
the calculations for the three wavelengths 0.3472 u,
0.6943 1 and 1.06 u in both cloud models. This is because
the phase functions and scattering cross sections are
similar in the visible and near visible wavelengths for a
given cloud model. For the values assumed above, 1-39
of depolarization is found for C4, while 2-497, is seen
for that of C8. These arc shown in Fig. 8. The depolar-
ization curves seem to approach a limiting value be-
cause the return of the primary and secondary scattered
energy are both dominated by the exponential attenua-
tion. It should be noted from Figs. 8-14 that the hori-
zontal scale is the distance L (in meters) above the
cloud base H. The return time will be 2(H+L)/c, ¢
being the velocity of light.

From the above, it is known that the second-order
transfer function and the depolarization ratio are essen-
tially independent of the wavelength in the visible and
near visible. Therefore, for simplicity, we choose ruby
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F16. 10. The ratio of the second- to first-order power transfer functions (dotted lines) and depolarization ratios (solid lines) for two
cloud models, C4 (left) and C8 (right), illuminated by 0.6943 x radiation for different cloud heights. The receiver beam width and

particle number density are 1072 rad and 100 cm™3, respectively.

laser light at 0.6943 u wavelength to perform other
physical calculations.

The power received on the collecting aperture de-
pends upon the scattering distances R; and R,. Thus,
we would expect that the second-order transfer function
varies with the cloud height, which actually is the dis-
tance between the receiver and the edge of the target.
Fig. 9 shows the comparison of the returned power for
two cloud models. Assuming a beam width 10~2? rad, and
cloud model C4, it is found that the maximum return
power occurs approximately at a distance 18 m above
the cloud height L, which corresponds to an optical
thickness of 0.3. The return power then decreases with
increasing L, since the attenuation term begins to
dominate the return. For cloud model C8, the maximum
return power appears approximately at L=6 m, which
corresponds to an optical thickness of 0.4. The return
energy decreases very rapidly as a result of attenuation,
due to the presence of larger particles, where the same
particle number density as C4 is assumed. Thus, the
incident beam cannot penetrate cloud C8 very far.

The depolarization ratio for different cloud heights is
computed for C4 and C8, and is shown in Fig. 10. We
find that the change of depolarization with cloud height
is quite small, the difference for cloud heights of 100
and 1000 m being only ~0.5%. Since the primary and
secondary backscattering both depend upon cloud
height, the effect of cloud height on depolarization and

on the ratio of the second-order transfer function to the
first-order transfer function seems to cancel out, How-
ever, because the volume involved for higher clouds is
larger for the same width beam than for lower clouds,
more multiple scattering would be expected. It appears
likely that the depolarization curves for C8 are similar
to step functions. From this theoretical calculation, we
should expect more depolarization from clouds con-
taining larger drops, if the same particle number density
is assumed.

For a given height, the volume contained in a cloud
will depend on the receiver beam width. If the beam
width is wider, more backscattered energy due to mul-
tiple scattering would be expected. It should be noted
here that the primary backscattering does not depend
upon the geometric cross-sectional area. If the cloud
height is 1000 m, as shown in the upper part of Fig. 11,
the return power is very sensitive to the beam width for
C4 and less sensitive for C8. The distance L for maxi-
mum energy return increases with increasing beam
width. Beam widths of 10~%, 5X 1073, 102 and 102 rad
are employed in the calculations. As for depolarizations
shown in the lower part of Fig. 11, in cloud C4 a differ-
ence of 29, is found between beam widths of 1072 and
102 rad, and a 19, difference between 10~ and 10~* rad.
The depolarization is larger for C8 than for C4, with
values of 0.89, for 10~*rad, 3.59 for 10~2rad, and 2-39,
for 10~ rad. It is seen that about 49}, difference occurs
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for beam widths varying from 1072-10~* rad for a large
particle size distribution such as occurs in stratiform
clouds.

Thus, for a beam width on the order of 107 rad, the
depolarization ratio is less than 19 in this calculation,
and it may be neglected compared to, say, a 309, de-
polarization caused by backscattering from ice crystals
(Schotland, 1969, unpublished laboratory results).

As shown by (2), two parameters contribute to the
volume scattering cross sections 8;, namely, the mean
scattering cross section and the particle number den-
sity. For homogeneously distributed cloud drops,
Bs=a,N. Thus, N plays a role equally as important as
that of ¢,. Physically, increasing 8, corresponds to either
increasing the particle mean radius or the particle num-
ber density in the cloud. Since &, is determined by the
cloud models, and since no significant difference in the
phase functions for two size distributions is found, the
values of the secondary backscattering anddepolariza-
tion are mainly dependent on the values of the scatter-
ing cross section. In the previous calculations, the par-
ticle number density is assumed to be 100 cm™*,

To get some idea of the effect of the particle number
density on the calculations, we assume a cloud height of
1000 m and a beam width of 1072 rad. It is found that
the return power is very sensitive to the droplet number
density. For larger IV, it increases very rapidly to the
peak power and then decreases very rapidly as a func-
tion of time (Fig. 12). The depolarization ratio for val-
ues of 100, 500 and 1000 cm™ has been computed for
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C4 and C8 as shown in Fig. 13. The depolarization ratio
increases with increasing particle number density for
both size distributions. A difference of about 29, is cal-
culated for a change in NV from 500 to 100 cm™ for C4,
while less than 19 is seen for C8. No significant change
of depolarization is found for drops of number density
500 and 1000 cm™3. The reason is that the attenuation is
so strong that the depolarization approaches a limiting
value. About 49, depolarization is found for number
densities of 500 and 1000 cm™ in two cloud models.

As mentioned before, the volume scattering cross sec-
tion is the product of the mean scattering cross section
and the drop number density, so that the relationship of
the two parameters is linear. Thus, since &, for C8 is
about four times larger than that for C4 for wavelengths
in the visible and near visible, we should expect the same
values of the second-order transfer function and de-
polarization for C8 containing 100 particles cm™ as for
C4 containing 400 particles cm™2. This argument was
verified by our calculations.

The pulse length used in the above calculations is
3 m, which corresponds to a pulse duration of 10 nsec.
The outgoing energy depends upon the pulse duration.
According to the equations for the power transfer func-
tion, the backscattered flux densities received on the
collecting aperture also depend on the pulse duration.
Fig. 14 shows the second-order transfer function for
two different pulse lengths of 3 and 1.5 m with other
parameters constant. Since we can physically interpret
a pulse length of 1.5 m as a 3 m pulse divided into two
equal sub-pulses in the vertical direction, the received
power from a pulse length of 3 m is the same as the sum
of the received power from two pulse lengths of 1.5 m.
However, the depolarization ratio does not depend upon
the pulse length, because the value of the pulse length
is cancelled out between the primary and secondary
backscattering.

6. Conclusions

We have developed a method based on the geometry
of a pulsed lidar system in which the total flux density
of the secondary backscattered radiation for a polarized
laser source is formulated from the radiative transfer
relationships including the complete Stokes parameters
for two orders of scattering. The power incident on the
receiver can be computed by integrating over the per-
pendicular area of the collecting aperture. The depolar-
ization ratio of the secondary backscattering from a
volume of symmetrical and uniformly distributed water
drops may therefore be defined.

It is shown in the separate paper by Liou (1971) that
the value of the returned power from orders of scattering
higher than the second is negligibly small compared to
the secondary backscattering in the pulsed light system.
Thus, the second-order power transfer function and
depolarization may be used to “estimate” the total
value of power transfer functions and depolarization due
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T16. 13. The ratio of second- to first-order power transfer functions (dotted lines) and depolarization ratios (solid lines) of two
cloud models, C4 (left) and C8 (right), for different particle number densities of 100, 500 and 1000 cm3,

to multiple backscattering from a linearly polarized
laser source.

Variations in the returned power and depolarization
arc ncgligible for wavelengths in the visible and near
visible from water clouds, This is verified by three
typical laser wavelengths: 0.3472, 0.6943 and 1.06 p.
The return signals depend on the cloud height, and vary
strongly with the clouds. A typical value of the returned
power from the basc of a cloud of 1000 m is about 90 db
for the cloud model with mode radius at 4 u, while that
for a cloud model with mode radius at 8 u is about 83
db. The returned power from the cloud base of 100 m
is about 70 db for a cloud model with mode radius at
4 u. Depolarization is not sensitive to the values of the
cloud height. The drop number density within the cloud
has a strong effect on the return signal. The depolariza-
tion ratio for different cloud particle densities is found
to have maximum differences near the lower edge of the
target. The depolarization and returned power are much
larger for the cloud model with mode radius at 8 x than
for the model with mode radius at 4 . Since the return
signal and depolarization strongly depend upon the
beam width of the receiver, a beam width on the order
of 10~ rad is recommended in measuring the de-
polarization caused by multiple scattering. In this way,
the difference between ice and water clouds may be
distinguished by using the optical laser technique with
backscattering.

According to the observations, the cloud contains well
separated particles; that is, the average separation of
the particles is much larger than the particle diameter,
and the particles are not uniformly distributed. Thus,
for incident wavelengths in the visible and near visible,

|0-l|
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F16. 14. Second-order power transfer function for two
different pulse lengths of 1.5 and 3 m.
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the assumption of independent scattering seems to be
quite valid. However, the equation of radiative transfer
does not include the effects of the particle motion which
play an important role in the droplet growth process.
Moreover, while cloud droplets are not homogeneously
distributed in space, we have assumed a homogeneous
cloud in our calculations in trying to take a first step in
understanding the composition and structure of clouds.
Therefore, it is possible to extend this work to study
the effect on the depolarization of inhomogeneities in
the cloud, and of particle motion within the cloud.

Finally, we believe that the calculations for the re-
turned power from water clouds and the depolarization
due to multiple scattering for a collimated pulsed lidar
system are a fundamental study in this field. It is
recommended that a measurement of multiple back-
scattering be made in the backscattered return from
ground level or airborne laser radar, or possibly from
satellites. From the depolarization or polarization mea-
surements, more information on the composition and
structure of the clouds should be obtained. The optical
properties of the clouds may therefore be determined
more accurately and more rigorously.

Similar types of calculations may be performed for
ice clouds, although more parameters in the phase
matrix will be involved due to non-sphericity of the
particles. Furthermore, studies should be made of the
effects of the shape and the index of refraction of ice
crystals.
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