On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models

K. N. Liou, Y. Gu, Q. Yue, and G. McFarquhar

Received 19 March 2008; revised 15 May 2008; accepted 2 June 2008; published 4 July 2008.

[1] We performed correlation analysis involving ice water content (IWC) and mean effective ice crystal size (De) intended for application to climate models. For this purpose, ice crystal size distributions obtained from in situ measurements conducted from numerous field campaigns in the tropics, midlatitude, and Arctic regions were used and we show that IWC and De are well-correlated in this regional division. Including temperature classification in midlatitude cases increases this correlation. We applied the correlation results to cloud radiative forcing calculations in terms of IWC, in which De is expressed as a baseline mean and deviation from uncertainty in small ice crystal measurements. The latter deviates from the mean by less than 2 W/m² in net radiative forcing. Using the correlation results, simulations from the UCLA GCM showed substantial regional deviations in OLR and precipitation patterns from assuming a constant De. Citation: Liou, K. N., Y. Gu, Q. Yue, and G. McFarquhar (2008), On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models, Geophys. Res. Lett., 35, L13805, doi:10.1029/2008GL033918.

1. Introduction

[2] In recent years, development in cloud modeling has included prognostic equations for the prediction of IWC for high-level clouds formed in GCMs and climate models. This is a milestone accomplishment from the standpoint of incorporating a physically-based cloud microphysics scheme in these models, and at the same time, it is also essential from the perspective of studying cloud-radiation interactions. However, cloud particle size is also an independent parameter that affects radiation transfer. For example, for a given IWC in clouds, smaller particles would reflect more sunlight than larger counterparts, an effect that has been recognized by Twomey et al. [1984] and Liou and Ou [1989] in conjunction with aerosol-cloud indirect effects. Ice crystal size and shape in the Earth’s atmosphere are complex and intricate. After initial homogeneous and/or heterogeneous nucleation involving suitable aerosol particles and atmospheric conditions, ice crystal growth is governed by diffusion processes and subsequent actions by means of collision and coalescence. These physical processes are complicated by the nature of the ice crystal’s hexagonal and irregular shape. Incorporating a fully interactive ice microphysics based on the first principle in a GCM appears to be a challenging but an extremely difficult computational task. Innovative De parameterization based on theory and observation must be developed for GCM applications.

[3] It has been a common practice to prescribe a mean effective ice crystal size in GCMs [see, e.g., Gu et al., 2003]. A number of GCMs has also used temperature to determine De [Kristjánsson et al., 2005; Gu and Liou, 2006]. This approach is rooted in earlier ice microphysics observations from aircraft, and attests to the fact that small and large ice crystals are related to cold and warm temperatures in cirrus cloud layers. Ou and Liou [1995] developed a parameterization equation relating cirrus temperature to a mean effective ice crystal size based on a large number of midlatitude cirrus microphysics data presented by Heymsfield and Platt [1984]. Ou et al. [1995] reduced large standard deviations in the size-temperature parameterization by incorporating a dimensional analysis between IWC and De. Using CEPEX data, McFarquhar et al. [2003] developed a De parameterization as a function of IWC for use in a single column model.

[4] This short paper illustrates that De has a high correlation with IWC based on theoretical consideration and regional observational data analysis, and that this correlation can be effectively parameterized for use in a GCM setting for interactive cloud-radiation analysis. We report on an analysis of substantial ice microphysics datasets available from a number of field campaigns and determine the statistical correlation between De and IWC, followed by a discussion on application of the De-IWC correlation to an offline radiative transfer calculation and a GCM simulation.

2. Analysis of Ice Microphysics Data

[5] In the correlation analysis, we divided available datasets in accordance with three geographical areas (tropics, midlatitude, and Arctic) because of their distinct ice cloud formation processes. A significant fraction of tropical cirrus are generated from towering cumulus convection, but the majority of midlatitude cirrus clouds are primarily related to large-scale frontal and synoptic systems and mesoscale topographical forcings. In Arctic regions, the formation of ice clouds appears to be directly related to cold temperature, large-scale transport of sensible and latent heat, and boundary layer turbulence. We should first introduce ice water content defined by

\[
IWC = \int V(L)\rho n(L)dL.
\]
where \(n(L) \), the ice crystal size distribution, is unknown in current GCMs; \(V(L) \) is the volume of an individual ice crystal that accounts for shape factor; \(\rho_i \) is the density of ice; and \(L \) is the ice crystal maximum dimension. We may define a mean effective ice crystal size in the form

\[
De = \frac{\int V(L)n(L)dL}{\int A(L)n(L)dL} = \frac{IWC}{\rho_i A_c},
\]

where \(A(L) \) is the cross-sectional area for an individual ice crystal and \(A_c \) represents the total projected area for a given ice crystal size and habit distribution. Heymsfield and McFarquhar [1996] found that \(A_c \sim \text{IWC}^2 \) where \(a \) and \(b \) are empirical coefficients. The \(A_c-IWC \) relation further illustrates a direct correlation between \(De \) and \(IWC \). Larger (smaller) IWCS imply larger (smaller) \(De \), which is in line with the ice crystal growth by means of diffusion and accretion. The definition of this mean effective size effectively accounts for ice crystal size and shape distributions in light scattering calculations [Fu and Liou, 1993; Yang et al., 2000]. However, their relationship is not unique but is constrained by \(A_c \). We followed the procedures developed by Yue et al. [2007] and Yang et al. [2000, 2005] for \(IWC, De, \) and \(A_c \) calculations required in correlation development.

Uncertainty in the measurement of small ice crystals <100 \(\mu \)m from aircraft platforms has been an important issue in scientific discussion. Shattering of millimeter-sized \(<100 \text{m} \) in independent small ice crystal measurements, we have conducted three Boudala et al. [2005] found that \(n_{\text{sm}} \) by one order of magnitude; and (3) reducing \(N_{\text{sm}} \) by two orders of magnitude. Experiment 2 was used as the base run, while the other two give a possible range of parameterized \(De \) due to uncertainties in small ice crystal measurements.

For tropical cases, a total of 40469 in situ measurements of ice crystal size distribution (SD) were available for analysis including 5460 from CRYSTALFACE, and 35009 from CEPEX. The former data were collected by CAPS on board NASA’s WB57 on nine different dates in July 2002. CPEX data included measurements from a 2-DC probe for ice crystals larger than about 100 \(\mu \)m and a parameterization for \(N_{\text{sm}} \) based on VIPS measurements [McFarquhar and Heymsfield, 1997] in March and April, 1993. These instruments were on board Aeromet Learjet. Both the original CEPEX and PARTICLEFACE datasets were composed of ice crystal measurements averaged in 30 s intervals. Due to the low sampling rate of CRYSTALFACE data, SDs from this experiment were averaged over 5 min. We selected datasets having more than 5-channel size measurements to ensure proper size average. As a result, only 261 CRYSTALFACE and 11032 CEPEX cases were used in the correlation study. From the analysis of CEPEX data, about 34 and 66% of ice crystals are solid columns and bullet rosettes/aggregates, respectively. The effect of ice crystal habit on \(De \) parameterization is an intricate subject requiring further in-depth study.

Figure 1a displays 11293 data points in a 2D logarithmic domain. The \(IWC \) values span from \(10^{-8} \) to \(\sim 1 \text{ g/m}^3 \), while \(De \) ranges from \(\sim 20-200 \mu \)m. We used the \(\chi^2 \) best fit to these observed data to obtain the best parameterization equation in polynomial as follows:

\[
\ln(De) = a + b \ln(IWC) + c(\ln(IWC))^2,
\]

where \(a = 5.4199 \), \(b = 0.35221 \), and \(c = 0.012680 \). Uncertainty in \(N_{\text{sm}} \) can result in deviations from the base run from 5% to 40%, as \(IWC \) decreases, much larger than the standard deviation from statistical uncertainty. We also attempted to correlate \(De \) and in situ temperature measurements \((\sim 70-20^\circ C) \), but the 2D data points are extremely scattered without a consistent pattern. In this case, temperature is not a suitable variable for \(De \) determination, probably due to the predominant convective nature of cloud systems in the tropics such that vertical velocity is a more important parameter in regulating \(De \).

(b) A total of 4033 in situ size distribution measurements were obtained for midlatitude cases taken at the ARM SGp site. Ice crystals larger than 100 \(\mu \)m were measured by 2D-C probe on board the UND Citation. SD was extrapolated to 2 \(\mu \)m using the parameterization developed by Ivanova et al. [2001] using FSSP measurements obtained in an ARM experiment. Aircraft datasets were composed of measurements averaged at 5 s intervals. Only the SDs that had measurements greater than 5-size channels were selected, resulting in only 3919 cases. \(IWC \) ranges from \(\sim 10^{-4} - 10^{-1} \text{ g/m}^3 \), while \(De \) has values from \(\sim 30-140 \mu \)m. Although habit information from ARM data sources was not available, previous studies revealed that for midlatitude cirrus clouds, ice crystal shape spans from bullet rosettes and aggregates (60%) to hollow columns (20%) to plates (20%) for \(L > 70 \mu \)m. For \(L < 70 \mu \)m, shapes are 50% bullet rosettes, 25% plates, and 25% hollow columns [Baum et al., 2000].

Correlations between \(De \) and \(IWC \) are improved by dividing the temperature in two groups, \(-40 - -20^\circ C \) (warm cirrus) and \(-65 - -40^\circ C \) (cold cirrus), as shown in Figure 1b. For warm cirrus, the correlation coefficients for parameterization are: \(a = 5.2375 \), \(b = 0.13142 \) and \(c = 0 \). For cold cirrus, we have \(a = 4.3257 \), \(b = 0.26535 \), and \(c = 0.021864 \). \(De \) for warm cirrus is generally larger than that for cold cirrus, and the range of \(De \) and \(IWC \) for midlatitude cirrus is narrower than that for the tropical counterpart.

In the Arctic region, our analysis is based on the in situ data collected during the DOE’s ARM MPACE experiment at the ARM’s North Slope of Alaska site in Fall 2004. Ice clouds were observed on only two days, October 17 and 18, consisting of a total of 1705 cases. But after data quality check, only 468 cases were used. These cases were largely from the UND Citation 2D-C measurements and the data points were averaged over 30 s to ensure adequate statistical sampling. For ice particles <100 \(\mu \)m, a Gamma distribution was used to extrapolate SDs to 2 \(\mu \)m based on the empirical coefficients derived by Boudala et al. [2002]. In terms of habit, Korolev and Isaac [1999] gave the percentage of pristine and irregular habits in different
temperature bins for high latitude ice clouds. Because temperatures were much lower during MPACE observations, ice clouds are assumed to contain relatively more pristine particles (≈20%) with the ratio of columns to plates of 100:20, as suggested by Korolev and Isaac, resulting in 3.3% plates and 16.7% columns. The remaining irregular ice particles include 40% bullet rosettes and 40% aggregates. The correlation coefficients for parameterization are: $a = 4.8510$, $b = 0.33159$ and $c = 0.026189$.

IWC and De in Arctic ice clouds range from $10^{-2} – 1$ g/m3 and from 50–120 μm, respectively. N$_{sm}$ sensitivity experiments show that small particles contribute 5–20% as IWC increases, smaller than tropical and midlatitude cases. Arctic ice cloud IWC and De have narrower ranges than those in the other two regions. We were unable to find an obvious correlation between De and temperature, which ranges from -57 – $-17^\circ C$ for this dataset, possibly due to less stratification of the polar temperature profile.

3. Application to Radiation Calculations and General Circulation Models

Broadband radiation flux calculations follow the approach developed by Fu and Liou [1992, 1993] and improved by Gu et al. [2003] for GCM applications. The solar and thermal IR spectra were divided into six and 12 bands, respectively, while the correlated k-distribution approach was used to sort the absorption lines for each band and overlap. In addition to the principal absorbing gases listed by Fu and Liou [1993] and Gu et al. [2003], we recently included absorption by water vapor continuum and a number of minor absorbers in the solar spectrum, including CH$_4$, N$_2$O, NO$_2$, O$_3$, CO, SO$_2$, O$_2$-O$_2$, and N$_2$O$_2$. This led to an additional absorption of solar flux in a clear atmosphere on the order of 1–3 W/m2 depending on the solar zenith angle and the amount of water vapor employed in the calculations.

Input to the preceding radiative transfer program includes the optical depth τ, the single-scattering albedo ω_0, and the polynomial coefficients ω_i for phase function expansion in the context of the delta-four-stream approximation given by

$$\tau = IWP(a_0 + a_1/De + a_2/De^2),$$

$$1 - \omega_0 = b_0 + b_1De + b_2De^2,$$

$$\omega_i = c_{i0} + c_{i1}De + c_{i2}De^2, i = 1 – 4,$$

where IWP (ice water path) is the product of IWC and cloud thickness. The asymmetry factor $g = \omega_1/3$ and a_n, b_n, and c_{ni} ($n = 0–2$) are fitting coefficients determined from the basic scattering and absorption database provided by Yang et al. [2000] for solar spectrum and Yang et al. [2005] for thermal IR spectrum. For solar bands, the first-order polynomial expansion is sufficient to achieve 0.1% accuracy. However,
for thermal IR bands, the second-order polynomial fitting is required to achieve this level of accuracy.

Figure 2 illustrates solar albedo and net radiative forcing as a function of \(IWP \) for cirrus in the tropics, midlatitude, and Arctic. The solid lines correspond to the base run \(IWC-De \) curves denoted in Figure 1, while the fluctuated dashed curves are results computed from random numbers selected within the \(De \) deviations. Also shown in the solar albedo plot are observations for comparison purposes.

We incorporated the \(IWC-De \) correlation that accounts for uncertainty in small ice crystal measurements in the UCLA GCM to investigate its usefulness and importance in climate simulations. Two numerical experiments were carried out. In the control run, \(De \) for ice clouds was fixed at 80 \(\mu m \). In the perturbation run, \(De \) is parameterized in terms of \(IWC \) in accordance with the correlation equations presented above. It is a function of the model predicted \(IWC \) at each time-step and interacts with cloud, radiation and dynamic processes in the model. \(De \) from parameterization are generally smaller in the tropics than in the midlatitude, ranging from 20 to 80 \(\mu m \). In the midlatitude, \(De \) ranges from 30 to 70 \(\mu m \) for colder temperature \((-65^\circ C < T < -40^\circ C)\), and 70 to > 100 \(\mu m \) for warmer cirrus. In the Arctic region, \(De \) is \(~ 50–70 \mu m\).

The geographical distributions of differences between OLR and precipitation are illustrated in Figure 3. Since smaller ice particles reflect greater solar radiation and trap more IR, differences in OLR closely follow variation in \(De \). Negative values are mostly located in lower latitudes and a portion of higher latitudes where the parameterized \(De \) are generally smaller than the prescribed value in the control run, resulting in more trapped IR fluxes. Increased OLRs are found in some midlatitude regions due to larger \(De \) than the prescribed 80 \(\mu m \). Differences between the two simulations are less significant in high latitudes since the parameterized \(De \) is closer to a fixed value of 80 \(\mu m \) in the Arctic region.
control run. Also, OLR increases more in the southern hemisphere associated with less cloudy areas simulated from the UCLA GCM. Changes in the precipitation pattern are not direct results of the D_e effect, but are related to intricate interactions among cloud, radiation, and dynamic processes through the modified vertical heating profiles associated with the interactive D_e used in the simulation. Increases in precipitation are mostly located in tropical regions where OLRs are reduced, an indication of stronger convective activities. Reduced precipitation is found in areas corresponding to enhanced OLRs in subtropical and midlatitude regions. This brief illustration suffices to demonstrate the importance of using correct ice Des in GCM simulations.

4. Concluding Remarks

[17] Correlation analysis between IWC and D_e has been carried out using a large set of observed ice crystal size distributions obtained from a number of cirrus field campaigns in the tropics, midlatitude, and Arctic. From fundamental microphysics analysis, IWC and D_e are directly related through their physical definitions. We showed that IWC and D_e are well-correlated using this regional division.

Figure 3. July mean differences in the OLR (w/m^2) and precipitation (mm/day) patterns between UCLA GCM simulations based on Des determined from the IWC-D_e correlations for the three regions and the control run using a fixed ice crystal size.
and found that correlations between D_e and temperature for tropical cirrus and Arctic ice clouds are relatively insignificant. Including temperature classification in midlatitude cases, however, increases IWC correlation. Tropical cirrus IWC spans a range, $10^{-6} - 1$ g/m3, with corresponding D_e values ranging from 20 to 200 µm. Midlatitude cirrus have ranges of $10^{-4} - 10^{-1}$ g/m3 for IWC and 30–140 µm for D_e, while Arctic ice clouds have the narrowest IWC ($10^{-2} - 1$ g/m3) with a D_e range of 50–120 µm.

[18] Using the IWC-D_e correlation for the three geographical regions, we performed calculations for cloud radiative forcing parameters as a function of IWP in which Des ($IWCs$) are given as mean and deviation of the correlation. Uncertainty in small ice crystal measurements in the correlation leads to deviations from the mean by less than 2 W/m2 in radiative forcing values, revealing D_e is an excellent parameter for radiation calculations. The largest solar radiative forcing occurs in the Arctic region, but with the lowest net radiative forcing from about a few to 25 W/m2. Using the correlation results, UCLA GCM simulations showed substantial regional deviations in OLR and precipitation patterns from assuming a constant D_e and IWC, two independent parameters physically connected through ice crystal size distribution, are basic units to drive radiation calculations. We used the observed ice crystal size distributions in representative geographic regions to constrain D_e through IWC without the necessity of incorporating intricate ice microphysics in GCMs. Finally, we argue that temperature is not an ideal parameter for D_e parameterization in climate models on the basis of theory and observation. However, it can be used to increase correlation parameterization for midlatitude cirrus clouds.

[19] Acknowledgments. This work has been supported by DOE grant DE-FG03-00ER62904 and NSF grant ATM-0331550. We thank D. Baumgardner and J. Mace for assistance in this research.

References

