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I. INTRODUCTION
v

Understanding the radiation budget of Earth and the atmosphere system, and
hence its climate, must begin with an understanding of the scattering and absorp-
tion properties of cloud particles. A large number of cloud particles are nonspher-
ical ice crystals. Basic scattering, absorption, and polarization data for the type of
nonspherical ice crystals that occur in cirrus clouds are required for reliable mod-
eling of their radiative properties for incorporation in climate models; for inter-
pretation of the observed bidirectional reflectances, fluxes, and heating rates from
the air, the ground, and space; and for development of remote-sensing techniques
to infer cloud optical depth, temperature, and ice crystal size. Moreover, because
of the limitation of our present knowledge and understanding, fundamental inves-
tigation of the light-scattering and polarization characteristics of nonspherical ice
crystals is also an important scientific subject in its own right.

Laboratory experiments reveal that the shape and size of an ice crystal are
governed by temperature and supersaturation, but it generally has a basic hexag-
onal structure. In the atmosphere, if the ice crystal growth involves collision and
coalescence, its shape can be extremely complex. Recent observations based on
aircraft optical probes and replicator techniques for midlatitude, tropical, and con-
trail cirrus show that these clouds are largely composed of bullet rosettes, solid
and hollow columns, plates, aggregates, and ice crystals with irregular surfaces
with sizes ranging from a few micrometers to 1000 pum. In addition to the non-
spherical shape problem, a large variation of size parameters at the solar and
thermal infrared wavelengths also presents a basic difficulty in light-scattering
calculations.

We wish to address the issue of the variability of size parameter for nonspher-
ical ice crystals in fundamental electromagnetic scattering and present a unified
theory for light scattering by ice crystals covering all sizes and shapes that can be
defined mathematically or numerically. Further, we shall illustrate the importance
of the basic scattering, absorption, and polarization data for ice crystals in climate
and remote-sensing research.

II. UNIFIED THEORY FOR LIGHT SCATTERING
BY ICE CRYSTALS

The scattering of light by spheres can be solved by the exact Lorenz—Mie the-
ory and computations can be performed for the size parameters that are practical
for atmospheric applications. However, an exact solution for the scattering of light
by nonspherical ice crystals covering all sizes and shapes that occur in Earth’s at-
mosphere does not exist in practical terms. It is unlikely that one specific method
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can be employed to resolve all the scattering problems associated with nonspheri-
calice crystals. In the following, we present a unified theory for lighgscattering by
ice crystals by means of a combination of geometric optics and finite difference
time domain methods.

A. GEOMETRIC RAY TRACING

The principles of geometric optics are the asymptotic approximations of the
fundamental electromagnetic theory, valid for light-scattering computations in-
volving a target whose dimension is much larger than the incident wavelength.
The geometric optics method has been employed to identify the optical phenom-
ena occurring in the atmosphere, such as halos, arcs, and rainbows. In addition,
it is the only practical approach for the solutions of light scattering by large non-
spherical particles at this point. In this section we shall review the conventional
and improved approaches, the methodology dealing with absorption in the context
of geometric ray tracing, and the numerical implementation by the Monte Carlo
method. As we have published a series of papers on this subject (Liou and Cole-
man, 1980; Liou, 1980, 1992; Cai and Liou, 1982; Takano and Liou, 1989a, b,
1995; Liou and Takano, 1994; Yang and Liou, 1995, 1996b, 1997, 1998a), only
the fundamentals and the associated equations will be presented here. References
of the relevant works can be found in these papers.

1. Conventional Approach

When the size of a scatterer is much larger than the incident wavelength, a light
beam can be thought of as consisting of a bundle of separate parallel rays that hit
the particle. Each ray will then undergo reflection and refraction and will pursue
its own path along a straight line outside and inside the scatterer with propagation
directions determined by the Snell law only at the surface. In the context of ge-
ometric optics, the total field is assumed to consist of the diffracted rays and the
reflected and refracted rays, as shown in Fig. 1a. The diffracted rays pass around
the scatterer. The rays impinging on the scatterer undergo local reflection and re-
fraction, referred to as Fresnelian interaction. The energy that is carried by the
diffracted and the Fresnelian rays is assumed to be the same as the energy that
is intercepted by the particle cross section projected along the incident direction.
The intensity of the far-field scattered light within the small scattering-angle in-
terval A® in the scattering direction ® can be computed from the summation
of the intensity contributed by each individual ray emerging in the direction be-
tween ® + A®/2 and ® — A® /2. Except in the method presented by Cai and
Liou (1982), all the conventional geometric ray-tracing techniques have not ac-
counted for phase interferences between relevant rays. It is usually assumed that
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Figure1 (a) Geometry of ray tracing involving a hexagon in three-dimensional space. Conventional
and improved methods are also indicated in the diagram. (b) Geometric ray tracing in a medium
with absorption. The planes of constant amplitude of the refracted wave are parallel to the interface,
whereas the direction of the phase propagation for the inhomogeneous wave inside the medium is
determined via Snell’s law.
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the interference is smoothed out when the particles are randomly oriented. In this
case the extinction efficiency (the ratio of the extinction cross section to the aver-
age projected area of the particle) of the scatterer is 2. On the basis Of Babinet’s
principle, diffraction by a scatterer may be regarded as that by an opening on an
opaque screen perpendicular to the incident light, which has the same geometric
shape as the projected cross section of the scatterer. The well-known Fraunhofer
diffraction formula can be employed to compute the diffraction component for
hexagonal ice particles.

In the geometric ray-tracing method, the directions of the rays are first deter-
mined. In reference to Fig. 1a, they can be defined by the following unit vectors:

e; = Xp — 2(Xp - Bp)Np, p=1,23,..., (1a)
etp - ;n—l;{xp — (Xp-np)n, — [m?) —1+xp '“p)z]l/znp}’
p=123..., (1b)
¢, p=1
xp = 1 €, p =2, (1)
e;,_l’ p =3,
where mp, = m for p = 1l and mp = 1/m for p > 1, with m being the

refractive index, and n, denote the unit vectors normal to the surface. When
m% < 1 — (xp - np)?, total reflection occurs and there will be no refracted
ray. The electric fields for two polarization components associated with the rays
can be computed from the Fresnel formulas [see Eqgs. (18a) and (18b)]. Sum-
ming the energies of the rays that emerge within a preset small scattering-angle
interval in a given direction, the phase function can be obtained for this part.
Let the normalized phase functions [i.e., (1, 1) element of the scattering matrix]
for the parts of reflection and refraction and diffraction be F|| and F ldl’ respec-
tively. Then the normalized phase functionis Fy; = (1 — fg) F]; + deldl, where
fa = 12w (1— f5) with f5 being the delta transmission associated with 0° refrac-
tion produced by two parallel prismatic faces and & being the single-scattering
albedo, which can be determined from the absorption of individual rays and the

constant extinction efficiency.

2. Improved Geometric Optics Approach

The laws of geometric optics are applicable to the scattering of light by a par-
ticle if its size is much larger than the incident wavelength so that geometric rays
can be localized. In addition to the requirement of the localization principle, the
conventional geometric ray-tracing technique assumes that the energy attenuated
by the scatterer may be decomposed into equal extinction from diffraction and
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Fresnel rays. Moreover, the Fraunhofer diffraction formulation used in geometric
ray tracing does not account for the vector property of the electromagnetic field
and requires a Kirchhoff boundary condition, which cannot take into consider-
ation the effects of the changes along the edge contour of the opening. Finally,
calculations of the far field directly by ray tracing will produce a discontinuous
distribution of the scattered energy, such as the delta transmission noted by Takano
and Liou (1989a).

To circumvent a number of shortcomings in the conventional geometric optics
approach, an improved method has been developed (Yang and Liou, 1995, 1996b).
It is simple in concept in that the energies determined from geometric ray tracing
at the particle surface are collected and mapped to the far field based on the exact
electromagnetic wave theory. In this manner, the only approximation is on the
internal geometric ray tracing. This differs from the conventional approach, which
collects energies produced by geometric reflections and refractions directly at the
far field through a prescribed solid angle.

The tangential components of the electric and magnetic fields on surface S
that encloses the scatterer can be used to determine the equivalent electric and
magnetic currents for the computation of the scattered far field on the basis of
the electromagnetic equivalence theorem (Schelkunoff, 1943). In this theorem,
the electromagnetic field detected by an observer outside the surface would be the
same as if the scatterer were removed and replaced by the equivalent electric and
magnetic currents given by

J = ng X H, (2a)
M = E x ng, (2b)

where ng is the outward unit vector normal to the surface. For the far-field region,
we have

exp(ikr) k% (r
Er=—"2"|=Z
® ikr 4w \r

’ r / . l‘/ 2.7
X f/ [M(r)+ (—) x J(r ):' exp(—tkr- —)d r, 3)
S r r

where r/r denotes the scattering direction, r is the reference position vector, 1’ is
the position vector of the source point, k is the wavenumber, and i = «/—_1 .
The far-field solution can also be determined by a volume integral involving the
internal field.

By means of geometric ray tracing, the electric field on the surface of a particle
can be evaluated after the successive application of Fresnel reflection and refrac-
tion coefficients parallel and perpendicular to a defined reference plane at the
point of interaction taking into account the path length in the three-dimensional
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geometry. If an ice crystal shape is of great complexity such as an aggregate, the
surface can be defined as a cubic box so that the computation of the electric field
can be conducted on a regularly shaped surface. The electric field can be defined
on the illuminated and shadowed sides as follows:

E,(r) + Ep(r), r € illuminated side,
E(r) = . (4a)
Ep(r), r € shadowed side,
where
E,(r) = E;(r) + E{(1r), (4b)
o0
Ep(r) = > E' (). (4c)
=2

In these equations, E; is the incident electric field, E? is the electric field for ex-
ternal reflection, and E’p are the electric fields produced by two refractions and
internal reflections (p > 2). Because the transverse electromagnetic wave condi-
tion is implied in ray tracing, the magnetic field for each reflection and refraction
can be obtained from

H) (r) =¢}' xE}'(r)  forr € outside the particle. %)

In practice, the mapping of the near-field solution to the far field can be done in
its entirety for E, in Eq. (4b). But for E; in Eq. (4c), the mapping is done ray
by ray and the results will include the diffraction pattern. Full account of phase
interferences is taken in this mapping process in the determination of the phase
function.

In accord with the conservation principle for electromagnetic energy concern-
ing the Poynting vector (Jackson, 1975), the extinction and absorption cross sec-
tions of the particle can be derived as follows:

Cext = Im{li%(s -1 / / fv E(r) - EX(r) d3r’}, (62)

k J * J /
Cabs = Ws,- ///VE(r)-E ) dv, (6b)

where the asterisk denotes the complex conjugate, ¢; is the imaginary part of the
permittivity, and V is the particle volume.

Finally, when the ray-tracing technique is applied to obtain the surface field,
one must properly account for the area elements from which the externally re-
flected and transmitted localized waves make a contribution to the surface field.
If the cross section of the incident localized wave is Aoj, the area on the particle
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surface for external reflection is
Aol = —Ac;(n; - €))7, (7a)
For the transmitted rays, the area is given by
Ach = —Aci(n; - €)@ -e)mp-€)]”, p=2,3,4,..., (Tb)

where all unit vectors have been defined in Eqs. (1a)—(1c). The radius of the cross
section of a ray should be on the order of k™! so that the phase change over
the ray cross section is not significant and permits proper account of the phase
interference of the localized waves by using the phase information at the centers of
the rays. Because the phase variation over the ray cross section can be neglected,
the numerical results are not sensitive to the shape of the ray cross sections. We
may use a circular shape in the calculations.

3. Absorption Effects in Geometric Optics

The geometric optics approach that has been used in the past generally assumes
that the effect of absorption within the particle on the propagating direction of a
ray can be neglected so that the refracted angle and the ray path length can be
computed from Snell’s law and the geometry of the particle. This is a correct
approach if absorption is weak, such as that of ice and water at most solar wave-
lengths. For strong absorption cases, rays refracted inside the particle are almost
totally absorbed so that the geometric optics method can also be used to compute
diffraction and external reflection as long as the particle size is much larger than
the incident wavelength. Although the preceding argument is physically correct in
the limits of weak and strong absorption, we shall consider the general absorption
effect in the context of geometric optics based on the fundamental electromagnetic
wave theory. Note that the effect of the complex refractive index on geometric op-
tics has been formulated only for the Fresnel coefficients (Stratton, 1941; Born
and Wolf, 1970).

Consider the propagation of the incident wave from air into ice (Fig. 1b). The
wave vectors associated with the incident and reflected waves are real because
these waves, which are outside the ice medium, must have the same properties.
However, the wave vector of the refracted wave is complex; this is referred to as
the inhomogeneity effect. These wave vectors can be represented by

k; = ke, Kk, = ke, Kk, = k& + ikye®, (8)

where e, ¢, ¢’, and e* are unit vectors; the subscripts i, r, and ¢ denote the

incident, reflected, and refracted waves, respectively; k = 27 /A in which A is
the wavelength in air; and k; and k, are two real parameters that determine the
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complex wave vector of the refracted wave. For nonabsorptive cases, k is zero.
The corresponding electric vectors can be expressed by

Ei(r,1) = A;exp[i(kr - ¢ — w1)], (9a)
E (r,t) = Arexplitkr - € — wp)], (9b)
E/(r,1) = Ajexplikr - € +ikqe® — w1)], (9¢)

where A;, A,, and A, are the amplitudes and w is the circular frequency. Further,
we define the following parameters:

k -k

k ’
At the interface of the two media, at which the position vector is denoted as r g
the phases of the wave vibration must be the same for the incident, reflected, and
refracted waves. Thus from Egs. (8) and (10) we obtain

10)

e rg=¢ -rg= N ‘rg) +iNi(e* - rg). (1D

Because the wave vectors for the incident and reflected waves are real, we must
have

e rg=¢€ -1rg=N(e ry), e -rg=0. (12)

Based on the geometry defined by Eq. (12), a generalized form of the Snell law
can be derived and is given by

sin 6;

sin§; = sin 6,, sing; =
N;

: 13)

where 6;, 6,, and 6; denote the incident, reflected, and refracted angles, respec-
tively (Fig. 1b). The vector e, in Eq. (12) is normal to the interface of the two
media. It follows that the planes of constant amplitude of the refracted wave are
parallel to the interface. To determine N; and Nj, we use the electric field of the
refracted wave, which must satisfy the wave equation in the form

(me + imi)* 3°Ei(x,0)

V2E,(r,t) —
t(r ) 02 atz

0, 14

where c is the speed of light in vacuum and m;, and m; are the real and imaginary
parts of the refractive index, respectively. Substituting Eq. (9¢) into Eq. (14) and
using Eq. (10) lead to

N?—N?=m?—m?,  N;Njcosb; = mm;. (15)
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Let N; = N;j cos 6;. Then from Egs. (12) and (15), we obtain

2
Ny = %{m% —m? +sin?6;
2 2 _ ain2g.)\2 2 271/2)1/2
+ [(mf — m{ — sin® 6;) + 4mZm{] } , (16a)
mem;j
Ny = —. 16b
=N (16b)

These two parameters are referred to as the adjusted real and imaginary refractive
indices.

After determining N; and Nj;, the refracted wave given in Eq. (9¢) can be rewrit-
ten in the form

E/(r,7) = A, exp(—kNil,) exp[i (kN:e' - r — w1)], an

where I, = (e* - r)/cosé; is the distance of the propagation of the refracted
wave along the direction €’. It is clear that the direction of the phase propagation
for the inhomogeneous wave inside the medium is determined by N; via Snell’s
law, whereas the attenuation of the wave amplitude during the wave propagation
is determined by N;. Consequently, the refracted wave can be traced precisely.
Following Yang and Liou (1995), the Fresnel reflection and refraction coefficients
in terms of the adjusted real and imaginary refractive indices are given by

N, 0; — cos 2cosb;
R = L COSB; — Co ,, T — cos 6; , (182)
N; cos 0; + cos 6; N; cosB; + cosb;
cos 8; — N; cos 6; 2 cos 6
p= PR o SR (18b)
cos 6; + N;cos9; cosB; + Nycos6;

where the subscripts / and r denote the horizontally and vertically polarized com-
ponents, respectively.

4. Monte Carlo Method for Ray Tracing

Use of the Monte Carlo method in connection with geometric ray tracing was
first developed by Wendling et al. (1979) for hexagonal ice columns and plates.
Takano and Liou (1995) further innovated a hit-and-miss Monte Carlo method to
trace photons in complex ice crystals, including absorption and polarization.

Let a bundle of parallel rays, representing a flow of photons, be incident on a
crystal from a direction denoted by a set of two angles with respect to the crystal
principal axis. Consider a plane normal to this bundle of incident rays and the
geometric shadow of a crystal projected onto this plane. Further, let a rectangle
(defined by X and Y) enclose this geometric shadow such that the center of this
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rectangle coincides with the center of the crystal. One of the sides, X, is parallel
to the geometric shadow of the crystal principal axis. A point (x;, y;) is selected
inside this rectangle using random numbers, RN, whose range is from 0 to 1 such
that

xi = X(RN - 1), (192)
2
1

yi = Y(RN - 5). (19b)

In this manner, x; is from —X /2 to X /2, whereas y; is from —Y /2 to Y /2. If the
point is inside the geometric shadow, it is regarded as an incident point on the
crystal. Otherwise it is disregarded. If there are more than two crystal planes for
a photon, the point closer to the light source is regarded as the incident point. The
coordinates of an incident point (x;, y;) can be transformed to the coordinates
(x, y, z) with respect to the body-framed coordinate system using the method
described by Takano and Asano (1983) for efficient geometric ray-tracing proce-
dures. Once the incident coordinates are determined, the photons are traced with a
hit-and-miss Monte Carlo method. The Fresnel reflection coefficients, R; and R,,
are first calculated and compared with a random number, RN. If (| R;|2 + | R, |?)/2
is greater than RN, the photon is reflected. Otherwise, it is transmitted. When a
photon traverses a particle, it can be absorbed. One can account for absorption
by means of stochastic procedures. When a photon enters a crystal, an absorption
path length [, is generated with a random number such that

RN = exp(—2kNily), ie.,lp=— ln(zgi) (20)
The random number represents the probability of the transmission of a photon.
The absorption path length I, denotes a distance traversed by a photon in the
crystal before the photon is absorbed. An actual path length, /, between an inci-
dent point and the next internal incident point can then be calculated on the basis
of Snell’s law and the specific ice crystal geometry. The transmission is then given
by T = exp(—k;l). If T < RN < 1, then the photons associated with these RNs
are absorbed. Equivalently, if / is greater than /,, then the photon is absorbed. Oth-
erwise, it is transmitted without absorption. This procedure is repeated whenever
photons travel inside the crystal.

After a photon is transmitted out of the crystal or reflected externally, it can
reenter the crystal depending on the crystal shape. In this case, a new incident
direction can be calculated using the direction cosine of the scattered beam. The
new incident coordinates can also be determined from the new incident direction
and the coordinates of an emergent point of the photon on the crystal surface.
The foregoing procedure is repeated until the photon escapes from the crystal.
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‘When a photon reenters the crystal, the scattering angle and the scattering matrix
are computed with respect to the original incident direction. In the conventional
method, the number of scattered photons per unit solid angle, 27 sin ® A®, is
counted as the phase function. The single-scattering albedo is obtained from the
ratio of the number of scattered photons to the number of incident photons. The
Monte Carlo method allows us to treat complicated ice crystals effectively and
can be employed in connection with the improved geometric ray tracing.

The surface of ice crystals may not be exactly smooth particularly if they un-
dergo collision processes. Also, a careful examination of some polycrystalline
ice crystals reveals rough structures on the surfaces (Cross, 1968). Halo and arc
patterns that are absent from some cirrus clouds could be caused by deviations
of the ice crystal surfaces from defined hexagonal structures. Incorporation of
some aspects of the ice crystal surface roughness in geometric ray tracing has
been recently undertaken by Takano and Liou (1995), Muinonen et al. (1996),
Macke et al. (1996b), and Yang and Liou (1998a). Our approach follows the idea
developed by Cox and Munk (1954) for wavy sea surfaces. A rough surface may
be thought of as consisting of a number of small facets that are locally planar and
randomly tilted from the flat surface. We may use a two-dimensional Gaussian
probability function to define the surface tilt as follows:

1 22 +123
P(Zx,2y) = ;G—z-eXp ) ) (21a)
with
= o =[(cost) - 1] cos ¢, (21b)
X
9
zy = £ = [(cos)™% — 1] sin g, 1)

where z, and zy are the slopes defined for a facet of rough surface along two or-
thogonal directions, 6 and ¢ are the local polar angles defining the position of the
tilt of the surface facet, and o is a parameter controlling the degree of roughness.
In general, effects of the surface roughness on ice particles are to smooth out the
scattering maxima that occur in the phase function (see Fig. 4).

B. FINITE DIFFERENCE TIME DOMAIN METHOD

The geometric ray-tracing method with a modification in the mapping of the
near field to the far field can be applied to size parameters on the order of about
15-20. We have developed the finite difference time domain (FDTD) method for
light scattering by small ice crystals with specific applications to size parameters
smaller than about 20 (Yang and Liou, 1995, 1996b; Chapter 7). Details of this
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method have been elaborated on in Chapter 7. For the continuity of this presenta-
tion, however, we shall address the physical fundamentals of the methodology.

The FDTD technique is a direct implementation of the Maxwell curl equations
to solve the temporal variation of electromagnetic waves within a finite space
containing the scatterer given by

dH(r,
VxE@, ) = HHED (22a)
c at
AE(r,1) 4
VxHr = £ EE0D AT e, (22b)
c at c

where [, g, and o are the permeability, permittivity, and conductivity of the
medium, respectively.

First, the three-dimensional scatterer must be discretized by a number of suit-
ably selected rectangular cells, referred to as grid meshes, at which the opti-
cal properties are defined. Discretizations are subsequently carried out for the
Mazxwell curl equations by using the finite difference approximation in both time
and space. The propagation and scattering of the excited wave in the time domain
can be simulated from the discretized equations in a manner of time-marching
iterations.

Second, in numerical computations, scattering of the electromagnetic wave by
a particle must be confined to finite space. It is therefore required in the applica-
tion of the FDTD technique to impose artificial boundaries so that the simulated
field within the truncated region would be the same as that in the unbounded case.
Implementation of an efficient absorbing boundary condition to suppress spurious
reflections is an important aspect of the FDTD method associated with numerical
stability and computer time and memory requirements.

Third, the solution of the finite difference analog of the Maxwell curl equations
is in the time domain. To obtain the frequency response of the scattering particle,
we require an appropriate transformation. The discrete Fourier transform tech-
nique can be employed to obtain the frequency spectrum of the time-dependent
signals if a Gaussian pulse is used as an initial excitation. Correct selection of the
pulse is required to avoid numerical aliasing and dispersion.

Finally, mapping of the near-field results to the far field must be performed
to derive the scattering and polarization properties of the particle. A surface in-
tegration or a volume integration technique, mentioned in Section II.A.2, can be
employed to obtain the far-field solution. Fundamental problems of the FDTD
method in numerical calculations include the staircasing effect in approximating
the particle shape and the absorbing boundary condition used to truncate the com-
putational domain. We have shown in Chapter 7 that the FDTD approach can be
applied to size parameters smaller than about 20 with adequate accuracies.
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C. ESSENCE OF THE UNIFIED THEORY AND COMPARISON
WITH MEASUREMENTS

It is unlikely that one specific method can be satisfactorily used to tackle the
scattering of light by nonspherical ice crystals covering all size parameters. How-
ever, by unifying the improved geometric ray-tracing and FDTD methods dis-
cussed previously, we are now in a position to resolve the intricate problems in-
volving light scattering and absorption by nonspherical ice crystals. This approach
is referred to as the unified theory for light scattering by ice crystals covering all
sizes and shapes that commonly occur in the atmosphere. Demonstration of this
unified theory is shown in Fig. 2 in terms of the extinction efficiency as a func-
tion of size parameter kL for randomly oriented columns, where L is the column
length. The improved geometric optics method breaks down at size parameters
smaller than about 15, whereas the FDTD method is computationally reliable for
size parameters smaller than about 20 because of numerical limitations. Also illus-
trated is a verification of the improved geometric ray tracing for size parameters
from 15 to about 20.

Figure 3 displays the commonly occurring ice crystal shapes in cirrus clouds
generated from computer programs, along with the phase function patterns at a
wavelength of 0.63 pm computed from the geometric ray-tracing method. The
size parameters for these ice crystals are on the order of 100. Irregular shapes,
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Figure 2 Presentation of a unified theory for light scattering by ice crystals using the extinction
efficiency as a function of size parameter as an example (see text for further explanations).
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such as hollow column, dendrite, and fernlike plate, and rough surface ice crystals
do not produce well-defined halo patterns that are common to hexagonal-based
crystals such as bullet rosettes and aggregates. Results for small size parameters
less about 20 can be computed from the FDTD method.

Measurements of the scattering and polarization patterns for ice crystals
have been performed in cold chambers (e.g., Sassen and Liou, 1979a; Volkovit-
skiy et al., 1980). Desirable ice crystal sizes and shapes, however, are difficult
to generate and sustain for a period of time to perform light-scattering experi-
ments. A light-scattering experimental program has been recently conducted us-
ing hexagonal icelike crystals as measured in the analog manner so that optical
experiments can be performed over a relatively long period of time for complex-
shaped particles (Barkey et al., 1999). The experiment consisted of a polarized
laser beam at A = 0.63 um and an array of 36 highly sensitive photodiode detec-
tors arranged between the scattering angles 2.8° and 177.2° mounted in a linear
array on a half dome, which can rotate to vary the azimuthal angle. After care-
ful calibration and signal acquisition, this system was used to measure the phase
functions for a glass sphere and a glass fiber configured to scatter light like an
infinite cylinder. The experimental results match closely those computed from the
Lorenz—Mie theory. The crystals used were made out of sodium fluoride (NaF),
which has an index of refraction (1.33) close to ice in the visible. The crystal was
mounted on top of a small pedestal and its orientation position was controlled
by a rotator. Angular integrations in the experiment can follow the computational
procedures in theory.

Figure 4a shows a comparison between measurements and theory for an ag-
gregate that was assembled from NaF columns with small glass fiber attachments
glued onto small holes. To simulate random orientation, a 1° increment was used
for all possible orientation angles. General agreement between measurements and
theory is shown but with several discrepancies. Most notable is that the experi-
mental results are lower than the theory in backscattering directions, which are
dominated by internal reflections. This difference could be caused by absorption
of small glass fibers and glues that connect the columns. Comparison results for a
rough-surface plate are shown in Fig. 4b. All eight sides were sanded with small
scratches evenly distributed across the crystal surface. Between 25° and 180° scat-
tering angles, the measurements closely follow the theoretical results. For scatter-
ing angles less than 20°, the experimental results are higher, however. The scan-
ning electron photomicrographs reveal features on the roughened crystal surface
on the order of 0.5-1 um. More light could have been scattered through them as
compared with the defined cross-sectional area used in diffraction calculations.

The electrodynamic levitation technique has also been used recently to suspend
and grow an individual ice crystal for light-scattering experiments (Bacon et al.,
1998). The apparatus consists of an electrodynamic balance with an internally
mounted thermal diffusion chamber, a laser beam, a 1024-element linear photo-



Chapter 15  Light Scattering and Radiative Transfer in Ice Crystal Clouds 433

103
] a
] x — Theory @ (a)
T  Experiment
c
2
3}
c
3
Tl
)]
7]
©
£
o
w
0 60 120 180
10%3
I (b)
i @
10" LS - Theory Rough surface
c 1%
% ] x  Experiment
5
[T
3 10°
© ]
<
o
w7
0 60 120 180

Scattering Angle (deg)

Figure 4 Phase functions for randomly oriented aggregate and rough surface plate crystals made
from NaF with an index of refraction of 1.33 in the visible. The experiment used a polarized laser
beam at A = 0.63 um as a light source and the positions of the detector and the crystal were controlled
by automatic mechanical devices (Barkey et al., 1999). The theoretical results are derived from the
geometric ray-tracing/Monte Carlo method.

diode array, and two cameras for top and side views of the ice crystal. Shown in
Fig. 5 are experimental results for two ice crystal sizes and shapes defined by the
depicted photos (courtesy of N. J. Bacon). Theoretical results computed from con-
ventional geometric ray tracing, which does not account for phase interferences,
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Figure 5 Phase function measurements for a single ice crystal suspended by the electrodynamic
levitation technique (Bacon er al., 1998). The sizes and shapes are determined from the top and side
views of two cameras. The angle 8 denotes the ice crystal orientation with respect to the incident laser
beam. Theoretical results are computed from the conventional (x) and modified geometric ray-tracing
methods.
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show discrete maxima associated with the halo pattern. The modified geometric
optics method generates closely matched patterns, except some deviations in the
55° scattering angle region in the top diagram. Differences between theoretical
and experimental results can be attributed to the uncertainty in the measurement
of the ice crystal size (~4 pm) and in the computation of the near field based on
the geometric ray-tracing approximation.

ITII. APPLICATION TO REMOTE SENSING AND
CLIMATE RESEARCH

Determination of the composition and structure of clouds and aerosols from
the ground, the air, and space based on remote sensing is an important task in
climate studies. In the following, we wish to demonstrate the applicability of the
basic scattering, absorption, and polarization data for nonspherical ice crystals to
various types of remote sensing of cirrus clouds and to climate studies.

A. BIDIRECTIONAL REFLECTANCE

Solar radiances reflected from clouds can be used to determine their composi-
tion and structure. The nondimensional bidirectional reflectance, the ratio of re-
flected and incident radiances for given positions of the Sun and observer and an
underlying surface, is primarily a function of the cloud optical depth and particle
size and shape. Development of reliable remote-sensing techniques from satellites
for the detection of cirrus clouds and retrival of their optical and microphysical
properties using bidirectional reflectances must begin with an understanding of
the fundamental scattering and absorption properties of ice particles.

Figure 6 shows measurements of the bidirectional reflectances of cirrus that
were obtained with the scanning radiometer on board ER-2 over Oklahoma on
November 24 and 25, 1991, presented by Spinhirne et al. (1996), who also de-
rived the best-fit cloud optical depths and surface albedos from concurrent lidar
and spectral radiometric observations. For interpretation, we used a typical cirro-
stratus size distribution having a mean effective size of 42 um and three ice crys-
tal models: spheres, defined hexagons, and irregular ice particles (aggregates with
rough surfaces). For the same optical depth, ice spheres reflect much less radia-
tion than nonspherical ice crystals. The best matches for the three cases presented
appear to be irregular particles. Because the measured data were about 20° apart,
it is possible that some scattering maxima could be missed in the observations. It
appears that the ice crystals in these developed cirrus must contain a combination
of hexagonal and irregular ice crystals. In the visible, the bidirectional reflectance
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Figure 7 Correlations of the bidirectional reflectances in the wavelength domains of 0.63/1.6 um
and 0.63/2.2 um. Six representative ice crystal size distributions with mean effective sizes ranging
from 23 to 123 pm and optical depths from 0.1 to 8 are used in the construction of these curves.
The viewing geometry includes 6y = 31.5°, 6y = 12.5°, and A¢ = 100°. Also shown are the
bidirectional reflectances obtained from MAS during the SUCCESS experiment on April 26, 1996.
The bottom panels illustrate the retrieved optical depth and ice crystal mean size based on a statistical
searching method (Rolland and Liou, 1998).

is largely dependent on the optical depth and ice crystal shape. The size infor-
mation has been found from measurements at near infrared wavelengths where
substantial absorption by ice occurs (King et al., 1997).

In the following, we show the potential of determining the optical depth and
ice crystal size based on correlation of bidirectional reflectance data in the domain
of A = 0.63/1.6 pm and 0.63/2.2 pm (Fig. 7). In the construction of the corre-
lation diagram, six representative midlatitude ice crystal size distributions were
used along with optical depths ranging from 0.1 to 8. The mean effective size
ranges from 23 to 123 pm. The adding—doubling method for radiative transfer
was employed to compute the bidirectional reflectances for cirrus cloud layers.
Also shown are bidirectional reflectances obtained from the MODIS Airborne
Simulator (MAS) for a sample viewing geometry occurring on April 26, 1996,
during the SUCCESS experiment (Rolland and Liou, 1998). The retrieved opti-
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cal depth ranges from about 2 to 4 and the retrieved mean effective ice crystal
sizes are about 40-120 pm, as shown in the following maps. Validation of these
retrievals has not been made at this point, however.

B. LINEAR POLARIZATION OF REFLECTED SUNLIGHT

Next, we present the applicability of the scattering data for nonspherical ice
crystals to the interpretation of polarization of the reflected sunlight from cirrus
clouds. Figure 8 shows the linear polarization pattern in the solar principal plane
as a function of scattering angle that was measured from a cirrus cloud using a
wavelength of 2.22 um (Coffeen, 1979) at which the Rayleigh scattering contri-
bution is minimum. The measured polarization values are less than about 6% and
are positive from 50° and 150° scattering angles. The theoretical results based
on the adding—doubling radiative transfer program (Takano and Liou, 1989b) in-
clude spheres, columns, plates, and a mixture of dendrites, bullet rosettes, and
plates.

Results from the spherical model deviate significantly from observations in
which the rainbow feature does not exist. For plates and columns, negative po-
larization results in the scattering angle region from 20° to 40° produced by
halo patterns show general agreement with the observed data. The results for
columns appear to match the observations, except in the backscattering direc-
tion from about 150° to 180°. With the inclusion of dendrites the backscattering
polarization decreases and there is a general agreement between theoretical re-
sults and observed data in the entire scattering-angle range. It appears that the
polarization patterns of the reflected sunlight can be used to infer the shape of
cloud particles, which otherwise cannot be accomplished by other remote-sensing
techniques.

C. LIDAR BACKSCATTERING DEPOLARIZATION

The depolarization technique using lidar backscattering returns has been devel-
oped to differentiate between ice and water clouds. It is based on the fundamen-
tal scattering properties of nonspherical ice crystals and spherical water droplets.
The incident polarized light beam from spheres will retain its polarization state
in the backscattering direction, if multiple scattering can be neglected. However,
a cross-polarized component, referred to as depolarization, will be produced by
nonspherical particles because of their deviation from the spherical geometry. In
the geometric optics region, Liou and Lahore (1974) showed that depolarization
is the result of internal reflections and refractions by hexagonal ice particles. To
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Figure 8 Linear polarization of sunlight reflected from a cirrus cloud measured at the 2.2-pm wave-
length (Coffeen, 1979). The solar zenith angle is 70°. The theoretical polarization results are computed
for ice spheres, columns, plates, and a mixture of dendrites, bullet rosettes, and plates as a function of
the scattering angle.

quantify the amount of depolarization, a parameter called the depolarization ra-
tio, defined as the ratio of the cross-polarized return power to the return power of
the original polarization state, is introduced. It has been used to differentiate be-
tween ice and water clouds, as well as to determine some aspects of the physical
characteristics of ice clouds (Sassen, 1991; Chapter 14).



440 K. N. Liou et al.

0.8
i i(_ *_f Measurements
0.7 : «——— Theory
i #
s *
L # 4
0.6 [- *
.2 I
= i
© i
14 I
£ 05— — — — — — — — — — - - —-—— -
8 : older contrail * -
o - -
q y
= P
g o4 Y=
2 e @
S |+ -
3 o3 = L= o P
= S=) -
- _| 7 younger
I - contrail
0.2 i e ! {
pd
. > e .
01 |
O | 1 1 I | ! | ! | |
1 2 3 4 5 6 7 8 9 10
Case (+xx#)
L l J
-60 -55 -50

Temperature (°C) — — — —

Figure 9 Depolarization ratios determined from high-resolution polarization lidar for contrail cirrus
(Sassen and Hsueh, 1998, case; Freudenthaler et al., 1996, temperature) and computed from the unified
theory for light scattering by ice crystals with shapes ranging from single and double plates, solid and
hollow columns, dendrites, bullet rosettes, aggregates, and irregular surface particles, the sizes of
which span from a few micrometers to the geometric optics limit.

Figure 9 shows the depolarization ratios determined from high-resolution
0.532/1.06-um polarization lidar for contrail cirrus presented by Sassen and
Hsueh (1998) and Freudenthaler et al. (1996). The former authors showed that
the lidar depolarization ratio in persisting contrails ranged from about 0.3 to 0.7,
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whereas the latter authors observed this ratio from 0.1 to 0.5 for contrails with
temperatures ranging from —60° to —50°C depending on the stage of their
growth. For interpretation, we have carried out backscattering depolarization cal-
culations for various sizes and shapes displayed in this figure employing the uni-
fied theory for light scattering by ice crystals described in Section II. The vertical
bars indicate the results for ice crystals of a few micrometers to the geometric
optics region. Depolarization generally becomes larger for larger ice particles and
reaches a maximum of about 0.6 for size parameters in the geometric optics limit.
One exception is for columns, which produce a depolarization of about 0.65 for
size parameters of about 10 because of resonance effects.

D. INFORMATION CONTENT OF 1.38-uM AND THERMAL
INFRARED SPECTRA

Water vapor exhibits a number of absorption bands in the solar spectrum. Bidi-
rectional reflectance at the top of the atmosphere in these bands will contain in-
formation of high-level clouds. Specifically, the 1.38-pum band has been found to
be useful for the detection of cirrus clouds (Gao and Kaufman, 1995). The line
spectra in this band have also been shown to contain rich information on the com-
position and structure of clouds and were a subject for a small-satellite proposal
(Liou et al., 1996).

To investigate the line formation in cirrus in the 1.38-um band, we use a
radiation model with a 1-cm™! resolution containing 10 equivalent absorption
coefficients based on the correlated k-distribution method for water vapor and
other greenhouse gases derived from the updated 1996 HITRAN data (Liou et al.,
1998). The adding—doubling radiative transfer program including all Stokes pa-
rameters is used to perform the transfer of monochromatic radiation in vertically
inhomogeneous atmospheres decomposed into a number of appropriate homoge-
neous layers. This program incorporates line absorption, scattering and absorption
by nonspherical ice crystals, Rayleigh and background aerosol scattering, and sur-
face reflection, and accounts for both direct solar flux and thermal emission con-
tributions. In the calculations, we employ cirrostratus and cirrus uncinus models
having mean effective ice crystal sizes of 42 and 123 um, respectively, with a
shape composition of 50% aggregates/bullet rosettes, 25% hollow columns, and
25% plates.

Figure 10a illustrates the bidirectional reflectances in the 1.38-um water va-
por line spectrum from 6600-7500 cm™" for clear and cirrus cloudy conditions.
The line structure of the water vapor absorption exhibits significant fluctuations.
At about 71007400 cm™ !, the reflectances from the clear atmosphere are ex-
tremely small as a result of strong water vapor absorption. Multiple scattering
produced by ice particles contributes to the strength of reflectances in the line
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wing regions. Figure 10b shows the reflectance spectra whose wavenumbers are
ordered according to their magnitudes so that monotonically increasing functions
are displayed in the domain of optical depth and mean effective ice crystal size.
Low values indicate that the reflectances are associated with line centers, whereas
high values are related to line wings. Reflectances are dependent on the optical
depth and ice crystal size, as clearly demonstrated in this example. Consequently,
a retrieval procedure can be constructed for the determination of these two pa-
rameters. Moreover, we find that the cloud position can also be inferred from the
spectra because the reflectances are determined by the amount of water vapor
above the cloud. The preceding example clearly demonstrates that the 1.38-pm
line spectra contain rich information about the cirrus composition and structure.
Of course, the question of uniqueness of the solution of cloud parameters within
the broad range of spectral lines is one that requires further investigations and
numerical experimentations.

Information on thin cirrus in the tropics has been noted from the analysis
of satellite Infrared Radiation Interferometer Spectrometer (IRIS) data (Prab-
hakara et al., 1993), particularly in the 8—12-um window region. Recent tech-
nological advancements have led to the development of the High-Resolution
Interferometer Sounder (HIS), a Michelson interferometer covering a broad spec-
tral region in the infrared (3.5-19 pm) with high spectral and spatial resolutions
(Smith et al., 1998). Information on thin cirrus containing small ice crystals ap-
pears between A = 10 and 12 pum. Interpretation of the line structure in the
thermal infrared for cirrus cloudy atmospheres and exploration of the informa-
tion content with respect to the cloud optical depth, ice crystal size, and position
would be an exciting project.

In summary, because of the spatial and temporal variabilities of ice crystal sizes
and shapes in cirrus clouds, remote sensing of their optical and microphysical
properties from space presents an unusual challenge in atmospheric sciences.

E. SOLAR ALBEDO

Reflection of solar radiation by clouds determines the amount of solar en-
ergy absorbed within the atmosphere and by the surface. Thus, understanding the
broad-band solar albedo (reflection) is fundamental in the analysis of the cloud
radiative forcing associated with climate studies. We wish to illustrate the impor-
tance of the nonsphericity of ice particles on the interpretation of observed solar
albedo determined from radiometric measurements. Figure 11 shows the broad-
band solar albedo as a function of the ice water path (IWP) derived from broad-
‘band flux aircraft observations for cirrus clouds during the FIRE experiment in
Wisconsin, October—November, 1986 (Stackhouse and Stephens, 1991). The ex-
tensions of the vertical and horizontal lines through the data points represent the
uncertainty of measurements.
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Figure 11 Solar albedo as a function of ice water path determined from broad-band flux observa-
tions from aircraft for cirrus clouds that occurred during the FIRE experiment, Wisconsin, November—
December, 1986 (Stackhouse and Stephens, 1991). The solid lines represent theoretical results com-
puted from a line-by-line equivalent solar model using observed ice crystal sizes and shapes for a
range of mean effective ice crystal diameters. The dashed lines are corresponding results for equiva-
lent spheres.

The solid lines are theoretical results computed from the line-by-line equiva-
lent solar radiative transfer model mentioned previously using a set of observed
ice crystal size distributions for columns and plates. The dashed lines denote the
results based on these size distributions converted into equivalent spheres. Re-
gardless of the input parameters for spheres, the theoretical results significantly
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underestimate the observed values primarily because of the nature of stronger
forward scattering for spherical particles and stronger absorption for spheres at
near infrared wavelengths. Using the mean effective ice crystal size defined in
Liou e? al. (1998), we show that the size that best fits the observed data lies be-
tween 50 and 75 pm, typical ice crystal sizes at the top portion of midlatitude
cirrus cloud systems.

Further, we have also investigated from a theoretical perspective the effects of
ice crystal shape on solar albedo by using a mean effective size of 16 pum, rep-
resenting a typical ice crystal size for contrail cirrus. In this study, four shapes
are used in which bullet rosettes have both smooth and rough surfaces. Cloud
albedo, not shown here, becomes progressively smaller for hollow columns,
plates, and equal-area spheres relative to that of bullet rosettes, primarily be-
cause their asymmetry parameters become increasingly larger to allow stronger
forward scattering to take place. The effect of ice crystal surface roughness does
not appear to alter the solar albedo values for nonspherical particles. It does,
however, affect the phase function pattern, a critical parameter in remote-sensing
applications.

F. TEMPERATURE SENSITIVITY TO
ICE CRYSTAL NONSPHERICITY

Many dynamic and thermodynamic factors and feedbacks affect temperature
perturbations. Nevertheless, we wish to demonstrate that the scattering and ab-
sorption properties of nonspherical ice crystals are relevant and important in the
modeling of the role of clouds in climate. The potential effect of ice crystal non-
sphericity in light scattering on climatic temperature perturbations is studied by
using a one-dimensional cloud—climate model developed by Liou and Ou (1989).
Perturbation calculations were performed by varying the cloud cover and IWP for
a typical cirrostratus cloud model with a thickness of 1.7 km and a base height of
9 km. Cloud positions and covers for middle and low clouds were prescribed and
other parameters in the model remained unchanged in the perturbation runs. The
radiative properties of columns/plates and area-equivalent ice spheres were incor-
porated into the climate model to investigate sensitivity to the surface temperature
change. The present climate condition is defined at 288 K, which corresponds to
a cirrus cloud cover of 20% and an IWP of 20 g/m? based on the column/plate
model.

The left panel of Fig. 12 shows the variation of surface temperature as a func-
tion of cloud cover when the IWP is fixed. Because the greenhouse effect pro-
duced by the trapping of thermal infrared radiation outweighs the solar albedo
effect, increasing the cloud cover increases the surface temperature. If a spherical
model is used, a significant increase of the surface temperature occurs because
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equivalent spheres reflect less solar radiation as shown in Fig. 11. At the present
climate condition, the increase amounts to about 0.4 K, which appears to be sub-
stantial. Variation of the IWP when the cloud cover is fixed is shown in the right
panel of Fig. 12. An increase of the surface temperature occurs at IWPs up to
15 g/m? after which a decrease occurs. This is because an increase in the infrared
(IR) emissivity is relatively smaller as compared with an increase in the solar
albedo, thereby leading to cooling effect. Using the spherical model, the cloud
radiative forcing increases by about a factor of 2 because of a reduction in the
solar albedo. For this reason, larger surface temperatures are produced relative to
the case involving the column/plate model.

In view of the preceding discussion, a sufficient sensitivity of climatic temper-
ature perturbations can be observed when the shape of ice particles (spheres vs
hexagons) is accounted for in radiative transfer calculations. Thus a physically
based cloud microphysical model is required in the parameterization of the radia-
tive properties of cirrus clouds for climate models.

IV. SUMMARY

We have presented a unified theory for light scattering by ice crystals of all
sizes and shapes that can be defined mathematically or numerically. This theory
is a combination of a geometric optics approximation for size parameters larger
than about 20 and a finite difference time domain method for size parameters
smaller than about 20. Conventional geometric ray tracing was first reviewed,
followed by a discussion of the physical fundamentals of the improved method
involving the mapping of the tangential components of the electric and magnetic
fields on the ice crystal surface to the far field on the basis of the electromagnetic
equivalence theorem. By virtue of this mapping, the only approximation is in the
calculation of the surface electric fields by means of the Fresnel coefficients and
the applicable Snell’s law based on the geometry. Phase interference and wave
diffraction are both accounted for in the method.

The issue of absorption in the medium in the context of geometric ray tracing,
referred to as the inhomogeneous effect, was subsequently discussed. We showed
that the phase propagation of a wave inside the medium is determined by an ad-
justed real part of the refractive index through the Fresnel and Snell laws, whereas
attenuation of the wave amplitude is determined by an adjusted imaginary part of
the refractive index. The adjusted refractive indices are derived on the basis of
the fundamental electromagnetic wave theory. We further described an efficient
way of performing geometric ray tracing in complex-shaped ice particles via the
Monte Carlo method and presented a methodology to treat the possibility of ir-
regularity of the ice crystal surface using the stochastic approach. Comparisons
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of the phase function results derived from the theory and laboratory-controlled
experiments were also made.

For size parameters smaller than about 20, we adopted a finite difference time
domain technique for light scattering by small nonspherical ice crystals, which
solves the Maxwell equations by finite difference numerical means in the time
domain by discretizing the scatterer with given optical properties. The solution
requires the imposition of a numerically stable absorbing boundary condition.
The frequency spectrum of the time-dependent results can be obtained by us-
ing a suitable Gaussian pulse via the discrete Fourier transform technique. The
far-field solution can be derived by employing a surface or a volume integra-
tion approach. The method that we have developed was verified through compar-
isons with the exact Lorenz—Mie results for spheres and infinite circular cylin-
ders and was shown to be efficient and accurate for size parameters on the order
of 20. It can also be effectively applied to small inhomogeneous particles such as
aerosols.

We then presented a number of examples demonstrating the application of the
unified theory for light scattering by ice crystals to remote sensing of ice crystal
clouds and to investigation of the climatic effect of cirrus. We showed that in-
terpretations of the bidirectional reflectance and polarization patterns measured
from aircraft and satellites require the correct scattering, absorption, and polar-
ization data for nonspherical ice crystals. Lidar backscattering observations of
cirrus and contrail, particularly those utilizing the depolarization technique, also
require the correct scattering information on nonspherical ice particles. Based on
observations and appropriate ice cloud models, the ice crystal size and shape and
optical depth information for cirrus can be inferred from the reflected solar in-
tensity and polarization. Moreover, we illustrated that rich information on cirrus
cloud composition and structure is contained in the 1.38-pm solar line spectra.
Indeed, determination of the optical and microphysical properties of cirrus, sub-
visual cirrus, and contrails based on remote sensing presents a great challenge
in view of the substantial variability of ice crystal sizes and shapes in space and
time.

Finally, we discussed the importance of the scattering and absorption proper-
ties of nonspherical ice particles in conjunction with studies of cloud radiative
forcing and climatic temperature perturbations resulting from uncertainties in the
cirrus cloud parameters. We used the models of ice columns/plates and equiva-
lent spheres to illustrate the effect of nonspherical shapes on the broad-band solar
albedo and showed that cloud albedo is much smaller for equivalent spheres be-
cause of stronger forward scattering. Although the temperature responses to cli-
mate change are complex and involve numerous dynamic and thermodynamic
factors and feedbacks, we illustrate that the physically based single-scattering
properties of nonspherical ice crystals are relevant and significant in the modeling
of cirrus cloud radiative transfer for climate studies.
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