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Light scattering by randomly oriented cubes and

parallelepipeds

K. N. Liou, Q. Cai, J. B. Pollack, and J. N. Cuzzi

In this paper, we have modified the geometric ray tracing theory for the scattering of light by hexagonal cyl-
inders to cubes and parallelepipeds. Effects of the real and imaginary parts of the refractive index and as-
pect ratio of the particle on the scattering phase function and the degree of linear polarization are investi-
gated. Causes of the physical features in the scattering polarization patterns are identified in terms of the
scattering contribution due to geometric reflections and refractions. The single-scattering phase function
and polarization data presented in this paper should be of some use for the interpretation of observed scat-
tering and polarization data from planetary atmospheres and for the physical understanding of the transfer
of radiation in an atmosphere containing nonspherical particles.

l. Introduction

Knowledge of the single-scattering parameters in-
volving atmospheric particulates is needed for the un-
derstanding of the transfer of solar and IR radiation in
planetary atmosphers and the development of remote
sensing techniques for their identification. In recent
years, the influence of nonspherical particles such as ice
crystals and aerosols on the radiation budget of the at-
mosphere and hence climate has been a subject of con-
siderable research interest and scientific importance.

Since exact Mie-type solutions for the scattering of
electromagnetic waves by nonspherical particles have
been analytically derived and numerically tested only
for symmetrical particles with smooth surfaces such as
spheroids,12 it is necessary to develop alternate ap-
proaches, e.g., based on optical principles, to evaluate
approximately the single-scattering characteristics of

irregularly shaped aerosols, hexagonal ice crystals, and -

other types of nonspherical particle which are present
in planetary atmospheres. Pollack and Cuzzi,? for ex-
ample, developed a semiempirical theory for scattering
by randomly oriented micron-sized nonspherical par-
ticles based on simple physical principles and compar-
isons with laboratory scattering data for cubes and other
types of irregular particle. Recently, Cai and Liou*
(CL) developed a theory for the scattering of polarized
light by hexagonal ice crystals utilizing the geometric
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ray tracing technique. In this paper, we wish to extend
this theory to rectangular parallelepipeds and cubes.
While such a theory is known to be extremely accurate
for sufficiently large ratios of particle size to the wave-
length (say Z1000), the calculations of Pollack and
Cuzzi suggest that it may be a useful approximation for
much smaller size ratios (say 2 several). We put this-
possibility to test by comparing our calculations to
laboratory data for small sized randomly oriented
cubes.

Il. Geometric Ray Racing Analysis

We apply the geometric ray tracing analyses pre-
sented by CL for hexagonal cylinders to rectangular
parallelepipeds. Except for the plane equations and
associated direction cosines, the basic equations and
procedures governing the ray tracing are exactly the
same as in the hexagon case. Let a, b, and h denote
length, width, and height of a rectangular parallelepi-
ped, respectively. The plane equations which describe
the six surfaces (n = 0,1,2,3,4,5) denoted in Fig. 1 with
respect to the OXYZ coordinate system may be written,
respectively, as ,

x=b/2

y=qa/2

x==b/2 & )
y =—a/2

z=h/2

z=—h/2)

The associated direction cosines of the normals for the
surfaces are given by
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Fig.1, Geometry of the orientation of a parallelepiped with respect

to the incident electric vector of a geometricray. The incident electric

vector is described by the OX’Y’Z’ coordinate, while the orientation
of the rectangle is fixed in the OXYZ coordinate.

cosa, = cosnw/2
cosfl, =sinnw/2 } n =0,1,2,3,

cosy, =0

2
cosa, =0
cosf, =0 n =45,

cosy, = cos[(n — 4)7)

where a, (3, and 7 are the angles between the outward
directed normals and the X, Y, and Z coordinates, re-
spectively, and n = 0 denotes the surface perpendicular
to the OX axis. The other three-side surfaces are suc-
cessively represented by n = 1,2,3, while n = 4 and 5
denotes the top and bottom surfaces.

Moreover, the general equation describing the
Fraunhofer diffraction for the far field may be
written®

-juof fexp(-]kr)dx’dy 3)

where 1 represents the disturbance in the original wave
at point O on the plane wave front with wavelength A,
r is the distance between point P in the far field and
point O’ (X’Y” coordinate) on the aperture with an area
B’k =2n/\,andj = +/—1. Thesix apexes B; (i = 1-6)
that define the aperture are the projections of the six
vertices B; (i = 1-6) of the rectangular parallelepiped
on the plane perpendicular to an oblique incident light
ray. These six vertices are given by B1(b/2,a/2,h/2),
Ba(=b/2,a/2,h/2), B3(—b/2,—a/2,h/2), By(~b/2,~a/
2,—h/2), Bs(b/2,—a/2,~h/2), and Bg(b/2,a/2,—h/2).
Through a coordinate transformation, values of B; may
be obtained, and Eq. (3) may be integrated to give

—juw & (& M
U T R £ 1(PC PD) “
Equations for g;, h;, P;, C;, and D; are defined in CL.
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According to the coordinate systems described by CL,
we may express the scattered electric field for a rec-
tangular parallelepiped in the form®

A Ex
PN e ®

where E; and E, represent the parallel and perpendic-
ular components of the scattered electric field, respec-
t1vely, with respect to the scattering plane, and E,q and
E,y are those of the incident electric field with respect
to the incident plane. The amplitude functions A;, Ao,
As, and A4 defined in Eq. (5) may be written as the sum
of the diffraction f and geometric reflection and re-
fraction s in the form

E, ZOP

sewwoff A[

] ®)
where the expression for A/ and A$ may be found in the
paper by CL.

The Stokes parameters of the scattered light are given
by

I I
U roe| |, Q)
U Up
\% Vo

F(0,¢) denotes the general transformation matrix given
by van de Hulst.6 The scattering phase function Py;
is defined by

47
Py =—Fy, 8

Os

where
1 4
Fi1=- 3% |As]?
2k=1
and the scattering cross section

27 T
0, = j; j; (E\E} + E,E}) sinfd0d ¢. 9

In this case the scattering phase function is said to be
normalized so that

j; Pu()dQ/dr = 1. (10)

The scattering phase function for an arbitrarily oriented
nonspherical particle depends not only on the scattering
6 and azimuthal ¢ angles with respect to the incident
light rays but also on its orientation angles.}4 Asshown
by CL, two integration procedures are required to ob-
tain the scattering phase function for randomly oriented
parallelepipeds. The first angular integration is with
respect to the angle denoting the orientation of the
parallelepiped in reference to its long axis ¥, as fol-
lows:

1 27
Pulb.ginie) = — f P (0,¢5n¥241)dy, (11)
27 Jo

where 17 and Y, represent the orientation angles of the
parallelepiped in the zenith and azimuthal directions.
Then the angular integrations are to be carried out with
respect to these two angles in the form
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Fig. 2. Scattering phase functions for random oriented cubes with
sizes of 100 um using a wavelength of 0.55 um and a refractive index
of 1.31 corresponding to external reflection (p = 0), two refractions
(p = 1), and internal reflections (p = 2).

1 27 T )
Pu(®) == j; j; Pu(6,0inyo) sinndndys,  (12)

where we note that ¢ and Y2 are in the same azimuthal
plane.! Moreover, the degree of linear polarization for
particles randomly oriented.in space is defined by

Py5(6) )
Py(6)
where P, is angularly averaged in the same way as Py;.
In the section which follows, we will present graphs for
the scattering phase function and the degree of linear
polarization for 3-D randomly oriented parallelepipeds
and cubes.

LP(§) = - (13)

Hl. Results and Discussions

For the purpose of studying the percentage of energy
associated with reflections and refractions of outgoing
rays, we examine the phase functions corresponding to
external reflection (p = 0), two refractions (p = 1), and
internal reflections (p = 2) for randomly oriented cubes
with sizes of 100 um. A wavelength of 0.55 um and a
refractive index of 1.31 are used in the calculation. The
phase function curves presented in Fig. 2 include the
contribution due to diffraction, which, in the limit of
geometric optics, accounts for 50% of the incident en-
ergy. The solid curve shows the normalized phase
function for the combination of diffraction and external
reflection. The externally reflected rays contribute to
the total incident energy in an amount of ~3%. The
directions of these contributions range from ~30 to
180°. The dashed curve in Fig. 2 illustrates the nor-
malized phase function for the combination of diffrac-
tion, external reflection, and two refractions. The

strong peak at the scattering angle of 46° is produced
by rays undergoing two refractions through two cubic
surfaces with a 90° angle. Externally reflected and two
refracted rays without the diffraction contribution ac-
count for ~26% of the total incident energy. The nor-
malized phase function due to contributions of dif-
fraction, external reflections, two refractions, and one
internal reflection is depicted in the dash-dot curve.
Scattered energy in the range of ~60-120° is largely due
to one internal reflection, which alone accounts for
~18% of the total incident energy. Finally, we include
contributions caused by rays undergoing internal re-
flections up to four in the calculation of the normalized
phase function, which is shown in the dotted curve. As
shown, the scattered energy corresponding to scattering
angles of 2120° is primarily contributed by internal
reflections more than once. Table I depicts the total
scattered energy using internal reflections up to four for
various refractive indices and sizes. For the cube case,
the total scattered energy for an incident energy of unity
decreases as the refractive index increases. For a re-
fractive index of 1.31, the total energy scattered from
larger rectangles is less than that from cubes owing to
the fact that additional internal reflections are needed
for rectangles to give the same scattered energy value.
As is clearly indicated in the table, the energy associated
with internal reflections of more than four, which were
not included in our calculations, is sufficiently small so
that the calculated phase function should be quite ac- .
curate. Since the objective of presenting Table I is to
examine whether four internal reflections are sufficient
in the computation of the scattering phase function,
calculations were not carried out for cases with dashes.
The neglect of these cases is also due to the enormous
amount of computer time required to complete a scat-
tering phase function.

In Fig. 3 are shown the effects of the refractive index
on the scattering phase function for randomly oriented
cubes using four real refractive indices m, of 1.1, 1.31,
1.57, and 2. The distinct peak at the 16° scattering
angle for the 1.1 refractive index is due to rays under-
going two refractions associated wigh the 90° angle of
the cube. This peak reduces its magnitude as the re-
fractive index increases. For a refractive index of 1.3,
it shifts to 46°, which is known as the 46° halo in at-
mospheric optics. This maximum scattering feature
is produced by minimum deviation rays, which undergo
two reflections through a 90° angle. However, it dis-
appears at a refractive index of v/2. Thus no distinct
scattering feature other than forward and backscat-
tering peaks is shown for refractive indices of 1.57 and

Table L Percentagé of the Total Scattered Energy for Varlous Refractive
Indices and Sizes. The Internal Reflections up to Four are used in the

Calculations
N/b/h (um) 100/100/100  100/100/1000  100/500/500
1.1 1.000 — —
1.31 0.998 0.986 0.992
1.57 0.995 — —
2 0.995 0.985 —
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Fig. 3. Effects of the real refractive index on the scattering phase

function for randomly oriented cubes as a function of the scattering
angle.

2. As pointed out previously, the scattered energy in
the 60-120 and 120-180° scattering angle regions are
basically contributed by one internal reflection and
internal reflections of more than one, respectively.
From the Fresnel reflection coefficient, it can be
shown that dE ./dm, ~ 2m, — 1 > 0 for internally re-
flected rays, where E .ot denotes energy associated with
internal reflections; i.e., as m, increases less internal
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light escapes through two refraction events, and con-

_sequently more escapes through events that include

reflections. Naturally, for very large values of m,, al-
most all the light is externally reflected, and so little
external light would be available. As a result, internally
reflected energy increases as the refractive index in-
creases for the range of m, values considered here. For
this reason, we see that the scattering phase function for
a refractive index of 1.1 in the 60-180° scattering angle
region is very small when compared with other refrac-
tive indices. Moreover, the backscattering peak is seen
to increase with increasing value of the refractive
index.

Figure 4 illustrates the effects of the particle shape
on the scattering phase function. Refractive indices of
1.31 [Fig. 4(a)] and 2 [Fig. 4(b)] are used in the calcula-
tion. In Fig. 4(a), it is seen that the diffraction peak for
the aspect ratio of 1/5/5 is the largest among the three
cases, since it has the largest surface area. Here we note
that the effective cross-section area of scattering for
randomly oriented nonspherical convex particles is
one-fourth of the surface area.” Both 1/5/5 and 1/1/10
cases show small phase function values for scattering
angles >60°. This is due to the probability of rays
undergoing two refractions and internal reflections
being greatest in the case of cubes. In particular, a light
ray that enters one face is more likely to strike a per-
pendicular face in the case of a cube and hence more
likely to undergo total internal reflection. However,
the effect of shape on the scattering phase function for
a large refractive index of 2 is less noticeable as shown
in Fig. 4(b) for aspect ratios of 1/1/1 and 1/1/10.
Scattering patterns for this refractive index are basically
characterized by forward diffraction and backscattering
with no apparent features between. Because of the
higher value of m,, less light escapes through two re-
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Fig. 4. Effects of the aspect ratio on the scattering phase function for randomly oriented particles as a function of the scattering angle for
refractive indices of 1.31 (a) and 2 (b).
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fractions, and so refraction events dominate the phase
function, even for elongated geometrics.

The effect of absorption for randomly oriented cubes
on the scattering phase function is examined in Fig. 5(a).
The size of the cube in this study is 2 um with an inci-
dent wavelength of 0.55 um, a real refractive index of
1.57, and two imaginary parts of 0.006 and 0.1. In the
0.1 case, large internal absorption takes place so that
most of the refracted and internally reflected rays are
absorbed within the cube. This explains the lower
values of the scattering phase function in the scattering
angle region from 30 to 180°. For the 0.006 case, in-
ternal absorption is rather small so that the shape of the
scattering phase function in the 30-60° region is very
close to the curve depicted in Fig. 3 where a size of 100
um is used for the cube. The diffraction pattern is in-
dependent of the refractive index, and, if the contri-
bution of the geometric reflection and refraction were
not considered, it should have been the same for the two
absorption cases. However, the size parameter con-
sidered is rather small (4a/\ ~ 15). Because of the use
of geometric ray tracing in the scattering phase function
calculation, external reflection and two refractions
contribute equally significantly to the scattered energy
in forward directions as compared with diffraction
contributions. As shown in this figure, the scattering
phase function at the 0° scattering angle for the 0.006
case has a larger value than that for the 0.1 case. The
reason for this is that rays undergoing two refractions
normal to the cube have larger contributions to the
scattered energy in the small absorption case.

m,=1.57, m;=0.006
103 s Present Study, 1/1/10um, X=0.55,m

—— Present Study, 2/2/2pum
——— Poliack ond Cuzzi {1980)
}_ Zerull and Gilese (1974),1.9< X <|7.8

PHASE FUNCTION

-2 | 1 | ) ]
(] 30 60 90 120 150 180

SCATTERING ANGLE,S§

(b)
Fig. 5.

In a recent study on the scattering by nonspherical
particles with sizes comparable to the incident wave-
length, Pollack and Cuzzi® developed a semiempirical
theory for the calculation of the scattering phase func-
tion based on simple physical principles and parame-
trization of available laboratory experimental data. In
particular, their phase function for particles having a
circumference to a wavelength ratio of greater than
several consisted of the sum of a diffraction component,
an external reflection component calculated with geo-
metric optics, and a parametrized internal transmission
component. In their report, comparisons were carried
out for the scattering phase function derived from their
theory and from analog measurements for randomly
oriented cubes of various sizes reported by Zerull and
Giese.? In Fig. 5(b), we produce their comparison re-
sults with two additional phase functions calculated
from the present geometric ray tracing program. The
present study includes computations for 1/1/1- and
2/2/2-um sized cubes randomly oriented in space with
an incident wavelength of 0.55 um. The size parameter
for the former is ~7.5, while the latter is twice this value.
Comparison of the present results with observed analog
data in the scattering angle region from 60 to 180° shows
a fairly good agreement, especially in the backscattering
parts (90-120°; 150-180°), where Pollack and Cuzzi’s
semiempirical theory produces slightly smaller values.
Scattering measurements involving NaCl cubes (m, =
1.54, m; = 0) presented by Perry et al.? and Kirmaci and
Ward1 also show a gradual increase of the scattering
phase function for scattering angles >120°, which is

104
103 . A=055um, m,=1.57
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(a) Effects of the imaginary refractive index on the scattering phase function for randomly oriented cubes as a function of the scattering

angle using a real refractive index of 1.57. (b) Comparisons of the present results with those calculated by Pollack and Cuzzi based on a semi-
empirical theory and measured by Zerull and Giese from a microwave analog experiment.
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Table Il.  Single-Scattering Albedos &, and Asymmetry Factors g for
Randomly Oriented Cubes with a Real Refractive Index of 1.57

a/b/h(um% 1/1/1 2/2/2 100/100/100
0 — — @p = 1
g = 0.995
0.006 @ =0.926 @) =0.870 —
g =0.632 g =0.737
0.1 — @p = 0.555 —
g =0.920

consistent with results of Zerull and Giese. The present
results, however, approximately bracket the analog data
in the forward diffraction region. A slightly better fit
could have been obtained by computing the diffraction
component for the actual size distribution function
based on the experiment. The good agreement between
our computed phase function and the experimental
data, especially at intermediate and backscattering
angles, encourages us to think that our calculations are
useful at much smaller values of the size parameter than
ones for which geometric optics are strictly valid.

In Table II, we list the single-scattering albedo and
asymmetry factor for randomly oriented cubes having
a real refractive index of 1.57 utilizing the scattering
phase function presented previously. These two basic
scattering parameters, which are most important in
radiative transfer analyses, are defined, respectively,
by

D0 = Osoal Texts
1 1
g= 2 f P(cosf) cosfid cosb,
-1

where 05, and oy are the scattering and extinction
cross sections, both of which along with the scattering
phase function are derived from the geometric ray
tracing program. For the no absorption case, the
asymmetry factor has a large value of 0.995 for 100-um
cubes because of the domination of forward scattering.
For large absorption (m; = 0.1), the single-scattering
albedo has a value of 0.555, and the asymmetry factor
is also quite large because of the contribution of forward
scattering. For m; = 0.006, the two cubes in the cal-
culation show a physically consistent pattern, i.e., the
decrease of the single-scattering albedo and the increase
of the g factor as the particle size increases. In com-
parison with the results of Pollack and Cuzzi,? a smaller
g (0.560) than the present value for 1-um sized cubes
(0.632) is found because of the smaller diffraction peak
[see Fig. 5(b)] derived in their analysis. They also
presented the g factor for equivalent spheres, which has
a value of 0.690. Clearly, the asymmetry factor for
randomly oriented cubes, which represents the relative
strength of forward scattering, would be overestimated
if equivalent spheres were substituted in the calculation.
Because of the enormous amount of computer time re-
quired for the single-scattering calculation involving
cubes by means of the ray tracing technique, cases de-
noted by dashes were not computed. In any event, it
suffices to understand from the values presented in this
table the behavior of the single-scattering albedo and
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asymmetry factor as functions of m; and the size of the
cube. While we do compare single-scattering results
for small cubes with those for equivalent spheres as
presented by Pollack and Cuzzi,? we have not performed
comparisons for large cubes. In the context of geo-
metric optics, the scattering phase function for spheres
is generally characterized by the sharp diffraction peak,
rainbow features, and backscattering peak (see, e.g.,
results presented by Liou and Hansen!! for m, = 1.33
and 1.50). Thus comparisons of the scattering phase
functions involving large cubes and parallelepipeds and
equivalent spheres will not provide additional physical
insight. However, we will depict the linear polarization
curve for spheres and compare it with results for cubes,
parallelepipeds, and columns.

Figure 6(a) shows comparisons of the degree of linear
polarization for randomly oriented cubes using four
different refractive indices. For the 1.1 case, a larger
polarization peak with a value of ~80% is shown at the
scattering angle of ~105°., This peak is clearly associ-
ated with rays undergoing external reflections, since in
the 60-150° scattering angle region the scattered energy
due to internal reflections is insignificant, as pointed out
previously. Negative polarization is shown for the 16°
halolike peak and in backscattering directions. As the
refractive index increass to 1.31, which is the refractive
index for ice, the linear polarization pattern shows
considerable structure over the full range of scattering
angles. Negative polarization is seen at the 46° halo,
as it is in the case of hexagons. Small positive polar-
ization (~10%) is seen in the forward directions and in
the 120-140° scattering angle region. Strong negative
polarization is produced in backscattering directions
with a maximum value of 50% at a scattering angle of
~176°. The polarization patterns are randomly ori-
ented cubes having a refractive index greater than /2
exhibit similar but broader features, i.e., broad maxi-
mum in the 30-40° scattering angle region and a nega-
tive peak at an ~175° scattering angle. The positive
maximum and negative minimum as well as the zero:
polarization cross point shift to larger scattering angles
as the refractive index increases. Increasing the re-
fractive index increases the positive polarization max-
imum in forward directions, and the reverse is true in
backscattering directions. Much of these polarization
patterns reflect the competition between positively
polarized externally reflected light and negatively
polarized externally transmitted light.

Figure 6(b) illustrates the effect of internal absorption
on the scattered polarization pattern for randomly
oriented cubes using a real refractive index of 1.57. The
incident wavelength is 0.55 um, and the size of the cube
is 2 um. For the large absorption case (m; = 0.1), the
linear polarization pattern is basically produced by
external reflections except in the region from 0 to 30°
scattering angle where two refractions also make a sig-
nificant contribution to the scattered energy as is evi-
dent from Fig. 5(a). The maximum positive polariza-
tion occurs at a scattering angle of ~70° for m, = 1.57.
For the small absorption case (m; = 0.006), two refrac-
tions and one internal reflection make significant con-
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Fig. 6. Effects of the real m, and imaginary m; refractive index on the degree of linear polarization for randomly oriented cubes as a function
of the scattering angle: (a) real part (m; = 0); (b) imaginary part (m, = 1.57).

tributions in the 30-180° scattering angle region. As
a result, positive polarization is greatly reduced. Ex-
cept in the 0-30° region, its polarization pattern re-
sembles that of no absorption. Generally, as the
imaginary refractive index increases, the positive po-
larization increases due to the increasing dominance of
externally reflected light.

Finally, we examine the influence of the particle
shape on the polarization pattern. Included in Fig. 7
are polarization results for hexagonal columns with an
aspect ratio of a/L = 1/5, where a and L are the radius
and length, respectively, presented by CL and for
spheres presented by Liou and Hansen,!! both of which
are derived by means of a geometric ray tracing pro-
gram. The linear polarization pattern of randomly
oriented rectangular parallelepipeds closely resembles
that of cubes with larger positive values from 0 to 140°
scattering angles. Rectangular parallelepipeds produce
double-negative maxima in backscattering directions,
while cubes show a single-negative peak located at the
176° scattering angle. When both results are compared
with hexagonal cylinders, a number of significant dif-
ferences are seen. These include negative polarization
at the 22° halo and larger positive polarization in the
90-120° scattering angle range produced in the hexagon
case. Both rectangular and hexagonally shaped par-
ticles generate a maximum at an ~130° scattering angle,
which is associated with rays undergoing two internal
reflections. In CL, comparisons between the computed
and measured degree of linear polarization have been
made for plates and columns. It is shown that the
computed linear polarization for 20-um plates closely
matches the experimental data for plates having a
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Fig. 7. Influence of the particle shape on the linear polarization

pattern as a function of the scattering angle. Included for compari-

sons in the figure are cubes, parallelepipeds, hexagons, and spheres.

All the polarization curves are computed from geometric ray tracing
programs.

modal diameter of ~5 um.12 Scattering and polariza-
tion patterns for cubes, rectangular parallelepipeds, and
hexagonal cylinders deviate greatly from those for
spheres as is well illustrated in this figure. In the limit
of geometric optics, spheres produce a maximum at a
scattering angle of ~80°, which is generated by external
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reflections. The peaks at about the 140 (primary
rainbow) and 130° (secondary rainbow) scattering an-
gles are caused by rays which undergo one and two in-
ternal reflections, respectively.l! As the size of the
sphere decreases, it is noted that the maximum pro-
duced by external reflection gradually disappears.
Other interesting polarization differences between
spherical and nonspherical particles are noted in the
0—40 and 150-180° scattering angle regions where the
sign of polarization is reversed.

IV. Summary

In this paper we have extended the geometric ray
tracing theory for the scattering of hexagonal cylinders
derived by CL to cubes and rectangular parallelepipeds.
Calculations have been carried out to investigate the
effects of real and imaginary parts of the refractive
index on the scattering phase function and the degree
of linear polarization for randomly oriented cubes. The
effects of the aspect ratio of randomly oriented paral-
lelepipeds on the scattering and polarization patterns
are also examined. Below is a summary of significant
findings from the present study:

(1) Using the real refractive indices m, of 1.1, 1.31,
1.57, and randomly oriented cubes, we find that the
scattered energy in the 60-180° scattering angle, which
is produced largely by internal reflections, reduces as
m, decreases (Fig. 3). The low scattering angle halo
feature produced by light rays undergoing two refrac-
2i/o_ns through an angle of 90° disappears for m, =

2.
(2) Rectangular parallelepipeds scatter less energy
than cubes in scattering angles of >60° for a refractive
index of 1.31. However, differences become insignifi-
cant for a larger refractive index of 2 (Fig. 4).

(3) Comparisons of the phase function from the
present program for cubes with that derived by Pollack
and Cuzzi® based on a semiempirical theory reveal that
the phase function in the scattering angle regions of
90-120 and 150-180° is slightly improved by performing
the geometric optics calculations much more rigorously
when both are compared with the measured data pre-
sented by Zerull and Giese® (Fig. 5). As noted earlier,
the good agreement between our calculations and the
laboratory data may imply that phase functions calcu-
lated by diffraction/geometric optics theory may pro-
vide a good approximation to the phase function of
randomly oriented nonspherical particles, even for size
parameters as small as ~10.

(4) For real refractive indices of >+/2, linear polar-
ization patterns for randomly oriented cubes exhibit
similar features including a broad maximum in the
30-40° scattering angle region and a negative peak
around a scattering angle of 175° (Fig. 6). For a real
and imaginary refractive index of 1.57 and 0.1, it is
shown that the linear polarization pattern is dominated
by external reflections with a maximum positive po-
larization at about ~70 scattering angle.

(5) Using a real refractive index of 1.31, we show that
the polarization patterns for cubes and parallelepipeds
are extremely similar. However, they both differ sig-
nificantly from that for hexagonal cylinders in the 22°
halo and 90-120° scattering angle regions (Fig. 7).
These nonspherical particles do not generate maximum
positive polarization in the rainbow regions, which are
typical for the scattering of light by spheres. Spheres,
on the other hand, will not produce halo features which
exhibit negative polarization.

The above findings appear to be of significance for the
interpretation of observed scattering and polarization
data to identify the shape and optical property of cloud
and aerosol particles in planetary atmospheres.
Moreover, the present single-scattering phase function
and polarization information should also be useful for
understanding the transfer of radiation in an atmo-
sphere containing nonspherical particles.
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