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Abstract 

On the basis of 3-D Monte Carlo photon tracing simulations, we have developed a parameterization 

of solar fluxes over mountain surfaces by means of the multiple linear regression analysis 

associated with topographic information, including elevation, solar incident angle, sky view factor, 

and terrain configuration factor. For clear skies without aerosols and clouds, the regression equation 

for the direct flux can explain more than 98% of the variation in which the solar incident angle is 

the dominant factor, except when the sun is very low or at zenith. About 60% of the variation in the 

diffuse flux is predicted by the regression equation in which the mean elevation, sky view factor, 

and solar incident angle are key factors. The terrain-reflected fluxes, proportional to the surface 

albedo, are well correlated with the terrain configuration factor with more than 80% of the variation 

that can be explained. The coupled fluxes involve intricate interactions, and the regression analysis 

is less satisfactory in cases of low albedo values. However, over high-albedo surfaces, the terrain 

configuration factor becomes most dominant, leading to a significant improvement in regression 

performance. In these analyses, a surface albedo invariant with wavelength has been used. Using a 

region over the Sierra Nevada as a testbed, the preceding regression parameterizations have been 

specifically developed so that the fluxes evaluated from the 3-D Monte Carlo model over intense 

topography can be used as a perturbation term to correct those computed from the plane-parallel 

counterpart, commonly used in regional climate models and GCMs.  
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1.   Introduction 

The spatial and temporal distribution of the surface solar radiation is critical to many 

processes including snowmelt, soil moistening, photosynthesis, and evapotranspiration [Geiger, 

1965; Bonan, 2002; Gu et al., 2002; Müller and Scherer, 2005]. It results from interactions between 

the direct and diffuse solar beams and the surface. Because of the complexity of spatial orientation 

and optical properties of the surface, quantifying these interactions and hence surface fluxes has 

been very difficult.  

A number of models with a varying degree of sophistication have been developed to evaluate 

surface solar fluxes over mountainous areas [Hay and McKay, 1985; Duguay, 1993]. In these 

models, the direct solar flux was calculated by employing the correction based on the cosine of 

solar incident angle, and considering the shadow effect caused by nearby mountains [e.g., Olyphant, 

1986]. The diffuse solar flux has been modeled as being proportional to the sky view factor, which 

is the portion of sky dome visible to the target [Dozier and Frew, 1990]. Factors contributing to the 

terrain-reflected flux have generally not been considered explicitly, but are approximated by 

assuming a first-order reflection between surrounding terrain and the target surface [e.g., Dubayah 

et al., 1990]. Miesch et al. [1999] further investigated this issue using a Monte Carlo approach over 

a 2-D rugged terrain to calculate surface solar fluxes, and concluded that a 10% error can occur if 

the terrain effect is not accounted for. 
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Parameterizations using topographic information have been developed to calculate solar 

radiation over mountainous surfaces [e.g. Dubayah et al., 1990; Essery and Marks, 2007]. However, 

as pointed out by Dubayah and Rich [1995], the sky view factor is calculated assuming that diffuse 

radiation is isotropic. Employing empirical directional distribution of diffuse intensity, Wang et al. 

[2005] found that substantial errors could be produced if the anisotropic nature of diffuse radiation 

is not considered. The angular distribution of the diffuse radiance, which is strongly dependent on 

the atmospheric conditions, cannot be accurately resolved by conventional radiative transfer 

schemes in climate models. In these parameterizations, reflected radiation is generally proportional 

to the surrounding mountain areas visible by the target. However, some of these areas may have 

already been shaded and receive very little or no reflected radiation. Moreover, these simplified 

approaches do not account for the effect of multiple reflections, which is particularly important over 

snow surfaces and steep valleys [Dozier, 1980]. In view of above, a more sophisticated 3-D 

radiative transfer approach should be utilized to develop a more accurate parameterization. 

Chen et al. [2006] developed a 3-D Monte Carlo radiative transfer model to calculate solar 

fluxes exactly over mountains in a clear sky atmosphere and found that the reflected radiation can 

account for 3% of the total surface fluxes during the winter time with a high surface albedo. They 

also showed differences in the surface solar flux ranging from 5 to 20 W/m2 between mountainous 

and unobstructed horizontal surfaces with the same mean elevation. Liou et al. [2007] utilized this 
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3-D model to evaluate the surface fluxes over the Tibetan Plateau and illustrated that anomalies of 

the surface solar flux with reference to a horizontal surface can be as large as 600 W/m2 in shaded 

areas. The domain-average solar surface flux over a regional model scale (e.g., 50×50 km2) with 

intense topography can deviate from the smoothed surface by 10−50 W/m2. Although the 3-D 

Monte Carlo photon tracing program might be the most accurate method for radiative transfer 

calculation involving mountains, however, this approach is computationally expensive, and its 

direct implementation in a climate model would not be practical.  

In this study, we developed a parameterization of surface solar fluxes based on the results 

from a 3-D Monte Carlo simulation using the intense topography of the Sierra Nevada as our test 

bed. Employing sub-grid-scale topographic parameters as independent variables, multiple linear 

regression analysis can be carried out to evaluate surface solar fluxes. Given the information about 

topography, a more accurate and physically-based surface solar flux can be predicted from the 

resulting simple linear regression equations. In current regional climate models and GCMs, 

conventional 1-D radiative transfer schemes assuming an unobstructed horizontal surface are 

typically used to compute solar fluxes. For this reason, we develop a parameterization that predicts 

flux deviations over mountains from the horizontal surface counterpart. Having the direct and 

diffuse fluxes calculated by a plane-parallel radiative transfer scheme, along with solar incident 

angle and terrain information (e.g., the sky view factor, terrain configuration factor, etc.) as inputs 
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variables, the present parameterization can be utilized to evaluate the solar fluxes received by 

mountain surfaces more reliably and accurately for use in climate models. 

The presence of clouds could significantly alter the distribution of surface solar fluxes. 

However, the spatial and temporal variations in clouds are very large, and the optical properties of 

clouds are modulated by numerous variables, including cloud optical depth and height, as well as 

the size and shape spectra of cloud particles. In order to focus on the effect of complex topography 

on surface solar fluxes, we have designed parameterization of these fluxes primarily for clear sky 

conditions. Although the annual mean of global average cloud amount over land is 54% [Warren et 

al., 2007], this parameterization should be valid for the direct flux and could provide first-order 

estimate for diffuse and reflected-related fluxes. 

This paper is organized as follows: A brief introduction to the 3-D Monte Carlo photon tracing 

program with the new surface configuration is given in Section 2. The various categories of 

downward solar fluxes to be predicted, and several relevant topographic parameters to be used as 

independent variables, such as the solar incident angle, the sky view factor, and the terrain 

configuration factor, are described in Section 3. In Section 4 we present the results of the multiple 

linear regression for various solar flux components. In addition, we show the impact of topographic 

variables on flux variations and their relative importance. Application of the present 

parameterization to climate models and its compatibility to various domain sizes and atmospheric 
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conditions are discussed in Section 5. Conclusions are given in Section 6. 

 

2.  3-D Radiative Transfer Model for Surface Solar Flux Calculations 

The Monte Carlo approach used in this study generally follows the model developed by Chen 

et al. [2006], except for the land surface configuration. Therefore, only a brief description is given 

here. In the current approach, the atmospheric domain is divided into finite cuboid cells such that 

the optical properties are homogeneous within each cell. Photons entering the top of the atmosphere 

(TOA) are defined by unit irradiance, and their direction is given by the position of the sun. The 

optical path length l, which a photon travels from the TOA to its first encounter with an air 

molecule, or between two encounters with an air molecule, is determined by Beer’s law: l = −ln , 

where  is a random number uniformly distributed within the interval [0,1]. When a photon reaches 

the point of encounter, the probability it is absorbed or scattered is dependent on the 

single-scattering albedo, the ratio of the scattering cross-section to the extinction cross-section. 

 In the absorption case, the photon is terminated. However, if scattering occurs, the photon is 

deflected in a direction determined by the mean scattering phase function of the cell, which is a 

function of the incoming and outgoing directions characterized by  (cosine of the zenith angle, 

and , the azimuth angle. Once the photon hits the ground, the energy of the reflected photon is 

equal to the product of the energy of incoming photon and the surface albedo. To a good 
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approximation, the land surface can be taken as Lambertian for flux calculations, that is, the 

reflected flux is isotropic. The direction of the reflected photon is determined by 

1cos   and 22  , where 1 and 2 are random numbers within the interval [0,1];    

and   are the zenith and azimuth angles relative to the inclined surface, respectively. Each photon 

is traced until it is absorbed by the atmosphere or leaves the TOA. The flux at each cell facet can be 

obtained by tallying the total weights of the photons crossing the cell’s boundary. 

In the development of a 3-D Monte Carlo photon tracing model, Chen et al. [2006] adopted a 

stair-like form to represent mountain surfaces. This approximation is computationally efficient and 

convenient for programming implementation. However, such surfaces can result in more reflection 

events than those on realistic inclined surfaces. For example, for a point on a horizontal facet very 

close to a vertical facet of the stair-like form, almost half of the sky dome is obstructed by the 

vertical facet. When a photon hits this point and is reflected, there is about 50% probability that this 

photon will then hit the vertical facet, leading to the occurrence of another reflection event. This 

effect can trap more energy at the corner between a horizontal and a vertical facet, producing a 

substantial surface flux. However, the presence of vertical cliffs is not very common for realistic 

land surfaces. Furthermore, because a slope is treated as a combination of a horizontal and a vertical 

facet in this approximation, the modeled surface area would be larger than the real surface area, 

resulting in underestimation of the surface radiative flux in the whole domain. Although the 
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preceding two effects might compensate each other in flux calculations over a large domain, it 

could produce significant errors locally.  

In view of the above, we have developed a more realistic surface model using the following 

approach. In each pixel the surface is constructed by means of triangles based on the elevation data 

available from the digital elevation model (DEM). Using the method introduced by Jenness [2004], 

we connected the pixel’s center point to the center points of eight surrounding pixels to generate 

eight 3-D triangles. Subsequently, the portions of those triangles residing within the pixel’s 

boundaries are considered as the “real” topography of the pixel in the model. These triangles are 

also used to estimate the surface area of each pixel. As also shown by Jenness [2004], the area 

estimated from this method is close to that calculated by more sophisticated methods, such as the 

triangulated irregular network (TIN), for pixel numbers more than 250 in the domain. 

In this study, we used the midlatitude climatalogical atmospheric profile with 70 layers from 

the mean sea level to 70 km. The vertical resolution varies from 5km near TOA to 100 m near the 

surface. While the vertical resolution can be altered arbitrarily, we found that surface fluxes are not 

sensitive to changes in vertical grid. Because our current effort has focused on developing a 

physically-based and workable parameterization for the sub-grid-scale terrain effect on surface solar 

fluxes, we have used clear sky conditions without aerosols for analysis. In this case, Rayleigh 

scattering is the only atmospheric scattering mechanism included in Monte Carlo simulations. In 
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Section 5.c, we have discussed the manner in which the current parameterization can be applied to 

variations in atmospheric gaseous profiles, aerosols, and clouds. 

To test the accuracy of Monte Carlo photon tracing, 4×106 photons were first assigned to a 

20×20 km2 computational domain with a 1×1 km2 resolution, so that approximately 104 photons are 

targeted toward each surface pixel. We then increased the number of photons by a factor of 10 (i.e., 

to 4×107), and found that the resulting relative difference in the mean surface flux is less than 0.3%. 

Thus, use of 104 photons per pixel should suffice to achieve accurate statistics, and this photon 

density is employed throughout this study. 

The purpose of this study is to investigate the mountain effect; therefore, a uniform surface 

albedo value is used in Monte Carlo simulations, although we illustrate the sensitivity of fluxes 

involving terrain reflection to surface albedo by performing an additional set of Monte Carlo 

simulations with elevated—but still uniform—surface albedo. In this study, only one spectrally 

invariant surface albedo is used in all simulations. As shown in Liou et al. [2007], we have carried 

out a 3-D Monte Carlo experiment utilizing two MODIS albedo values for the visible (0.3-0.7 m) 

and near-IR (0.7-5.0 m) regions versus one spectrally invariant albedo in the shortwave region. 

Differences in surface broadband fluxes were shown to be less than 0.6 W/m2, negligible in 

comparison to large anomalies between mountains and a flat surface, which are on the order of 100 

W/m2. For this reason and for the purpose of broadband flux calculation, we have used the 
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spectrally invariant albedo. 

As the experiment test bed, we selected a rugged area of the Sierra Nevada in the Western 

United States, composed of a variety of elevations and slopes (Figure 1). The surface topography 

with a 1 km resolution was taken from the HYDRO1k geographic database available from the U. S. 

Geological Survey’s (USGS) National Center for Earth Resources Observation and Science (EROS) 

data center. This area is divided into eighty 20×20 km2 domains to represent the general terrain 

characteristics and topographical variations. Because the model design is cyclic at the domain 

boundary, photons exiting the western boundary will re-enter the domain at the eastern boundary. 

As a result, areas with low elevation near the eastern boundary could be shadowed by mountains at 

the western side. In order to reduce this edge effect, only the topographic information and surface 

radiative fluxes in the central 10×10 km2 areas were used for parameterization. This domain size 

was chosen to be comparable to that of a regional climate simulation or operational weather 

forecast. 

 

3.  Variables for Multiple Linear Regression Analysis 

As shown in previous studies [e.g. Chen et al., 2006], the direct, diffuse, and reflected solar 

fluxes are each controlled by different topographic variables. Thus, we have divided the surface 

solar fluxes into categories and perform regressions for each flux category separately. As illustrated 
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in Figure 2, the solar radiative fluxes can be categorized into five components according to the path 

of the photons that make them up: (1) Direct flux, denoted as Fdir, is composed of photons hitting 

the ground directly from the sun without encountering scattering or reflection; (2) Diffuse flux, 

denoted as Fdif, contains photons experiencing single or multiple scattering by air molecules, but 

never encountering surface reflection; (3) Direct-reflected flux, denoted as Frdir, is comprised of 

unscattered photons reflected by nearby terrain; (4) Diffuse-reflected flux, denoted as Frdif, is 

similar to direct-reflected flux, except that the photon is first scattered by air molecules and then 

reflected by nearby terrain; (5) Coupled flux, denoted as Fcoup, represents photons that, after being 

reflected by the surface, encounter scattering, or one or more additional surface reflections. It is 

clear that the direct and diffuse fluxes are independent of surface albedo. Since Frdir and Frdif contain 

photons that have been reflected once, they are simply proportional to albedo. Only the coupled 

flux has nonlinear relationship with surface albedo. It is also noted that there will be no Frdir and 

Frdif on an unobstructed horizontal surface. In this study, the solar radiative flux received by 

mountain surfaces is defined as the total solar energy reaching the ground divided by the horizontal 

surface area instead of the mountain area. This definition is selected so that differences in the solar 

energy budget between mountainous and unobstructed horizontal surfaces can be compared in a 

consistent manner. It should also be noted that Fdif defined in this study differs from the diffuse flux 

defined in conventional radiative transfer schemes, which is the summation of Fdif and Fcoup since 

 12



all reflected radiation, including upward and downward components, is considered as diffuse fluxes. 

In current climate models, conventional plane-parallel radiative transfer schemes have already 

developed to calculate solar fluxes on a horizontal surface with a known elevation. Therefore, the 

purpose of the present parameterization effort is to produce relative deviations of the fluxes from 

those of an unobstructed horizontal surface, given sub-grid-scale topographic information. More 

specifically, the results of the multiple linear regression analysis done in this study are relative 

deviations of the five components of downward solar surface fluxes described above from those of 

an unobstructed horizontal surface with the same mean elevation using the broadband plane-parallel 

radiative transfer model developed by Fu and Liou [1992] and further improved by Gu et al., [2003; 

2006] for application to climate models and GCMs. For the direct, diffuse, and coupled fluxes, their 

corresponding relative deviations are defined as 

i
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i

F

FF
F

ˆ

ˆ
 , i = dir, dif, coup,                   (1) 

where Fi are the surface fluxes over mountains calculated by the 3-D Monte Carlo model, and F̂i are 

the fluxes with reference to the unobstructed horizontal surface. However, in the case of the direct- 

and diffuse-reflected fluxes, F̂rdir and F̂rdif are zeros so that Eq. (1) cannot be defined. For this reason, 

we set  
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F  .                          (2) 

To prepare the independent variables for regression, we introduce the concept of the sky view 

 13



factor and the terrain configuration factor, which are widely used in estimating the diffuse and 

reflected fluxes over mountainous areas, respectively. The sky view factor Vd was originally defined 

as the ratio of the diffuse flux received by a point to that received by an unobstructed horizontal 

surface [Dubayah et al., 1990]. However, because the geometry of diffuse radiation is dependent on 

the position of the sun and atmospheric conditions, calculating the sky view factor is 

computationally expensive and storage intensive. If one assumes that the diffuse flux is isotropic, 

the sky view factor becomes the portion of the sky dome visible to the target point as shown in 

Figure 2. This term can be obtained by calculating the area of unobstructed hemisphere given by 

[Dozier and Frew, 1990] 
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where s is the slope, s is the aspect of the slope, and H is the horizon angle measured from the 

zenith down to the local horizon at the orientation direction , which can result either from 

“self-shadowing” by the slope itself or from nearby mountains. 

The terrain configuration factor Ct, which is defined as the area of surrounding mountains 

visible to the target point, also shown in Figure 2, can be written as [Dozier and Frew, 1990] 
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where  is the angle of the ray parallel to the slope defined by 

)cos(tan

1
tan

ss 
 


 .                       (5) 

On an unobstructed infinite slope, the direct solar flux is proportional to the cosine of the solar 

incident angle i, which is defined as the angle between the direction of incident ray and the normal 

vector of the slope and can be expressed by 

),cos(sinsincoscoscos 000   sssi              (6) 

where 0 and 0 are the solar zenith and azimuth angles, respectively. Defining 0 = cos0, and i = 

cosi, the mean i of the whole domain can be calculated by taking the spatial average of Eq. (6): 
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where angle brackets denote spatial mean. Therefore, given the position of the sun, the average of i 

for the whole domain can be determined if the means of coss, sinscoss, and sinssins are given. 

In addition to the mean values for the sky view factor Vd, the terrain configuration factor Ct, 

and the cosine of the solar incident angle i, conventional topographic parameters for each 10×10 

km2 domain, such as the mean elevation h and slope s, are used. We also employed their 

standard deviation ((h), (s), (Vd), (Ct), and (i)) and skewness ((h), (s), (Vd), (Ct), and 

(i)) in the multiple linear regression analysis. In this manner, 15 independent variables are 

available for the regression analysis. The magnitudes of the independent variables vary substantially 

and the units associated with them may be different. Therefore, it is desirable to non-dimensionalize 
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the variables prior to performing the regression analysis. All independent variables are processed by 

first removing their means and then normalizing them by their respective standard deviations. 

It should be noted that these variables are not necessarily orthogonal to each other. Since it is 

desirable to produce a parameterization with as few independent variables as possible, independent 

variables highly correlated to one another must be reduced to a single variable. To accomplish this, 

we first calculate correlation coefficients between each successive pair of variables. When the 

correlation coefficient between two variables is larger than 0.9, one of them will be removed. It 

turns out that some variables are indeed highly correlated. As implied by Eq. (4), the correlation 

coefficient between Vd and Ct is very close to -1. Also, s is highly correlated with Ct and 

therefore it is anti-correlated with Vd. Furthermore, s, Vd, Ct, and i are highly correlated 

with their standard deviations (s), (Vd), (Ct), and (i), respectively. As a result, the 

independent variables for the regression of F′dir and F′dif are h, (h), (h), (s), Vd, (Vd), i, 

and (i), while Vd and (Vd) are replaced by Ct and (Ct) for F′rdir, F′rdif, and F′coup because Ct is 

originally designed for reflected-related fluxes. Also, note that when 0 is equal to 1, i is highly 

correlated to s since when the solar zenith angle is zero, i is equal to s according to Eq. (6). 

Therefore, when the sun is at the zenith, i and (i) will be removed from the regression analysis. 

 

4.  Results of Parameterization  
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We choose seven different solar zenith angles (SZA) in this study, including 0 = 0.1, 0.25, 0.4, 

0.55, 0.7, 0.85, and 1. For each SZA (except 0 = 1), four different solar azimuth angles (0º, 90º, 

180º, and 270º) are applied for each of the 80 domains described at the end of Section 2. Therefore, 

there are 320 samples for each SZA (but only 80 samples for 0 = 1) to perform multiple linear 

regression. To obtain the simplest possible regression equation for each flux component, if the 

regression coefficients do not differ significantly from zero by using the t-test at the 90% 

confidence level, the corresponding independent variables are removed from regression equations. 

Since all independent variables are normalized, their associated regression coefficients represent the 

flux anomaly magnitude when the variable is increased by one standard deviation. 

a. Direct flux: The regression equation for deviation of the direct flux can be expressed by 

F′dir = a1 + b11i + b12Vd,                    (8) 

where a1 is the intercept term, b11 and b12 are regression coefficients. Values of a and b for each 0 

are listed in Table 1. The intercept term represents the mean deviations between mountainous and 

unobstructed horizontal surfaces. When the sun’s position is very low, the shading effect leads to a 

3% reduction in the direct flux, corresponding to a negative deviation of 1.5 W/m2, though the mean 

deviation generally becomes insignificant when the sun is close to the zenith. The cosine of the 

solar incident angle is the dominant factor in direct flux calculations. A one standard deviation 

increase in i can lead to 31% and 2.7% increases for 0 = 0.1 and 0.85, respectively, 
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corresponding to 17 and 36 W/m2 increases in the direct solar flux. Vd has negative impact on F′dir 

with the sun very close to the horizon. However, the incoming flux becomes smaller in association 

with larger sky view factors as the position of the sun is higher. 

To provide information about the explanatory power of the regression model, the left panels of 

Figure 3 compare the absolute values of the deviations in direct fluxes between the 3-D model and 

regression results for three values of 0. The coefficients of multiple determination R2, listed in 

Table 2, are larger than 0.98 except for 0 = 0.1 and 1, revealing that Eq. (8) can predict the direct 

flux quite accurately. The corresponding root mean square errors (RMSE) are generally less than 3 

W/m2, while it could reach 10 W/m2 for 0 = 0.1. Very small R2 value when 0 = 1 indicates that the 

direct flux is almost independent of i and Vd. When the sun is at the zenith, there will be no 

shading effect at all; in this case, the variation of i is very small so that the direct flux cannot be 

explained by these two parameters. Even if all 8 independent variables mentioned in the end of 

Section 3 are used in the regression, R2 is still smaller than 0.07, implying that the variation is rather 

random. Nevertheless, as shown in Figure 3, variation in the direct flux for 0 = 1 is about 2 W/m2, 

much smaller than variations in other cases, which are on the order of 100 W/m2. 

b. Diffuse flux: The regression equation for deviation of the diffuse flux can be expressed by 

F′dif = a2 + b21h + b22i + b23Vd + b24(h).           (9) 

Values of the intercept and regression coefficients are also listed in Table 1. The most significant 
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factor determining deviation of the diffuse flux is the mean elevation, with which it is positively 

correlated. To understand the relationship between F′dif and h, we calculate the vertical 

distribution of the downward diffuse flux Fdif without topographic effect. As shown in Figure 4, the 

curves of downward diffuse fluxes are concave, and the curvature generally increases with 

increasing elevation. Therefore, for two domains with the same (h) and (h) but different h, 

domain averaged deviations of the diffuse flux will be larger for the domain with larger h. 

Furthermore, since the curves are concave, the domain with a positive (h) will receive less diffuse 

fluxes than a domain with the same mean elevation but negative (h). This will lead to 

anti-correlation between F′dif and (h), as shown in Table 1. However, there is an inflection point on 

the curve for 0 = 0.1, leading to smaller regression coefficients for both h and (h). 

F′dif also increases with increasing i, illustrating the anisotropic nature of diffuse flux. Since 

the maxima of the phase function for Rayleigh scattering resides at the forward and backward 

directions for an unpolarized light beam, the majority of scattered photons move in the same 

direction as the direct solar beam, resulting in a positive correlation between F′dif and i. Even 

though the diffuse flux is anisotropic, the results determined from multiple linear regression display 

that F′dif is largely proportional to the mean sky view factor based on the isotropic assumption, 

which has been used by many previous studies [e.g. Dozier and Frew, 1990]. The regression 

coefficients of Vd decrease as 0 increases, indicating that the shading effect becomes less 
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important when the sun is close to the zenith. On the other hand, the regression coefficients for i 

generally increase with increasing 0. These two effects compensate each other and lead to an 

almost constant R2 on the order of 0.6 when i is less than 1.0, as listed in Table 2. Comparisons 

between the regression and simulation results are also shown in the right panels of Figure 3. The 

range of deviations in the diffuse flux is approximately 5 W/m2, which is ~ 15% of the total. While 

the explanation power for F′dif is smaller than that of F′dir, RMSE of Eq. (9) for all 0 are all less 

than 0.5 W/m2, smaller than those for Eq. (8). 

c. Direct- and diffuse-reflected fluxes: The regression equations for deviations of the 

direct-reflected and diffuse-reflected fluxes can be expressed, respectively, by 

F′rdir = a3 + b31Ct + b32h + b33(h),                 (10) 

F′rdif = a4 + b41Ct + b42h + b43(h),                 (11) 

where the intercept terms and regression coefficients are listed in Table 3. Eqs. (10) and (11) can 

explain variation in the reflected fluxes quite well. Also noted in Table 2, the R2 values for F′rdir and 

F′rdif are generally about 0.85 and 0.9, respectively, except when the sun is close to the horizon. 

Comparisons between the regression and simulation results are displayed in Figure 5. RMSE for 

F′rdir and F′rdif are 0.08-0.5 and 0.01 W/m2, respectively. The intercept terms, which represent the 

mean responses, are always positive because these two fluxes are zero on an unobstructed 

horizontal surface. The dominant independent variable in the regression model for F′rdir and F′rdif is 
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the mean terrain configuration factor Ct. The factor h also has a positive impact on F′rdir and F′rdif 

because the reflected photons encounter less absorption or scattering at a higher altitude before 

hitting the ground again. The negative regression coefficients for (h) are a result of the fact that the 

extinction coefficient, which is proportional to the air density, increases as the elevation decreases. 

It is noted that the regression coefficients for F′rdir and F′rdif are very close, showing that the factors 

controlling variations in these two components are probably the same. 

The variation in F′rdir is ~ 1–8 W/m2, depending on 0, whereas the variation in F′rdif is ~ 0.3 

W/m2, as shown in Figure 5. It should be noted that F′rdir and F′rdif are functions of the surface 

albedo. Because F′rdir and F′rdif fluxes are composed of photons that undergo one reflection only, 

they are directly proportional to the surface albedo. In Eqs. (10) and (11), the regression coefficients 

were derived from 3-D Monte Carlo simulations for a surface albedo of 0.1. To obtain F′rdir and 

F′rdif with different albedo values, we can linearly scale these coefficients according to the new 

albedo value. For example, over the snow-covered surface with an albedo of 0.7, variations in F′rdir 

and F′rdif would be 7–56 and 2.1 W/m2 (a factor of 7), respectively. 

d. Coupled flux: Deviation of the coupled flux can be expressed by the following regression 

equation: 

F′coup = a5 + b51i + b52Ct + b53h,                (12) 

where the intercept term and the regression coefficients are listed in Table 4. From the values of R2 
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listed in Table 2, we find that the explanation power of Eq. (12) is generally less than those for other 

flux components. The intercept terms are always negative. This is because the coupled flux is 

approximately the backscattering of the total energy reflected to the atmosphere. Because some 

reflected photons are intercepted by nearby mountains, the total amount of the coupled flux over 

rugged areas will be less than that over an unobstructed horizontal surface. Since the incoming 

direct and diffuse fluxes are positively correlated with i, the total amount of the reflected solar 

energy should also be proportional to i, leading to positive values of b51. Additionally, F′rdir and 

F′rdif are independent of i so that the energy reflected back to the atmosphere, which can be 

estimated by subtracting F′rdir and F′rdif from the total reflected energy, is also proportional to i. 

The negative regression coefficients for Ct indicate that the real physical mechanism determining 

F′coup is the Vd, not Ct, since the backscattering effect dominates. Comparisons between the 

regression and simulation results are displayed in Figure 6, and it shows that variations in coupled 

fluxes are within 0.5 W/m2 for this surface albedo value. Since the magnitude of variation is small, 

RMSE are generally less than 0.07 W/m2. 

The coupled flux is a nonlinear function of the surface albedo. For this reason, we have 

carried out an additional regression analysis using an albedo of 0.7. The intercept terms and 

regression coefficients are also listed in Table 4. As shown by R2 in Table 2, the new regression 

equation can explain variation in the coupled flux much better than that with an albedo of 0.1. As 
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shown in Figure 6, the associated variations in the coupled flux can reach 8 W/m2, much larger than 

that on a less-reflective surface, while RMSE also increase to 0.6 W/m2. The most important factor 

becomes Ct, and the regression coefficients for Ct and the intercept terms are all positive. Theses 

two facts reveal that as surface albedo increases, the effect due to multiple reflection becomes more 

dominant than that due to backscattering by the atmosphere. The impact of h on F′coup is the same 

as on F′rdir and F′rdif, though this effect is not significant when albedo is 0.1. For practical 

application to climate models, several suitable albedo values can be selected for parameterization of 

the coupled fluxes, and regression parameters can be interpolated for intermediate albedo values.  

 

5.  Application of the Parameterization to Climate Models 

    a. Improve the conventional radiative transfer scheme to account for 3-D mountain feature. 

The conventional plane-parallel radiative transfer scheme in climate models generally can provide 

the direct and diffuse components of surface solar fluxes. Therefore, F′dir and F′rdir, can be 

computed by applying Eqs. (8) and (10) with the direct flux over an unobstructed horizontal surface 

given. However, it should be noted that the diffuse flux in those schemes is the summation of F̂dif 

and F̂coup. Because the definition of the diffuse flux differs from the conventional one, one should 

conducted additional solar flux calculations using a conventional scheme with an albedo of zero to 

separate these two components. This will provide the diffuse flux without encountering reflections. 
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      b. Compatibility to different domain sizes. The present parameterization has been developed 

for a 10×10 km2 domain area representative of a grid cell of conventional mesoscale models. Our 

analysis has shown that a significant variation on the order of 100 W/m2 could be produced at this 

scale. In order to investigate the mountain effect over a larger domain size, we have performed 

Monte Carlo simulations using 80 20×20 km2, 36 30×30 km2, and 16 50×50 km2 domains in the 

Sierra Nevada area. The results show that the standard deviations of domain-averaged total surface 

fluxes are on the order of 13, 9, and 5 W/m2 for 20×20, 30×30, and 50×50 km2 domain sizes, 

respectively. Most of the variations were contributed by deviations of the direct flux, followed by 

the direct-reflected flux. Although variations in the direct flux could be compensated due to various 

orientations of mountain surfaces over larger domains, we show that deviations from 3-D structure 

must be accounted for at a resolution of 50×50 km2. 

To examine the compatibility of our parameterization at different scales, we have also 

calculated surface fluxes over larger domains using regression equations and compared them with 

the results simulated by the Monte Carlo approach. For example, a 20×20 km2 domain can be 

separated into four 10×10 km2 areas such that domain-average fluxes can be obtained by summing 
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all flux components corresponding to the four areas and applying parameterization. The resulting R2 

for F′dir, F′rdir, and F′rdif for all three domain sizes are larger than 95%, except for F′dir when the sun 

is at the zenith. The explanation power for F′coup shows a rising trend as the domain size increases. 

The values of R2 for F′coup are within 0.42−0.71, 0.49−0.66, and 0.64−0.89 for domains with sizes 

of 20×20, 30×30, and 50×50 km2, respectively. For F′dif, however, R2 at a domain size of 20×20 

km2 are only about 0.43, but it increases to 0.55 and 0.60 at domain sizes of 30×30 and 50×50 km2, 

respectively.  

     In this study, the 1×1 km2 resolution DEM from HYDRO1k was employed in 3-D Monte 

Carlo calculations. Dubayah et al. [1989] stated that surface solar fluxes could be sensitive to 

terrain spatial resolution and substantial errors could be produced with the size of grid cells larger 

than 200 m. Regarding the horizontal spatial scale, we would like to point out that “exact” 3-D 

radiative transfer calculations using the Monte Carlo photon tracing approach are extremely costly 

in terms of computational effort (computer time and analysis). Calculations employing fine 

geographical resolutions on the order of 100 m would be formidable for the entire region of 10×10 

km2. In order to understand differences in surface fluxes in a 10×10 km2 domain caused by the 

input data for terrain configuration, we have carried out several experiments using the SRTM data 

[Farr et al., 2007] at a 3 arc second (~90 m) resolution over the same area corresponding to 

HYDRO1k. We selected 10 10×10 km2 areas randomly and carried out 3-D Monte Carlo 
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calculations. We found that for these selected cases over the Sierra Nevada, differences between the 

resolution of 1 km and 90 m in F′dir (~100 W/m2), F′dif (~10 W/m2), and F′coup (~1 W/m2) for a 

10×10 km2 domain are generally less than 3%. Differences in F′rdir (~8 W/m2) and F′rdif (<1 W/m2) 

are much larger. Indeed, the spatial resolution issue requires further investigation.  

     c. Application to different atmospheric conditions. Although a mean atmospheric profile was 

used for all simulations, the present parameterization can be applied to different atmospheric 

compositions for the following reasons: First, variation in the trace gas concentrations only alters 

the absorption coefficient in association with the number of absorbed photons. Secondly, the 

number and direction of the scattered photons remain unchanged. And finally, because the effect 

due to change in the atmospheric absorption coefficient has already been determined in the 

conventional radiative transfer schemes, the present parameterization, which is in reference to 

deviations from the plane-parallel radiative transfer results, can be directly applied to different 

atmospheric conditions without modification [see Eqs. (1) and (2)]. 

The presence of aerosols and clouds could substantially alter the geometry of scattered 

photons. Therefore, the regression equations for F′dif, F′rdif, and F′coup will need modifications. 

However, equations for F′dir and F′rdir will remain unchanged since only direct attenuation is 

involved. To apply the present regression-based parameterization to a background aerosol coupled 

with Rayleigh scattering, further numerical experiments would be require to account for variation in 
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the aerosol loading, e.g., using aerosol optical depth as an independent variable in the 

parameterization.  

The effect of clouds on scattering-related fluxes is normally stronger than that of aerosols. The 

regression analysis would include additional independent variables such as the cloud position, 

optical depth, and the size and shape spectra of cloud particles, depending on the treatment of 

clouds in climate models. Nevertheless, Eqs (8) and (10) can be directly applied to cloudy 

conditions because the terms F′dir and F′rdir do not encounter scattering. Moreover, while only 

Rayleigh scattering is considered in the current regression analysis for F′dif, F′rdif, and F′coup, Eqs. 

(9), (11), and (12) could serve as the first-order approximation to surface fluxes over mountains 

covered by clouds. Finally, we have pointed out previously that the annual mean of global average 

cloud amount over land surfaces is about 54% [Warren et al., 2007]. 

 

6.  Conclusions 

We have developed a 3-D radiative transfer model for mountains with a new land surface 

representation on the basis of a Monte Carlo photon tracing program from which the most essential 

radiative components are parameterized for potential application to climate models. A rugged area 

in the Sierra Nevada in the Western United States was chosen as a test bed, and deviations of the 

domain averaged solar fluxes were analyzed. Several topographic parameters were introduced as 
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independent variables for the multiple linear regression analysis, including the solar incident angle, 

elevation, slope, the sky view factor, the terrain configuration factor, as well as the standard 

deviation and skewness of these parameters. 

Using multiple linear regression analysis, relative deviations of the five components of surface 

fluxes over mountains from those on an unobstructed horizontal surface are expressed by a linear 

combination of topographic parameters. Variation in the deviation of the direct flux is much larger 

than other components and generally larger than 100 W/m2. Except when the sun is at the zenith or 

close to the horizon, we show that the mean solar incident angle and mean sky view factor in the 

regression equation can explain more than 98% of the variation, and the corresponding root mean 

square errors (RMSE) are generally less than 3 W/m2. Although the explanation power is almost 

zero for the deviation of the direct flux with the sun at the zenith, its variation is less than 2 W/m2, 

implying that the impact is of less importance. However, the RMSE can reach 10 W/m2 when the 

sun is very close to the horizon.  

For the deviation of the diffuse flux, about 60% of the variation can be predicted by the mean 

elevation, the mean solar incident angle, the mean sky view factor, and the skewness of elevation. 

The variation in the deviation of the diffuse flux is about 5 W/m2, so it leads to an RMSE less than 

0.5 W/m2, smaller than that for the direct flux. The dominant factor for determining the deviations 

of the direct-reflected and diffuse-reflected fluxes is the terrain configuration factor with R2 about 
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0.85 and 0.9, respectively. The magnitudes of the variation and RMSE for the deviation of the 

direct-reflected flux are respectively 1-8 and 0.08-0.5 W/m2, depending on the position of the sun. 

Variation and RMSE for the deviation of the diffuse-reflected flux are consistently about 0.3 and 

0.01 W/m2, respectively. Although they are dependent on the surface albedo, their variations can be 

linearly scaled by using an albedo ratio factor (e.g, 0.7/0.1). The coupled flux component is more 

complicated because it contains photons experiencing multiple scattering and reflection. For this 

reason, the explanation power of the regression equation for a low albedo of 0.1 is less than those 

for other flux components. However, because the magnitude of the variation in the deviation of the 

coupled flux is only about 0.5 W/m2, the resulting RMSE are less than 0.07 W/m2.  

For a scenario with an albedo of 0.7, the performance of the regression equation are better 

with R2 larger than 0.7. Variation in the deviation of the coupled flux could reach 8 W/m2 due to the 

increase in reflected energy over highly reflective surface, and the RMSE becomes 0.6 W/m2. In 

this case, the terrain configuration factor becomes the dominant variable. Combining the regression 

equations for all five components, the departure of the solar flux over the rugged area from that of 

an unobstructed horizontal surface can be imposed as a correction to the horizontal-surface flux 

calculated by the conventional plane-parallel radiative transfer schemes. The performance of the 

regression equations for the coupled flux is less satisfactory; however, the error magnitude is so 

small that it does not affect the total flux calculation.  
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While the present parameterization is developed using a mean atmospheric profile at a 10×10 

km2 domain at a 1 km resolution, we have illustrated that this parameterization can be applied to 

different atmospheric conditions and various scales comparable to the grid size of regional climate 

models and GCMs. Moreover, the significant flux deviations calculated by this parameterization 

reveals that mountain effects are important in the modeling of surface energy balance. The spatial 

resolution used in the development of surface solar flux parameterization is an important issue and 

it is a subject requiring further investigation, Resolving the cloud and aerosol issues within the 

context of the parameterization of surface radiative fluxes over mountains is a challenging task, and 

it also requires additional in-depth theoretical and numerical investigations. Finally, we would like 

to point out that similar analysis could be applied to thermal infrared radiative transfer in mountains, 

in which the necessary parameters will include terrain information and the temperatures of 

surrounding mountain surfaces and the lower atmosphere. 
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Table Captions 

Table 1. Intercepts and Regression Coefficients for Eqs. (8) and (9). 

Table 2. R2 for Eqs. (8), (9), (10), (11), and (12). 

Table 3. Intercepts and Regression Coefficients for Eqs. (10) and (11). 

Table 4. Intercepts and Regression Coefficients for Eq. (12) for Two Surface Albedos of 0.1 and 

0.7. 
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Figure Captions 

Figure 1. Maps of the elevation (left, unit in meter) and slope (right, unit in degree) in the Sierra 

Nevada area. 

Figure 2. A schematic representation of flux components received by the target on an inclined 

surface in a mountainous area: (1) direct flux, (2) diffuse flux, (3) direct-reflected flux, (4) 

diffuse-reflected flux, and (5) coupled flux. The solar incident angle i, the sky view factor 

Vd and the terrain configuration factor Ct are also shown.  

Figure 3. Comparison between the results from the Monte Carlo photon tracing simulation (real 

values) and the multiple linear regression analysis (predicted values) for the direct flux 

(left panels) and the diffuse flux (right panels). 

Figure 4. Vertical distribution of the downward diffuse fluxes over an unobstructed horizontal 

surface with elevation of zero for 0 = 0.1, 0.4, and 1.0. 

Figure 5. As in Figure 3, but for the direct-reflected flux (left panels) and diffuse-reflected flux 

(right panels). 

Figure 6. As in Figure 3, but for the coupled flux with a surface albedo of 0.1 (left panels) and a 

surface albedo of 0.7 (right panels). 
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Table 1. Intercepts and Regression Coefficients for Eqs. (8) and (9). 

 Direct Flux Diffuse Flux 

0 a1 b11 b12 a2 b21 b22 b23 b24 

0.10 -2.91×10-2 3.07×10-1 3.90×10-2 -7.28×10-3 9.64×10-3 2.24×10-3 1.19×10-2 -4.15×10-3

0.25 -1.94×10-3 1.56×10-1 -1.69×10-3 -1.33×10-3 1.07×10-2 3.53×10-3 8.63×10-3 -3.89×10-3

0.40 -1.05×10-4 9.49×10-2 -6.99×10-3 2.75×10-4 1.09×10-2 5.25×10-3 7.16×10-3 -3.95×10-3

0.55 -1.40×10-4 6.32×10-2 -7.11×10-3 7.40×10-4 1.06×10-2 6.62×10-3 6.40×10-3 -3.90×10-3

0.70 -1.29×10-4 4.27×10-2 -7.15×10-3 9.12×10-4 1.02×10-2 7.07×10-3 5.55×10-3 -3.67×10-3

0.85 -6.15×10-5 2.65×10-2 -7.11×10-3 7.16×10-4 9.59×10-3 6.34×10-3 4.57×10-3 -3.61×10-3

1.00 -8.32×10-5 5.10×10-5 -2.65×10-5 7.64×10-4 8.01×10-3 0 5.66×10-3 -3.10×10-3
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Table 2. R2 for Eqs. (8), (9), (10), (11), and (12). 

 Fdir Fdif Frdir Frdif Fcoup 

0  alb=0.1 alb=0.7 

0.10 0.749 0.608 0.442 0.893 0.484 0.473 

0.25 0.988 0.611 0.823 0.896 0.676 0.710 

0.40 0.999 0.612 0.858 0.895 0.648 0.748 

0.55 0.998 0.631 0.864 0.893 0.548 0.756 

0.70 0.997 0.635 0.863 0.892 0.425 0.755 

0.85 0.991 0.625 0.860 0.891 0.263 0.754 

1.00 0.006 0.575 0.864 0.887 0.168 0.766 
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Table 3. Intercepts and Regression Coefficients for Eqs. (10) and (11). 

 Direct-Reflected Flux Diffuse-Reflected Flux 

0 a3 b31 b32 b33 a4 b41 b42 b43 

0.10 2.76×10-3 1.15×10-3 1.25×10-4 -8.12×10-5 2.54×10-3 1.17×10-3 2.15×10-4 -1.20×10-4

0.25 2.62×10-3 1.27×10-3 1.71×10-4 -1.02×10-4 2.57×10-3 1.20×10-3 2.17×10-4 -1.26×10-4

0.40 2.55×10-3 1.23×10-3 1.97×10-4 -1.05×10-4 2.58×10-3 1.22×10-3 2.21×10-4 -1.27×10-4

0.55 2.51×10-3 1.20×10-3 2.11×10-4 -1.06×10-4 2.58×10-3 1.22×10-3 2.20×10-4 -1.33×10-4

0.70 2.48×10-3 1.18×10-3 2.19×10-4 -1.07×10-4 2.58×10-3 1.22×10-3 2.22×10-4 -1.34×10-4

0.85 2.47×10-3 1.16×10-3 2.26×10-4 -1.07×10-4 2.57×10-3 1.21×10-3 2.21×10-4 -1.36×10-4

1.00 2.46×10-3 1.16×10-3 2.25×10-4 -1.08×10-4 2.57×10-3 1.22×10-3 2.27×10-4 -1.30×10-4
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Table 4. Intercepts and Regression Coefficients for Eq. (12) for Two Surface Albedos of 0.1 and 

0.7. 

 Coupled Flux (Albedo = 0.1) Coupled Flux (Albedo = 0.7) 

0 a5 b51 b52 b53 a5 b51 b52 b53 

0.10 -1.01×10-2 3.76×10-2 -4.07×10-3 2.27×10-3 4.74×10-2 3.54×10-2 2.73×10-2 7.46×10-3

0.25 -1.46×10-2 2.91×10-2 -8.93×10-4 2.19×10-3 3.94×10-2 2.71×10-2 2.99×10-2 4.08×10-3

0.40 -1.74×10-2 1.96×10-2 -1.40×10-3 1.52×10-3 3.65×10-2 1.80×10-2 2.88×10-2 4.11×10-3

0.55 -1.88×10-2 1.35×10-2 -2.15×10-3 1.51×10-3 3.43×10-2 1.20×10-2 2.76×10-2 4.83×10-3

0.70 -1.96×10-2 9.02×10-3 -2.86×10-3 -6.44×10-4 3.35×10-2 7.76×10-3 2.68×10-2 5.05×10-3

0.85 -2.00×10-2 4.97×10-3 -3.43×10-3 -5.79×10-4 3.29×10-2 4.07×10-3 2.60×10-2 5.17×10-3

1.00 -1.94×10-2 0 -4.52×10-3 -7.52×10-4 3.26×10-2 0 2.46×10-2 4.94×10-3

 



Figure 1. Maps of elevation (left, unit in meter) and slope (right, unit in degree) in the Sierra 
Nevada area.



Figure 2. A schematic representation of flux components received by the target on an inclined 
surface in a mountainous area: (1) direct flux, (2) diffuse flux, (3) direct-reflected flux, (4) diffuse- 
reflected flux, and (5) coupled flux. The solar incident angle i , sky view factor Vd and terrain 
configuration factor Ct are also shown. 



Figure 3. Comparison between the results from Monte Carlo simulation (real values) and from 
multiple linear regression (predicted values) for the direct flux (left panels) and diffuse flux (right 
panels).



Figure 4. Vertical distribution of the downward diffuse fluxes over an 
unobstructed horizontal surface with elevation of zero for 0 = 0.1, 0.4, and 1.0.



Figure 5. As in Figure 3, but for the direct-reflected flux (left panels) and diffuse-reflected flux 
(right panels).



Figure 6. As in Figure 3, but for the coupled flux with surface albedo of 0.1 (left panels) and 
albedo of 0.7 (right panels).
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