
1. Introduction
Ubiquitous heterogeneity of the land surface plays a pivotal role in surface energy balance and land-atmos-
phere exchanges of momentum, heat, and water (Bou-Zeid et al., 2020; de Vrese et al., 2016; Levy et al., 2020). 
Sub-grid heterogeneity comprises spatial variabilities in land use/land cover (LULC) types, soil characteristics, 
and topography (Giorgi & Avissar, 1997). Sub-grid heterogeneity affects the surface energy partitioning, modi-
fies the vertical structure of the planetary boundary layer (PBL), creates mesoscale atmospheric circulations, and 
affects cloud formation and regional climate (Brunsell et al., 2011; Chen et al., 2020; Lee, Zhang, & Klein, 2019; 
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Maronga & Raasch, 2013; Wu et al., 2009; Zhang et al., 2010; Zheng et al., 2021). Accounting for sub-grid heter-
ogeneities of land surface plays a vital role in land surface modeling and land-atmosphere coupling (de Vrese 
et al., 2016; Fisher & Koven, 2020).

Topographic variability, an important heterogeneous feature of the land surface, has large impacts on many land 
surface processes. Topography fundamentally organizes water, energy, and biogeochemical processes at hillslope 
scales by modifying the downwelling solar radiation at the land surface and laterally transporting water from 
ridges to valleys (Fan et al., 2019). By geometric shadowing, topography causes a strong contrast of incoming 
solar radiation between sunny and shady slopes (Hao et al., 2019; Proy et al., 1989). While valleys generally 
receive less sky diffuse radiation than hilltops due to the obstructions from adjacent slopes, they receive more 
multi-scattering radiation from adjacent slopes (Dubayah, 1992). The variability in the incoming solar radiation 
leads to spatial variability in climate, soil, and vegetation characteristics that follow the topographic distribu-
tions (Ropars & Boudreau, 2012). For instance, north-facing and south-facing slopes support different vegetation 
types, densities, and species diversities (Dearborn & Danby, 2017). Representing these topographic effects on 
incoming solar radiation as well as the topography-dependent soil and vegetation distributions at sub-grid levels 
in coarse resolution global LSMs is necessary for accurately resolving terrestrial processes in regions with heter-
ogeneous terrain.

While sub-grid heterogeneity of LULC is routinely accounted for in LSMs, the sub-grid variability due to topog-
raphy has often been neglected. LSMs account for LULC heterogeneity using a computationally efficient tiling 
approach in which a coarse-scale grid cell is statistically or geographically divided into sub-grid cells, each 
of which is a single LULC type. For example, the Community Land Model Version 5.0 (CLM5.0; Lawrence 
et  al.,  2019) and the Energy Exascale Earth System Model (E3SM) land model Version 1 (ELMv1; Golaz 
et al., 2019) use a nested sub-grid hierarchical structure where each grid is statistically composed of multiple 
land units, each land unit can have multiple soil columns, and each soil column can have multiple plant func-
tional types (PFTs). These existing sub-grid schemes neglect the joint distributions of sub-grid topography, soil, 
and vegetation. Sub-grid heterogeneities can also be represented by running LSMs at high spatial resolutions 
(∼1  km), but this method is computationally prohibitive for global Earth System Models (ESMs). Recently, 
high-resolution Digital Elevation Model (DEM) data have been used to add topography-based sub-grid struc-
tures in LSMs, including CLM and ELM (Chaney et al., 2016; Fiddes & Gruber, 2012; Ke et al., 2013; Tesfa 
& Leung, 2017). Tesfa and Leung (2017) extended the default sub-grid scheme of ELM by introducing topo-
graphic units (topounits), each associated with different topographic features. In the new sub-grid scheme, an 
ELM coarse-scale grid (0.5° or coarser) can have multiple topounits and each topounit can have multiple land 
units, soil columns, and PFTs. In addition, most existing LSMs adopt a two-stream solar radiative transfer scheme 
with the plane-parallel (PP) assumption that neglects the sub-grid topographic effects on solar radiation (Sell-
ers, 1985). Recently, a scheme (TOP) to account for the sub-grid topographic effects on solar radiation has been 
implemented in ELM (Hao et al., 2021). The aforementioned improvements in ELM offer a great opportunity to 
study the sub-grid topographic effects on land surface processes.

How sub-grid topographic representations in LSMs may affect the simulated surface energy balance and surface 
boundary conditions is unclear. Sub-grid topography can affect the radiative transfer processes and hence influ-
ence the surface energy balance (Hao et al., 2021). The mean surface turbulent heat flux (e.g., latent heat and 
sensible heat fluxes) (Lyons & Halldin, 2004) and high-order scalar (co-)variances (i.e., the variances and covar-
iances of scalar quantities, such as near-surface temperature and humidity) are used in atmospheric turbulence 
parameterization of ESMs for land-atmosphere coupling (Guo et al., 2015). These surface boundary conditions 
are crucial for simulating atmospheric flows and circulations in ESMs (Machulskaya & Mironov, 2018). Different 
representations of sub-grid heterogeneity in LSMs can lead to different surface turbulent heat flux and scalar (co-)
variances that can in turn affect the associated PBL processes (Román-Cascón et al., 2021). ELM can be config-
ured in three different ways to capture the sub-grid heterogeneity: (a) a coarse-resolution simulation (denoted as 
D) with the default sub-grid structure that excludes sub-grid topographic heterogeneity, (b) a coarse-resolution 
simulation (denoted as T) with topounit-based sub-grid structure that parsimoniously captures sub-grid topo-
graphic heterogeneity, and (c) a high-resolution (i.e., 1 km) simulation (denoted as 1KM) that explicitly accounts 
for sub-grid heterogeneity. Generally, the 1KM simulations with spatially explicit sub-grid heterogeneity can 
be regarded as a reference simulation (Schneider et al., 2017). The accuracy of the D- and T-based simulations 
to simulate the surface energy budget and surface boundary conditions over heterogeneous terrain needs to be 

Methodology: Dalei Hao, Gautam Bisht, 
Meng Huang, Teklu Tesfa, Wei-Liang 
Lee, Yu Gu, L. Ruby Leung
Project Administration: Gautam Bisht
Resources: Dalei Hao, Gautam Bisht
Software: Dalei Hao
Supervision: Gautam Bisht, L. Ruby 
Leung
Validation: Dalei Hao
Visualization: Dalei Hao
Writing – original draft: Dalei Hao
Writing – review & editing: Dalei Hao, 
Gautam Bisht, Meng Huang, Po-Lun Ma, 
Teklu Tesfa, Wei-Liang Lee, Yu Gu, L. 
Ruby Leung



Journal of Advances in Modeling Earth Systems

HAO ET AL.

10.1029/2021MS002862

3 of 21

evaluated. In addition, the role of sub-grid topography within solar radiative transfer schemes (i.e., TOP and PP) 
on surface energy balance terms and surface boundary conditions deserves further investigations.

The objective of this study is to analyze the effects of sub-grid topographic heterogeneity on surface energy 
balance and surface boundary conditions for turbulent heat flux and scalar (co-)variances. Land surface parame-
ters at a spatial resolution of 1 km were first developed based on existing high-resolution data sets for vegetation, 
soil, and DEM. Then, a series of offline ELM simulations with three different sub-grid topographic representa-
tions (D, T, and 1KM) and two solar radiation radiative transfer schemes (TOP and PP) were carried out over 
a region of heterogeneous terrain. The surface boundary conditions for the variance and co-variance quantities 
under different cases were next derived using the method accounting for the surface heterogeneity in Machul-
skaya and Mironov (2018), which is suitable for analyzing results over heterogeneous surfaces. 1KM simulations 
with TOP were compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data. 
Finally, the effects of sub-grid topographic representations in ELM on surface energy balance and boundary 
conditions were analyzed and discussed.

2. Materials and Methods
2.1. Study Area

A representative 1° grid (38°–39°N and 120.5°–119.5°W) in the Sierra Nevada, California, as an important 
source of California's water supply with heterogeneous distribution of topography was selected as a testbed in the 
study. Accurate modeling of surface energy balance and surface boundary conditions over the Sierra Nevada has 
important implications for Earth System Modeling. The study area covers various topographic features, such as 
hill, ridge, valley, and saddle with an elevation ranging from 330 to 3,418 m (Figure 1a) and a slope (Figure 1b) 
varying from 0° (i.e., flat surface) to 41° (i.e., steep slope). The study region is mainly dominated by forests 
(southwest) and shrubland/grasslands (northeast) with a few small urban areas, croplands, and lakes (Figure 1c). 
The southwestern regions have higher leaf area index (LAI), organic matter density, clay and silt contents and 
lower sand contents than the northeastern regions (Figures 1d–1h).

Figure 1. Spatial distributions of (a) elevation, (b) slope, (c) PFT, (d) leaf area index in August, (e) organic matter density, and (f–h) percentages of sand, clay, and silt 
(d and e), respectively, over the study area at a resolution of 1 km. In panel (c), NE, grass, and others represent the Needleleaf Evergreen Trees-Temperate, C3 grass, and 
other PFTs.
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2.2. High-Resolution Land Surface Data Sets for ELM

In this study, a series of high-resolution, sub-kilometer data sets for vegetation, soil, and topography were 
collected to develop spatially continuous land surface parameters at 1  km for ELM (Table  1), following the 
methods in Ke et al. (2012). To unify the spatial resolution, the soil, topography, and LAI/SAI data sets were first 
aggregated to a spatial resolution of 1 km using an area-weighted average method, and the land cover data set was 
aggregated to 1 km using a majority resampling method. The default values were used for all other land surface 
parameters in ELM.

MODIS 500-m land cover and LAI data were acquired from the Google Earth Engine (Gorelick et al., 2017). 
Specifically, the IGBP land cover classification data in the yearly 500 m MCD12Q1 V6 land cover-type prod-
uct (Friedl et al., 2002) for the year 2010 were used to determine lake, wetland, urban, and PFTs based on the 
methods in (Bonan et al., 2002; Ke et al., 2012). The IGBP classification scheme was first converted to ELM's 
PFTs that are composed of needleleaf evergreen trees, needleleaf deciduous trees, broadleaf evergreen trees, 
broadleaf deciduous trees, shrub, grass, and crop. The WorldClim V1 1 km monthly climatological temperature 
and precipitation data (Hijmans et al., 2005) were further used to classify the PFTs into tropical, temperate, and 
boreal climate groups based on the rules presented by Bonan et al. (2002). The fractions of C3 and C4 grasses 
were derived using the method in Still et al. (2003). The monthly LAI time series were derived based on the 
4-day 500 m MCD15A3H V6 LAI product (Myneni et al., 2002) from 2003 to 2010. The methodology in Zeng 
et al. (2002) was used to calculate monthly stem area index (SAI) from the monthly LAI data.

The Soilgrid v2 data with a resolution of 250 m (Poggio et al., 2021) were used to represent high-resolution soil 
characteristics. This data was generated using site-level soil profile data and remote sensing-based soil covari-
ates and machine learning methods trained based on site-level soil profile data (Hengl et al., 2017). Specifically, 
organic matter density, percent clay, and percent sand at seven standard depths (i.e., 0, 5, 15, 30, 60, 100, and 
200 cm) were used to derive corresponding soil organic matter and structure in ELM.

The Shuttle Radar Topography Mission (SRTM) DEM data (Rabus et al., 2003) with a spatial resolution of 90 m 
were used to derive topography-related parameters, including mean elevation, mean slope, and standard devia-
tion of elevation. These data were also used to derive 1 km topographic factors used in the parameterization of 
sub-grid topographic effects on solar radiation in ELM (see Section 2.3).

MODIS data sets were used in the evaluation of 1 km simulations (Table 1). Specifically, direct albedo (𝛼dir), 
diffuse albedo (𝛼dif), snow cover fraction ( fsnow), latent heat flux (Flh), and gross primary productivity (GPP) were 
collected. All these MODIS data sets were upscaled to 1 km using the area-weighted average methods.

Group Parameter Data source Period Spatial resolution (m) Temporal resolution References

Climate Temperature WorldClim V1 Climatological 1,000 Monthly Hijmans et al. (2005)

Precipitation WorldClim V1 Climatological 1,000 Monthly Hijmans et al. (2005)

Vegetation Land cover MODIS MCD12Q1 V6 2010 500 Yearly Friedl et al. (2002)

Leaf area index MODIS MCD15A3H V6 2003–2010 500 4-day Myneni et al. (2002)

Stem area index Derived from LAI 2003–2010 500 4-day Myneni et al. (2002)

Soil Organic matter density Soilgrid v2 – 250 – Poggio et al. (2021)

Percent sand Soilgrid v2 – 250 – Poggio et al. (2021)

Percent clay Soilgrid v2 – 250 – Poggio et al. (2021)

Topography Elevation SRTM DEM – 90 – Rabus et al. (2003)

Evaluation Direct and diffuse albedo MODIS MCD43A3 V6 2001–2010 500 Daily Schaaf et al. (2002)

Snow cover fraction MODIS MOD10A1 V6 2001–2010 500 Daily Hall et al. (2002)

Latent heat flux MODIS MOD16A2 V6 2001–2010 500 8-day Mu et al. (2007)

GPP MODIS MOD17A2H V6 2001–2010 500 8-day Running et al. (2004)

Table 1 
Specifications of High-Resolution Data Sets Used in This Study
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2.3. Sub-Grid Topographic Improvements in ELM

E3SM, supported by the U.S. Department of Energy is an advanced ESM developed to address the grand chal-
lenge of actionable predictions of Earth system variability and change (Leung et al., 2020). ELMv1 originated 
from CLM4.5 and has incorporated a few new features, such as a new variably saturated flow model (Bisht 
et al., 2018) and an updated module for phosphorus cycle dynamics (Yang et al., 2019).

ELMv1 adopts a nested hierarchical sub-grid structure to represent surface heterogeneity. Each ELM grid cell is 
first divided into different landunits representing glacier, lake, wetland, urban, natural vegetation, and crops. A 
naturally vegetated landunit has a single soil column that is shared by multiple PFTs. Each PFT has its own vege-
tation characteristics (e.g., LAI/SAI). However, surface topography is not considered in this sub-grid structure.

Recently, a new sub-grid topographic structure (topounit) has been included in ELM to improve the representa-
tion of sub-grid topographic effects on land surface processes (Tesfa & Leung, 2017). Specifically, each 0.5° grid 
is divided into different topounits based on the topographic elevation. The study area includes four different 0.5° 
grids (i.e., G1, G2, G3, and G4) and each grid with distinct topographic features (i.e., elevation, slope, and aspect) 
includes 11 topounits and shows different topounit distributions (Figure 2). The spatial patterns of topounits in 
Figure 2 generally follow the spatial distribution of elevation in Figure 1a. Different topounits have different 
elevation ranges. For instance, the elevation of topounit-1 for G1 ranges from 1,040 to 1,713 m, and that of 
topounit-11 ranges from 2,303 to 2,952 m. Besides, each topounit can have its own PFT and soil characteristics.

In addition, a parameterization of sub-grid topographic effects on solar radiation has been implemented in ELM 
(Hao et al., 2021). This cost-effective parameterization uses multiple linear regression methods to build the rela-
tionship between several topographic factors and sub-grid topographic effects (Lee et al., 2011). The topographic 

Figure 2. Spatial patterns of topounits within four different 0.5° × 0.5° grids. For each grid, the topounit code varies from 1 
to 11.
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factors include the standard deviation of elevation, grid-average cosine of the local solar incident angle, sky view 
factor, and terrain configuration factor, which are precomputed based on the 90 m SRTM data (Table 1). This 
parameterization has been successfully applied in the Weather Research and Forecasting (WRF), CLM4, and 
ELM at different spatial scales ranging from 800 m to 200 km (Hao et al., 2021; Lee, Liou, et al., 2019; Zhao 
et al., 2016).

In this study, we used ELMv1 with the two abovementioned sub-grid topographic improvements to analyze the 
effects of sub-grid topographic representations on surface energy balance and boundary conditions.

2.4. Computation of Surface Boundary Conditions of Scalar (Co-)variances

Most of the existing ESMs couple the land and atmosphere using grid-scale mean fluxes and state variables, thus 
ignoring the effects of sub-grid heterogeneity. For instance, the current version of E3SM couples the land and 
atmosphere at the grid level (André et al., 1978), which assumes that land-atmosphere interaction is dominated 
by spatially homogeneous processes, so this method is hereafter referred to as the HOM method. In contrast, 
Machulskaya and Mironov (2018) developed a patch(tile)-based method that accounts for the effects of sub-grid 
heterogeneity. Hereafter, this method is referred to the HET method. Specifically, when considering the hetero-
geneity of the underlying surface as composed of different patches, a generic variable 𝐴𝐴 𝐴𝐴 can be decomposed into 
three components (Avissar & Chen, 1993):

𝑥𝑥 = ⟨�̄�𝑥𝑝𝑝⟩ + �̄�𝑥
′′

𝑝𝑝 + 𝑥𝑥𝑠𝑠𝑝𝑝 (1)

where 𝐴𝐴 ⟨�̄�𝑥𝑝𝑝⟩ represents the average value over a grid, 𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 represents the average value over the pth patch, 
𝐴𝐴 𝐴𝐴𝐴

′′

𝑝𝑝 (= 𝐴𝐴𝐴𝑝𝑝 − ⟨ 𝐴𝐴𝐴𝑝𝑝⟩) represents an average fluctuation of a patch-level value away from the grid-level average value, 
and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠 represents a sub-patch-level fluctuation, which can be estimated by the HOM method. Here, we define the 
sum of the patch- and grid-level fluctuations as

𝑥𝑥
′
= �̄�𝑥

′′

𝑝𝑝 + 𝑥𝑥𝑠𝑠𝑝𝑝 (2)

By construction, 𝐴𝐴 ⟨�̄�𝑥′′

𝑝𝑝 ⟩  = 0 and 𝐴𝐴 𝐴𝐴𝐴𝑠𝑠𝑠𝑠  = 0, that is, the grid-level average value of the patch-level fluctuations and the 
patch-level average value of the sub-patch level fluctuations are zero (Machulskaya & Mironov, 2018). Then, the 
scalar variance for any quantity x (e.g., temperature and humidity) denoted by 𝐴𝐴 ⟨𝑥𝑥′2⟩ can be derived as the sum of 
sub-patch- and patch-level variances:

⟨�′2
⟩ =

⟨

(

�̄′′
� + ���

)

⋅
(

�̄′′
� + ���

)

⟩

=
⟨

�̄′′2
�
⟩

+
⟨

�2
��
⟩

 (3)

Similarly, the scalar covariance between two quantities, x and y (e.g., temperature and humidity), can be calcu-
lated as

⟨�′�′⟩ =
⟨

(

�̄′′
� + ���

)

⋅
(

�̄′′� + ���
)

⟩

= ⟨�̄′′
� �̄′′� ⟩ + ⟨������⟩ (4)

The discrete forms of Equations 3 and 4 can be expressed as

⟨�′2
⟩ =

∑�

1
�� ⋅ (�̄� − ⟨�̄�⟩)2 +

∑�

1
�� ⋅ �2

�� (5)

⟨�′�′⟩ =
∑�

1
�� ⋅ (�̄� − ⟨�̄�⟩) ⋅ (�̄� − ⟨�̄�⟩) +

∑�

1
�� ⋅ ������ (6)

where 𝐴𝐴 𝐴𝐴𝑝𝑝 is the area fraction of the pth patch, N is the number of all patches, 𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 and 𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 represent the average value 
for the pth patch, 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑠𝑠 represent the sub-patch fluctuations for the pth patch, and 𝐴𝐴 ⟨�̄�𝑥𝑝𝑝⟩ and 𝐴𝐴 ⟨�̄�𝑦𝑝𝑝⟩ represent the 
grid-level average value.

In this study, we focus on the surface boundary conditions for the mean turbulent heat flux (i.e., latent heat and 
sensible heat flux) and three (co-)variances that included temperature variance 𝐴𝐴 (⟨𝜃𝜃′

2
⟩) , humidity variance 𝐴𝐴 (⟨𝑞𝑞′

2
⟩) , 
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and temperature-humidity co-variance 𝐴𝐴 (⟨𝜃𝜃′𝑞𝑞′⟩) , which are used as the lower boundary conditions for atmospheric 
turbulence parameterization of E3SM (Xie et al., 2018).

2.5. Experimental Design and Analysis

A series of offline ELM simulations with different configurations, as summarized in Table 2, were designed and 
conducted for the four 0.5° grids of the study area to investigate the effects of sub-grid topography on surface 
energy balance and boundary conditions. Three different sub-grid topographic representations (D, T, and 1KM) 
and two different schemes of sub-grid topographic effects on solar radiation (TOP and PP) were considered in 
the simulations. The 1 km land surface parameters generated in Section 2.2 were used to derive the 1 km ELM 
surface data set. Each ELM grid cell in the 1KM configuration has a single PFT and its own unique soil charac-
teristics. The surface data set for the D and T configurations was generated using column fraction- and PFT frac-
tion-weighted average methods, respectively, for soil and vegetation variables to upscale the 1 km surface data 
set. For the T configuration, column and PFT fractions for each topounit were calculated and thus vegetation and 
soil characteristics of each topounit are different. For the 1KM configuration, the topographic factors needed for 
the TOP scheme were derived from the 1 km topographic factor data set introduced in Sections 2.2 and 2.3. For 
the D configuration, 1 km topographic factors were averaged to grid (0.5°) level, while for the T configuration, 
1 km topographic factors were averaged to topounit level.

All simulations used the prescribed satellite phenology (SP) mode, and the 0.5° × 0.5° Global Soil Wetness 
Project data set (GSWP3) (Dirmeyer et  al.,  2006) was used as the meteorological forcing data. Specifically, 
3-hourly total incident solar radiation, incident longwave radiation, total precipitation, surface air pressure, air 
temperature, wind speed, and specific humidity in GSWP3 were used. The spatial heterogeneity of the atmos-
pheric forcing data was not considered in the study by using the same atmospheric forcing data sets for all 1 km 
grids (in the 1KM configuration) and different topounits (in the T configuration). Model outputs were saved at 
half-hourly time step. Simulations for all model configurations were performed for 31-years from 1980 to 2010. 
The first 20 years were considered as model spin up and the simulation outputs from 2000 to 2010 were used in 
the subsequent analysis.

To further disentangle the contributions of vegetation and soil, additional topounit-based simulations with/
without topounit-dependent vegetation and with/without soil variations were conducted (Table  3). Consider-
ing that the differences between TOP and PP in the simulated surface energy balance terms are small for the T 
configurations (see Section 3.3), only the TOP solar radiation parameterization was used in the sensitivity exper-
iments. Specifically, these topounit-based experiments consisted of heterogeneous vegetation and soil (V + S), 
only heterogeneous soil (S), only heterogeneous vegetation (V), and no heterogeneity in vegetation and soil (N). 
Other settings were the same as the simulations in Table 2.

The surface energy balance terms were directly outputted from the aforementioned simulations and the surface 
boundary conditions for scalar (co-)variances were calculated at a half-hourly scale using the methods described 
in Section 2.4. Specifically, net solar radiation (𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 ), fsnow, surface radiative temperature (Ts), Flh, sensible heat 

Case ID

Representations 
of sub-grid 
topography

Solar radiation 
parameterization

No. of 
grid cells

No. of 
elevation 

bands

Spatial resolution

Vegetation Soil
Atmospheric 

forcing

D_PP Default PP 1 1 Sub-grid 0.5° 0.5°

D_TOP Default TOP 1 1 Sub-grid 0.5° 0.5°

T_PP Topounit PP 1 11 Sub-topounit Topounit 0.5°

T_TOP Topounit TOP 1 11 Sub-topounit Topounit 0.5°

1KM_PP 1 km PP 50 × 50 1 1 km 1 km 0.5°

1KM_TOP 1 km TOP 50 × 50 1 1 km 1 km 0.5°

Table 2 
Model Configurations With Different Sub-Grid Topographic Representations for Each 0.5° × 0.5° Grid



Journal of Advances in Modeling Earth Systems

HAO ET AL.

10.1029/2021MS002862

8 of 21

flux (Fsh), and GPP were used in the analysis. Based on the Stefan-Boltzmann law and the assumed surface emis-
sivity of 1.0, the emitted longwave radiation was used to derive Ts. The 11-year averaged daily values from 2000 
to 2010 were calculated. Then, their mean value (mean), standard deviation (std), and coefficient of variation (cv) 
were used to describe the effects of sub-grid heterogeneity on the surface energy balance terms and turbulent heat 
flux. For the simulations with different configurations, mean and std were derived by

mean =

∑𝑁𝑁

1
𝑤𝑤𝑖𝑖 ⋅ 𝑥𝑥𝑖𝑖

∑𝑁𝑁

1
𝑤𝑤𝑖𝑖

 (7)

std =

√
√
√
√

∑𝑁𝑁

1
𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖 − mean)

2

∑𝑁𝑁

1
𝑤𝑤𝑖𝑖

 (8)

where N is the number of sub-grid cells, x represents the variables of interest (e.g., latent heat and sensible heat 
flux), xi is the value of the ith sub-grid cell, and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the area fraction of type i. For the 1KM configuration, 

𝐴𝐴 𝐴𝐴𝑖𝑖 = 1 .0. The cv is calculated as

𝑐𝑐𝑐𝑐 =
std

mean
 (9)

1KM_TOP was compared to MODIS data to evaluate the performance of 1KM_TOP in capturing the spatially 
heterogeneous pattern of land surface fluxes. 𝛼dir, 𝛼dif, fsnow, Flh, and GPP (listed in Table 1) were used in the 
comparison. All the ELM simulated and MODIS data from 2001 to 2010 were averaged to the annual scale except 
that fsnow was aggregated to winter. Considered that MODIS 𝛼dir and 𝛼dif represent the surface albedo at local solar 
noon, the ELM-simulated 𝛼dir and 𝛼dif at local solar noon were extracted to compute the annual averaged values.

In addition, 1KM_TOP was used as a reference in the analysis and the correlation coefficient (R), normalized bias 
(nBias), and normalized root mean square deviation (nRMSD) were used to evaluate the agreements between the 
different configurations with the reference simulation. Specifically, nBias and nRMSD are calculated as

nBias =
∑�

1 (�other − �1km_TOP)
� ⋅ IQR

 (10)

nRMSD =

√

∑�
1 (�other − �1km_TOP)2∕�

IQR
 (11)

where N is the available number of target variable 𝐴𝐴 𝐴𝐴 , �1km_TOP , and 𝐴𝐴 𝐴𝐴other are the target variable values for 1KM_
TOP and other cases, respectively, and 𝐴𝐴 IQR is the difference between the 75th and the 25th percentiles of �1km_TOP .

Case 
ID

Representations 
of sub-grid 
topography

Solar radiation 
parameterization

No. of 
grid cells

No. of 
elevation 

bands

Spatial resolution

Vegetation Soil
Atmospheric 

forcing

V + S Topounit TOP 1 11 Sub-topounit Topounit 0.5°

S Topounit TOP 1 11 Sub-grid Topounit 0.5°

T Topounit TOP 1 11 Sub-topounit 0.5° 0.5°

N Topounit TOP 1 11 Sub-grid 0.5° 0.5°

Table 3 
Sensitivity Experiments Under the T Configurations and TOP Solar Radiation Scheme With/Without Considerations of 
Vegetation or Soil Heterogeneity for Each 0.5° × 0.5° Grid
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3. Results
3.1. Comparison With Remote Sensing Data

Overall, 1KM_TOP well captures the spatial distributions of surface energy fluxes compared to MODIS data 
(Figure 3). For 𝛼dir and 𝛼dif, 1KM_TOP and MODIS show similar spatial distribution with large values in south-
east regions and low values in southwestern and northeastern regions. MODIS has larger magnitudes than 1KM_
TOP possibly due to the underestimated fsnow in 1KM_TOP. Compared to MODIS, 1KM_TOP is more heteroge-
neous, possibly because MODIS land surface albedo algorithms do not account for topography explicitly (Hao 
et al., 2018; Schaaf et al., 2002). For fsnow, Flh, and GPP, 1KM_TOP has consistent spatial patterns with MODIS 
but some underestimations. The statistical boxplots in Figure 3 show that 1KM_TOP and MODIS have similar 
spread and median values. These results demonstrate that 1KM_TOP can serve as a good reference to evaluate 
the performance of other sub-grid structures.

3.2. High-Resolution Simulations

TOP and PP have large differences in 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 for the 1KM configuration. The spatial pattern of 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 in the winter 

for the four grids using PP (top row of Figure 4) is related to their PFT distributions (Figure 1c). TOP has more 
fragmented spatial distributions than PP for all the four grids (middle row of Figure 4). TOP may absorb larger 

Figure 3. Spatial distributions of (a) direct albedo (𝛼dir), (b) diffuse albedo (𝛼dif), (c) snow cover fraction ( fsnow), (d) latent heat (Flh), and (e) gross primary productivity 
(GPP) for Moderate Resolution Imaging Spectroradiometer (MODIS; top row) and Earth System Model land model-simulations (middle row). Their statistical 
distributions are shown in the bottom row. The annual averaged values are shown except that fsnow is for winter.
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solar radiation due to the change of solar illumination geometry and reflected radiation from the surrounding 
terrain or may absorb less solar radiation due to the self-shadow or cast-shadow effects than PP depending on 
the local topography (bottom row of Figure 4). The difference between TOP and PP is less pronounced for G3 as 
compared to the other grids, which is related to their respective topographic characteristics (Figures 1a and 1b). 
The difference in 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 for G1 and G4 can reach up to 40 W/m 2. The seasonal variations and spatial patterns in 

TOP and PP are similar for G1 (top and middle rows of Figure 5). The southwestern regions have larger 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 , 

while the northeastern regions have smaller 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 , which follow the spatial distribution of the PFTs (Figure 1c). 

This spatial difference is because grass in the northeastern regions has higher land surface albedo than forest in 
the southwestern regions. The smaller 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 of the eastern regions in winter is caused by the larger fsnow (Figure 6a). 

The difference between TOP and PP shown in the bottom row of Figure 5 is larger in winter than summer because 
of higher fsnow and stronger shadowing effects due to large solar zenith angle in winter. The subsequent analysis 
mainly focuses on G1 for winter.

There are also large differences between TOP and PP in fsnow, Ts, turbulent heat flux, and GPP (Figure 6). The 
spatial patterns of all these variables for both TOP and PP in the top and middle rows of Figure 6 generally follow 
the spatial variabilities of PFTs (Figure 1c), but TOP is more fragmented than PP, as affected by local topography. 
The difference between TOP and PP in fsnow shows an opposite trend with 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 (bottom row of Figure 4), which 

can be larger than 0.2 (bottom row of Figure 6a), because larger net solar radiation can lead to larger snowmelt 
and thus lower snow fsnow and the positive snow albedo feedback can also contribute to it. In contrast, the differ-
ence in Ts presents a similar spatial pattern with 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 and can be as large as 2 K (bottom row of Figure 6b). These 

further lead to the differences in turbulent heat flux between TOP and PP with larger differences in Fsh than Flh 
(bottom row of Figures 6c–6d). The differences in Fsh and Flh can be large as 10 and 20 W/m 2, respectively. GPP 
is also affected by the sub-grid topographic effects although the difference between TOP and PP is not significant 
and is within 0.5 μmol m −2 s −1 due to the small LAI and dormancy in winter (bottom row of Figure 6e).

Figure 4. Simulated net solar radiation (𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 ) for plane-parallel (PP; top row), TOP (middle row), and their differences 

(bottom row) during winter (DJF) for different grids: (a) G1, (b) G1, (c) G3, and (d) G4.
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Figure 5. Simulated net solar radiation (𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 ) for plane-parallel (PP; top row), TOP (middle row), and their differences 

(bottom row) for G1 in different seasons: (a) winter (DJF), (b) spring (MAM), (c) summer (JJA), and (d) autumn (SON).

Figure 6. Plane-parallel (PP; top row) and TOP (middle row) simulation and their differences (bottom row) for (a) snow cover fraction ( fsnow), (b) surface temperature 
(Ts), (c) latent heat (Flh), (d) sensible heat (Fsh) flux, and (e) gross primary productivity (GPP) in winter (DJF) for G1.
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3.3. Effects on Surface Energy Balance

Solar radiation parameterizations (i.e., TOP and PP) have relatively small impacts on surface energy balance in 
the coarse grid scale (0.5°). The differences in mean and std between TOP and PP for the D and T configurations 
(represented by blue and orange color bars in Figure 7) are small and thus, the results for D_PP and T_PP are 
excluded from the subsequent analysis. For the 1KM simulation, the mean differences between TOP and PP are 
relatively small (Figure 7), but the std differences cannot be neglected. For instance, the std differences in 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 and 

Ts can reach up to 7.8 W/m 2 and 0.45 K, respectively (Figures 7b and 7f).

The representations of sub-grid topography have some impacts on the mean values of surface energy balance 
terms and turbulent heat flux for all four grids (i.e., G1–G4). Taking G1 as an example (Figure  8), for 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 , 

D_TOP can have differences larger than 14 W/m 2 compared to 1KM_TOP, and T_TOP is closer to 1KM_TOP 
in winter, while their differences are small in other seasons. Compared to 1KM_TOP, for fsnow, the biases of both 
D_TOP and T_TOP can be larger than 0.1 in winter. For Ts, their negative biases can reach up to 0.8 K for all 
seasons. For Flh and Fsh, the biases can be as large as 6–8 W/m 2 for all seasons, and for GPP, D_TOP can have a 
large bias of above 0.7 μmol m −2 s −1 in summer, while the bias of T_TOP is smaller than 0.4 μmol m −2 s −1. For 
all the variables, 1KM_PP shows small differences from 1KM_TOP for all seasons. Similar results are obtained 
from G2-G4 (Figures S1–S3 in Supporting Information S1). These grid-scale differences are generally smaller 
than the differences between TOP and PP at the 1 km scales (Figures 4–6).

The std and cv values of surface energy balance and turbulent heat flux within one grid show large differences 
under different representations of sub-grid topography (Figure  9 and Figures S4–S7 in Supporting Informa-
tion S1). For std over G1, the magnitudes of nearly all variables under different cases have large differences. For 

Figure 7. Statistical histograms of the mean and std differences between TOP and plane-parallel (PP) in 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 , fsnow, Ts, Flh, Fsh, and GPP over G1 under different 

representations of sub-grid topography: D (blue), T (orange), and 1KM (yellow). The bar color is semitransparent to show the overlapping regions.
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𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 , fsnow, Ts, and GPP, 1KM_TOP has larger std values than other cases, while for Flh and Fsh, 1KM_TOP has 

smaller std values than D_TOP and T_TOP. Overall, T_TOP shows better agreements with the reference 1KM_
TOP than D_TOP. For instance, the maximum fsnow biases of D_TOP and T_TOP are 0.22 and 0.11, respectively, 
and the GPP bias of D_TOP can be larger than 1 μmol m −2 s −1 in spring and summer, while the bias of T_TOP 
is within 0.3 μmol m −2 s −1. Different from the mean, the std for 1KM_PP has some differences with 1KM_TOP 

Figure 8. Statistical histograms of the mean differences in 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑛𝑛𝑛𝑛𝑛𝑛
 , fsnow, Ts, Flh, Fsh, and GPP between different cases of G1 for different seasons. Here, the differences 

were calculated as the differences between other cases and 1KM_TOP. The bar color is semitransparent to show the overlapping regions.

Figure 9. Same as Figure 6, except for standard deviation (std).
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especially for 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 . Specifically in winter and spring, the maximum mean and std differences in 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 between 

1KM_PP and 1KM_TOP are 2.6 and 7.8 W/m 2, respectively. Similar results for G2–G4 are obtained (Figures 
S4–S6 in Supporting Information S1). For cv, the differences between different cases in nearly all variables are 
more significant in winter than in summer (Figure S7 in Supporting Information S1), and similarly, T_TOP is 
more consistent with 1KM_TOP than with D_TOP.

3.4. Effects on Surface Boundary Conditions for Scalar (Co-)variances

The sub-grid topographic representations in ELM have large impacts on the surface boundary conditions of 
scalar (co-)variances especially in winter (Figures 10 and 11). The comparisons of the seasonally averaged diur-
nal cycles of scalar (co-)variances under different cases show that T_TOP is closer to the reference case than 
D_TOP for both the HET and HOM methods in both summer and winter (Figure 10 and Figure S8 in Supporting 
Information S1). In winter, the biases of D_TOP and T_TOP in the three (co-)variances are smaller than zero and 
follow similar diurnal cycles. The biases of 𝐴𝐴 ⟨𝜃𝜃′

2
⟩ are the smallest at noon and the largest at night, while those of 

𝐴𝐴 ⟨𝑞𝑞′
2
⟩ and 𝐴𝐴 ⟨𝜃𝜃′𝑞𝑞′⟩ are the largest at noon and the smallest at night. T_TOP shows smaller biases during daytime than 

D_TOP. In summer, the biases in 𝐴𝐴 ⟨𝑞𝑞′
2
⟩ and 𝐴𝐴 ⟨𝜃𝜃′𝑞𝑞′⟩ are larger in the morning and evening (Figures 10d and 10f), 

possibly caused by the large variability of humidity during these periods. For the accuracy assessment of the HET 
methods in winter, both D_TOP and T_TOP have lower agreement with 1KM_TOP than 1_km_PP, and D_TOP 

Figure 10. Seasonally averaged diurnal cycles of the difference in simulated (a and b) temperature variance 𝐴𝐴 (⟨𝜃𝜃′
2
⟩) , (c and d) humidity variance 𝐴𝐴 (⟨𝑞𝑞′

2
⟩) , and (e and 

f) temperature-humidity covariance 𝐴𝐴 (⟨𝜃𝜃′𝑞𝑞′⟩) for G1 under different model configurations in winter (DJF) and summer (JJA). Here, the local solar time is used and 
the scalar (co-)variances were derived using the HET methods introduced in Section 2.4. The differences were calculated as the differences between other model 
configurations and 1KM_TOP.
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has the lowest R values and the highest nBias and nRMSD values for all scalar (co)-variances especially for 
the daytime (Figure 11 and Figure S9 in Supporting Information S1). For instance, for 𝐴𝐴 ⟨𝜃𝜃′

2
⟩ during the daytime 

and nighttime, the nBias value of D_TOP is −146%, while that of T_TOP is −115% (Figure S13 in Support-
ing Information S1). During the daytime (Figure 11), the nBias values of D_TOP and T_TOP are −120% and 
−44%, respectively. 1KM_PP is more consistent with 1KM_TOP and the R values are higher than 0.95 and the 
nBias values are ∼10% for all the three (co-)variances. The sub-grid topographic effects on local solar radiation 
in winter lead to some differences in scalar (co-)variances between 1KM_PP and 1KM_TOP (Figures 11c, 11f 
and 11i). Similar results are obtained for G2–G4 in winter (Figures S10–S12 in Supporting Information S1). 
For the HET methods in summer (Figure S13 in Supporting Information S1), T_TOP also shows slightly better 
agreements with 1KM_TOP than D_TOP in all three statistical metrics. The 1KM_PP has high correlations and 
low bias for all three scalar (co)-variances. While the nRMSD values for 1KM_PP are low for 

⟨

�′2
⟩

 and 𝐴𝐴 ⟨𝜃𝜃′𝑞𝑞′⟩ , 
they are large for 

⟨

�′2
⟩

 . For the HOM methods, T_TOP performs better than D_TOP in winter (Figure S14 in 
Supporting Information S1) and all cases show high correlations with 1KM_TOP in summer (Figure S15 in 
Supporting Information S1).

Figure 11. Comparisons of 1KM_TOP simulated (a–c) temperature variance 𝐴𝐴 (⟨𝜃𝜃′
2
⟩) , (d and e) humidity variance 𝐴𝐴 (⟨𝑞𝑞′

2
⟩) , and (g–i) temperature-humidity covariance 

𝐴𝐴 (⟨𝜃𝜃′𝑞𝑞′⟩) in winter (DJF) over G1 against simulated values from D_TOP, T_TOP, and 1KM_PP model configurations for the daytime (8 a.m.–16 p.m., local solar time). 
The (co-)variances were derived using the HET methods introduced in Section 2.4; and R, nBias, and nRMSD were shown in each subplot.
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3.5. Roles of Vegetation and Soil Heterogeneities

The topounit-scale sensitivity experiments show that vegetation heterogeneity accounts for most of the varia-
tions for nearly all the variables (Figures 12 and 13). Generally for 𝐴𝐴 𝐴𝐴

𝑠𝑠

net
 , fsnow, and Ts, the mean and std values 

of the V case are closer to the V + S case than to the S case, while those of the S case are closer to the N case. 

Figure 12. Statistical histograms of the differences between different cases (V + S, S, V, and N) in the mean values of 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 , fsnow, Ts, Flh, Fsh, and GPP within one grid 

of G1 for different seasons. Here, the V + S case is used as a reference and thus the differences were calculated as the differences between other cases and V + S case. 
The bar color is semitransparent to show the overlapping regions.

Figure 13. Same as Figure 12, except for std.
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These demonstrate that vegetation heterogeneities contribute more to the variability of 𝐴𝐴 𝐴𝐴
𝑠𝑠

net
 , fsnow, and Ts than soil 

heterogeneity. For Flh, Fsh, and GPP, both soil and vegetation heterogeneities contribute to the differences in mean 
values (Figure 12), but vegetation heterogeneity mainly accounts for the differences in std values (Figure 13). 
These demonstrate that topography-relevant PFT distributions, LAI and SAI characteristics contribute a lot to the 
mean and std values of the surface energy balance terms.

4. Discussion
Overall, 1KM_TOP well captures the spatial heterogeneity of surface energy fluxes compared to MODIS data. 
However, there are some differences between 1KM_TOP and MODIS (Figure 3). On one hand, uncertainties 
from the forcing data and model structure in ELM can contribute to the simulation bias. On the other hand, as 
discussed in Hao et al. (2021), most MODIS algorithms neglect the topographic effects and thus there are some 
uncertainties in the generated MODIS data especially over rugged terrain. Besides, the cloud and cloud shadow, 
illumination-viewing geometrical effects, and instrumental errors can also affect the accuracy of MODIS data 
(Bair et al., 2021). Further efforts are needed to improve the model performance of ELM and accuracy of MODIS 
data over rugged terrain.

Sub-grid topography has large impacts on the spatial distributions of surface energy balance. The spatial patterns 
of the differences between TOP and PP generally follow the topographic distributions (Figures 4–6). The sub-grid 
topographic effects on radiation are significant at a spatial resolution of 1 km. When aggregated to a coarse scale 
(e.g., 0.5° in this study), the differences between TOP and PP become small because the differences for sunny 
and shaded slopes offset each other (Zhao et al., 2016), but they still cannot be neglected especially in winter 
(Figure 8). The differences between TOP and PP are also dependent on the seasons (Figure 5) and are more 
pronounced in winter due to the snow cover and the strong shadowing effects caused by large solar zenith angles 
(Hao et al., 2021). These results are similar to previous studies over Sierra Nevada that used WRF (Gu et al., 2012; 
Liou et al., 2013) and CLM4 (Lee et al., 2015). These differences in surface energy balance can further affect 
atmospheric processes, such as cloud formation and precipitation (Lee et al., 2015; Liou et al., 2013), that need 
further investigations by performing E3SM simulations with active atmosphere and land components. GPP is also 
affected by the sub-grid topography (Figure 6), which underscores the necessity of accounting for sub-grid topo-
graphic heterogeneity when simulating GPP over complex terrain (Xie et al., 2021). However, the lateral surface 
and sub-surface flows from uplands to lowlands were neglected in the simulations reported here, which can also 
impact the simulation of energy and water fluxes in LSMs (Fan et al., 2019; Ji et al., 2017).

Different representations of sub-grid topography in LSMs affect the surface energy balance and surface bound-
ary conditions. The mean values of surface energy balance terms and turbulent heat flux are affected by the 
representations of sub-grid topography (Figure 8). The std values also show large dependences on the representa-
tions of sub-grid topography (Figure 9) and these results are consistent with those reported in Liu et al. (2017). 
The high-order scalar (co-)variances for the HOM methods are identical for the different representations of 
sub-grid topography (Figures S14 and S15 in Supporting Information  S1), while there are large differences 
between different representations of sub-grid topography for the HET methods (Figures 10 and 11). The large 
differences in the HET methods are expected to result in large differences in surface boundary conditions, which 
could further affect the PBL, atmospheric, and cloud dynamics (Chen et al., 2020). The T configuration shows 
better agreements with the 1KM simulations than the D configuration because topounit can better describe the 
topography-dependent vegetation and soil distributions. In our study area, the differences between the D and 
T configurations are mainly contributed by topography-dependent vegetation distribution (Figures 12 and 13). 
However, how the topography-dependent vegetation and soil heterogeneities affect the surface energy balance 
in other regions needs further investigation. These underline the feasibility and importance of implementing 
the sub-grid topographic structure in LSMs and are promising to guide model development and experimental 
designs.

Further optimizing the representations of sub-grid topography is possible as more high-resolution data sets of 
land surface parameters are available. In the current scheme of topounit in ELM, the topounit number for one 
grid is spatially variable, the maximum possible number of topounits is set as 12, and the actual number of 
topounit is determined only by the topographic complexity within a grid (Tesfa & Leung, 2017). For instance, the 
four grids over the study area include 11 topounits (Figure 2). A spatially variable number of topounits within a 
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grid will reduce the computational burden while attempting to accurately capture the sub-grid heterogeneity of 
topography. To what degree topounit can mimic the realistic conditions and the dependence on the number of 
topounits should be analyzed to further improve the performance of T_TOP in simulating surface energy balance 
and surface boundary conditions. There exist other approaches to generate topounits to parsimoniously capture 
sub-grid heterogeneity in topography that account for multiple sources of sub-grid heterogeneities. A topographic 
sub-grid tool for mountain (TopoSUB) was proposed based on a multidimensional informed sampling procedure, 
where the elevation, slope, aspect, and sky view factor were used to represent the topographic characteristics 
(Fiddes & Gruber, 2012). Similarly, a sub-grid classification method (SGC) was also developed to account for 
both topographic and vegetation variabilities, but it only considered the differences in elevation (Ke et al., 2013). 
In addition, a hydrological response unit (HRU)-based structure was developed based on the K-means cluster-
ing algorithm (Chaney et al., 2016). Different HRUs have different characteristics of LULC, soil, topography, 
and meteorology forcing. For improving our understanding of the Earth system over heterogeneous terrain, the 
sub-grid schemes in LSMs need to fully harness emerging big data from field measurements and remote sensing 
(Chaney et al., 2018).

There are still some limitations in the study. First, the 0.5° GSWP3 forcing data used in the offline ELM simu-
lations are too coarse to capture the sub-grid heterogeneity due to topography in atmospheric forcings (Tesfa 
et al., 2020). Meteorological forcing data could account for a large proportion of turbulent heat flux in some 
cases (Jason Scot et al., 2021). Some atmospheric forcing downscaling methods for mountainous areas (Fiddes & 
Gruber, 2014; Fiddes et al., 2021; Tesfa et al., 2020) and high-resolution forcing data (e.g., Daymet) (Thornton 
et al., 2016) make it possible to further consider the topography-induced sub-grid heterogeneity of atmospheric 
forcings. Especially, Tesfa et al. (2020) developed topography-based methods for downscaling grid-scale precip-
itation to sub-grid scales, which are essentially coupled with the topounit-based sub-grid structure in ELM for 
improving land surface modeling over mountainous areas. Second, only offline ELM simulations were performed 
in this study and the effects of sub-grid topographic heterogeneity on the vertical structure of PBL and atmos-
pheric dynamics need to be further investigated using the Cloud Layers Unified By Binormals model coupled 
with the E3SM atmospheric model (Xie et al., 2018). Third, generalization of the conclusion from this model-
based analysis over four 0.5° × 0.5° grid cells to other regions with heterogeneous terrain needs to be further 
evaluated. Ongoing and future pioneering E3SM projects, for example, the 1 km gridded ELM implementation 
over the North American region under a hybrid CPU-GPU architecture of the Summit supercomputer and the 
global 3.25 km simulations in the DYnamics of the Atmospheric general circulation Modeled On Nonhydrostatic 
Domains Phase 2 model intercomparison (Caldwell et al., 2021), offer good opportunity to extend our findings.

5. Conclusions
The heterogeneity of sub-grid topography exerts large influence on many land surface processes and further affects 
atmospheric dynamics. This study used ELM to investigate the impacts of sub-grid topographic representations 
on surface energy balance and surface boundary conditions for turbulent heat flux and scalar (co-)variances. A 
series of offline simulations with three different sub-grid topographic representations (i.e., D, T, and 1KM) and 
two different treatments of the sub-grid topographic effects on solar radiation (i.e., TOP and PP) were carried 
out in four representative 0.5° grids. Compared to MODIS data, overall, the 1KM simulations with TOP well 
capture the spatial heterogeneity of surface fluxes. Topography has large impacts on the spatial distribution of 
surface energy balance terms and TOP and PP have significant differences at a resolution of 1 km in simulat-
ing surface energy balance, fsnow and Ts, which depend on seasons and local topography. The differences in the 
mean values are relatively small when aggregated to 0.5° grid scales because the positive-negative differences 
for sunny and shaded slopes offset each other. Different representations of sub-grid topography can also affect 
the surface energy balance and surface boundary conditions. As compared to the D configuration, the T config-
uration can more accurately capture the effects of sub-grid topographic heterogeneity on the mean values and 
standard deviations of surface energy balance terms as well as surface boundary conditions for turbulent heat flux 
and scalar (co-)variances. The findings in this study underline the importance of improving the representations of 
the sub-grid topographic heterogeneity in LSMs over complex terrain.
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Data Availability Statement
The ELM codes are available publicly at https://github.com/E3SM-Project/E3SM (last accessed: 28 Septem-
ber 2021) and the code for TOP solar radiation parameterizations used in this paper is available at http://doi.
org/10.5281/zenodo.4549401. Codes and data to reproduce results and plot figures are publicly available at http://
doi.org/10.5281/zenodo.5908170. All MODIS, WorldClim V1, Soilgrid v2, and SRTM DEM data introduced in 
Table 1 are publicly available at Google Earth Engine (https://earthengine.google.com/).
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