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ABSTRACT

A two-dimensional cirrus cloud model has been developed to investigate the interaction and feedback of
radiation, ice microphysics, and turbulence-scale turbulence, and their influence on the evolution of cirrus clouds.
The model is designed for the study of cloud-scale processes with a 100-m grid spacing. The authors have
incorporated a numerical scheme for the prediction of ice crystal size distributions based on calculations of
nucleation, diffusional growth, advection, gravitational sedimentation, and turbulent mixing. The radiative effect
on the diffusional growth of an individual ice crystal is also taken into account in the model. The model includes
an advanced interactive radiative transfer scheme that employs the d-four-stream approximation for radiative
transfer, the correlated k-distribution method for nongray gaseous absorption, and the scattering and absorption
properties of hexagonal ice crystals. This radiation scheme is driven by ice water content and mean effective
ice crystal size that represents the ice crystal size distribution. To study the effects of entrainment and mixing
on the cloud, a second-order turbulence closure has been developed and incorporated into the model. Simulation
results show that initial cloud formation occurs through ice nucleation associated with dynamic and thermo-
dynamic forcings. Radiation becomes important for cloud evolution once a sufficient amount of ice water is
generated. Radiative processes enhance both the growth of ice crystals at the cloud top by radiative cooling and
the sublimation of ice crystals in the lower region by radiative heating. The simulated ice crystal size distributions
depend strongly on the radiation fields. In addition, the radiation effect on individual ice crystals through
diffusional growth is shown to be significant. Turbulence begins to play a substantial role in cloud evolution
during the maintenance and dissipation period of the cirrus cloud life cycle. The inclusion of turbulence tends
to generate more intermediate-to-large ice crystals, especially in the middle and lower parts of the cloud.
Incorporation of the second-order closure scheme enhances instability below the initial cloud layer and brings
more moisture to the region above the cloud, relative to the use of the traditional eddy mixing theory.

1. Introduction

Cirrus clouds play an important role in the radiation
field of the earth–atmosphere system and, hence, sig-
nificantly affect the atmospheric thermal structure and
climate (Liou 1986, 1992). This importance has been
highlighted by a number of intensive composite field
observations: the First International Satellite Cloud Cli-
matology Project (ISCCP) Regional Experiment (FIRE)
I in October–November 1986; FIRE II in November–
December 1991; the European experiment on cirrus
(ICE/EUCREX) in 1989; and Subsonic Aircraft: Con-
trail and Cloud Effect Special Study in April 1996. Fun-
damental understanding of the mechanisms for the for-
mation, maintenance, and dissipation of cirrus in the
atmosphere is still limited and requires in-depth studies
from both observational and modeling perspectives.

Several attempts have been made to develop numerical
models to investigate the role of various physical processes
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in the life cycle of cirrus clouds. For example, Jensen et
al. (1994a,b) used a one-dimensional cirrus cloud for-
mation model that includes explicit simulation of the size
distribution of ice crystals involving a number of micro-
physical processes. Although their model produces rea-
sonable ice water content (IWC), the prediction for ice
crystal number densities appears to be too low. Because
of their simple dynamics, one-dimensional models have
been employed extensively by researchers whose interests
focus on complex microphysical processes (e.g., Heyms-
field and Sabin 1989; Chen et al. 1997).

Cirrus clouds are a dynamic and thermodynamic sys-
tem that involves the intricate coupling of microphysics,
radiation, and dynamic processes (Gultepe and Starr
1995). A multidimensional setting is thus required for
interaction and feedback studies. In their pioneering
work, Starr and Cox (1985) developed a two-dimen-
sional (2D) model and showed that the effects of ra-
diative processes and vertical transports are both sig-
nificant in cirrus cloud formation and maintenance. Gu
and Liou (1997a,b) constructed a 2D cirrus model that
includes a second-order turbulence closure and found
that turbulence can significantly modulate the super-
saturation condition and hence affect the rate at which
water vapor is converted to ice. However, ice micro-
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physical processes are parameterized in terms of IWC
in these models in which the excess moisture is entirely
converted to IWC in just one time step. More recently,
Lin (1997) and Khvorostyanov and Sassen (1998a) have
incorporated explicit microphysics schemes in 2D mod-
els for the simulation of ice crystal size distributions.

The exchange coefficient or the first-order closure
approach has been commonly used in modeling tur-
bulence associated with cirrus cloud processes. A num-
ber of studies reveal that turbulent mixing plays the
dominant role in the evolution of the lower-tropospheric
clouds (Telford and Wagner 1981; Baker and Latham
1979; Paluch and Knight 1984). The study of Moeng
(1986) using a large eddy simulation model showed that
turbulence plays a rather important role in the structure
of the stratus-topped boundary layer. Also, numerical
simulations of stratiform (altocumulus) clouds per-
formed by Liu and Krueger (1998) showed that moist
conservative variables in the altocumulus layer are ap-
proximately well mixed. In cirrus cloud conditions, ra-
diative heating or cooling and latent heat release can
act as sources of turbulence. Quante et al. (1990) dem-
onstrated the presence of turbulence in cirrus based on
the data obtained from the previously mentioned ICE/
EUCREX experiment. Gultepe and Starr (1995) used
the aircraft observations during FIRE to analyze the
dynamic structure and turbulence in cirrus clouds. They
concluded that the intermediate-scale waves observed
in the atmosphere can play an important role in the
development of the cirrus cloud system. The cellular
structure found in Starr and Cox’s cirrus cloud simu-
lations also implies the occurrence of turbulence.

The preceding observations suggest that a higher-or-
der closure for turbulence is needed to investigate the
effect of turbulence on ice microphysics, which can feed
back to radiative cooling. This feedback process could
be significant in the maintenance of cirrus clouds and
has not been studied at this point. Ideally, numerical
simulations of cirrus cloud dynamics should be con-
ducted using a three-dimensional (3D) model. However,
because of the substantial increase in the number of
prognostic variables when an explicit ice microphysics
scheme is used, and because of the limitation of com-
puter resources, 2D cloud models are usually adopted
for cloud process studies. Moreover, Moeng et al. (1996)
showed that 2D cloud-resolving models can produce
excellent predictions for the virtual potential tempera-
ture, total water mixing ratio, and liquid water mixing
ratio in comparison to those generated from 3D large
eddy simulation models for stratocumulus.

To study the physical processes governing the evolution
of cirrus clouds, we have developed a 2D model that in-
cludes a second-order turbulence closure scheme, the ex-
plicit prediction of ice crystal size distribution, and an
advanced radiation parameterization. We have also in-
cluded in the model the radiation effect on the formation
of an individual ice crystal. Systematic description of the
model is presented in section 2. Pertinent results from the
model simulation are discussed in section 3.

2. Cirrus cloud model

a. Governing equations

For the modeling of stratiform cirrus clouds, it ap-
pears physically appropriate to consider two-dimen-
sional space and utilize the Boussinesq approximation
under which the fluid is treated as incompressible; that
is, air density is considered to be a constant except when
it is coupled with gravity in the buoyancy term of the
vertical momentum equation. The requirement to satisfy
this approximation is that the depth of convection must
be much smaller than the scale height of the basic state,
which is about 8 km. Note that the convective region
of cirrus studied in this paper has a depth of around 1
km during the entire simulation period. We have also
neglected the Coriolis term in view of the fact that the
motion in cirrus is small-scale. Let us consider now a
cloud-free initial state that is horizontally uniform and
at rest except for a constant vertical motion w0. Since
turbulence plays an important role in the formation and
dissipation of stratus and stratiform clouds (Moeng
1980; Liu and Krueger 1998), a second-order turbulence
closure is further incorporated in the formulation of the
model. We shall also include explicitly the evolution of
ice crystal size distribution in the cirrus cloud model.
Based on the preceding considerations, the mean field
equations for dynamic and thermodynamic variables in
the x–z plane can be expressed in the following forms:
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where ni is the number density of ice crystals for the
ith size group, mi is the mean mass of the individual
particle in the ith size group, the first term on the right-
hand side of Eq. (2.6) represents the diffusional growth,
and the fourth term is the initial nucleation contribution.
The unsubscripted variables represent the resolved com-
ponents with respect to a prescribed background (initial)
state, which is denoted by subscript 0. Variables with
primes stand for unresolved turbulent fluctuations, and
p 5 , with pr 5 1000 mb. The buoyancy termR/cp(p /p )0 r

B in Eq. (2.2) can be represented by the potential tem-
perature u, including the specific humidity of water va-
por q and ice water mixing ratio qc in the form

u
B 5 1 «9q 2 q , (2.7)cu0

where «9 5 (1 2 «)/«, and « is the ratio of the molecular
weight of water to that of dry air. A number of terms
appearing in the above equations will be defined in the
following.

It is convenient to employ the vorticity equation in
the formulation of stratus cloud models. This can be
done by subtracting the derivative of Eq. (2.1) with
respect to z from the derivative of Eq. (2.2) with respect
to x and using the continuity equation. The use of vor-
ticity eliminates the pressure gradient force terms de-
noted in Eqs. (2.1) and (2.2). Furthermore, we can ex-
press u 5 2]c/]z and w 5 ]c/]x, where c is the stream-
function. In terms of vorticity z, streamfunction c, and
Jacobian J, the governing equations for the cirrus cloud
formation model can be expressed by
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Due to the uncertainty of dealing with the turbulence
effect on an individual ice crystal based on the second-
order turbulence closure, we have used the eddy dif-
fusion approximation in Eq. (2.11) in the present model,
with km the eddy diffusivity for ice crystals set as 3 m2

s21 (Deardorff 1972; Klemp and Wilhelmson 1978; Lin
1997). The vorticity, potential temperature, and specific
humidity are connected to the ice crystal size spectrum
via the ice water mixing ratio qc, the heating rate due
to phase change QC, and the deposition–sublimation be-
tween water vapor and ice water C in the forms

N

q 5 n m , (2.12)Oc i i
i51

L CsQ 5 , (2.13)C Cp

N dm ]ni 1C 5 C 1 C 5 n 1 m , (2.14)Odif nuc i 1[ ]dt ]ti51 nuc

where we have discretized the ice crystal size spectrum
by N bins. In Eqs. (2.12)–(2.14), Cp is the specific heat
at constant pressure; Ls is the latent heat of sublimation;
and Cdif and Cnuc represent sources and sinks of moisture
due to diffusional growth and nucleation of ice crystals,
respectively. The ice crystals initially generated by nu-
cleation are denoted by the mass of the smallest size
group m1. It follows that Cnuc is the product of m1 and
the rate of change of number density of ice crystals due
to nucleation in this size group, and Cnuc 5 0 when the
nucleation process is terminated.

Finally, the governing equations (2.8)–(2.11) require
seven turbulent fluxes denoted by the overbars, which
can be predicted using the second-order closure based
on prognostic equations for the second moments. The
closure details are given in appendix A.

b. Radiative transfer parameterizations

Radiative heating, QR, is computed from a radiative
transfer scheme that is based on the delta-four-stream
approximation developed by Liou et al. (1988) for in-
homogeneous cloudy atmospheres. The incorporation of
nongray gaseous absorption is based on the correlated
k-distribution method developed by Fu and Liou (1992).
In this method, the cumulative probability of the ab-
sorption coefficient in a spectral interval is used to re-
place wavenumber as an independent variable. Mono-
chromatic solutions of the radiative transfer equation
for a multiple-scattering atmosphere can be used in con-
nection with a given cumulative probability. The min-
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imum number of quadrature points in the cumulative
probability space ranges from 1 to about 10 for different
absorbing gases in different spectral regions.

In the parameterization, the solar and IR spectra are
divided into a number of spectral intervals according to
the location of absorption bands. These are 0.2–0.69,
0.69–1.3, 1.3–1.9, 1.9–2.5, 2.5–3.5, and 3.5–5.0 mm for
the solar spectrum, and 2200–1900, 1900–1700, 1700–
1400, 1400–1250, 1250–1100, 1100–980, 980–800,
800–670, 670–540, 540–400, 400–280, and 280–10
cm21 for the IR spectrum. Absorption due to H2O
(2500–14 500 cm21), O3 (ultraviolet and visible), CO2

(2850–5250 cm21), and O2 (A, B, and g bands) is ac-
counted for in the solar spectrum. In the thermal infrared
spectrum, absorption due to H2O (0–2200 cm21), O3

(980–1100 cm21), CO2 (540–800 cm21), CH4 (1100–
1400 cm21), and N2O (1100–1400 cm21) is included.
The continuum absorption of H2O is incorporated in the
spectral region 280–1250 cm21. Using the correlated
k-distribution method, 121 spectral calculations are re-
quired for each vertical profile in the present study.

The single-scattering properties of hexagonal ice
crystals are computed from the parameterization using
a mean effective size (De) to represent the ice crystal
size distribution in radiative transfer calculations given
by Fu and Liou (1993):

D 5 D · DL · n(L) dL DL · n(L) dL, (2.15)e E E@
where D and L are the width and length of an ice crystal,
respectively; and n(L) represents the ice crystal size
distribution. The width D can be related to length L
according to aircraft observations (Auer and Veal 1970).
The empirical relationships were derived by using over
1500 natural ice crystals with different shapes and sizes
ranging from 15 mm to 1 cm. Because data are not
available for ice crystals less than 15 mm, we have used
the same parameterization for these sizes. Based on
physical principles, the extinction coefficient normal-
ized by IWC, the single-scattering albedo, and the ex-
pansion coefficients in the phase function may be ex-
pressed by third-degree polynomials in terms of 1/De.
The coefficients in the polynomials that are wavelength
dependent are determined by numerical fitting to the
exact results obtained from the light-scattering and ab-
sorption programs using 11 observed ice crystal size
distributions (Takano and Liou 1989; Fu and Liou
1993). The single-scattering parameterization is per-
formed for the 6 solar and 12 IR bands mentioned above.
The radiation parameterization program is driven by the
mean effective ice crystal size and the ice water path,
which is the product of cloud thickness and IWC de-
termined from

IWC 5 r n(m )m , (2.16)O i i
i

where n(mi) is computed from the model and r is the
air density.

c. The ice microphysics scheme

To investigate the intricate interaction and feedback
between radiative processes and ice microphysics, we
require a detailed microphysical model for the simu-
lation of ice crystal size distribution from which the
mean effective size can be computed. Included in this
model are the heterogeneous deposition nucleation, dif-
fusional growth, advection, gravitational sedimentation,
and eddy diffusion of individual ice particles. Several
physical factors are involved in the governing equations:
radiation, saturation ratio, air temperature, and horizon-
tal and vertical motion. The first term on the right-hand
side of Eq. (2.11) represents the net accumulation of ice
crystal number density of a particular size due to dif-
fusional growth. The second term is the contribution
from horizontal advection, while the third term is the
vertical convergence of ice crystal number density de-
termined by vertical air motion and ice crystal terminal
velocity Uf . The fourth and fifth terms denote the nu-
cleation source and eddy diffusion contributions, re-
spectively. To seek solutions for the evolution of ice
crystal size distributions, the ice crystal length spectrum
is discretized into a finite number of intervals (bins) of
15 mm. A partial differential equation can then be ex-
pressed for each bin and solved numerically. The mean
mass of ice crystals of each size group can be calculated
based on the parameterization relationships developed
by Ramaswamy and Detwiler (1986).

1) DIFFUSIONAL GROWTH

The time rate of change of mass for an individual ice
crystal denoted in Eq. (2.14) can be obtained from the
classic mass growth theory, including the conservation
of water mass and total energy at the ice crystal surface.
The diffusional growth for an individual ice crystal can
be expressed as follows:

dm
1 4pC9D9 f Dr 5 0, (2.17)1dt

dm
L 1 H 2 4pC9K9 f DT 5 0, (2.18)s R 2dt

where m is the mass of an individual crystal; C9 is the
equivalent radius for diffusive processes of a nonspher-
ical crystal; D9 and K9 are the diffusion coefficients for
water vapor and heat, respectively; f 1 and f 2 are the
combined ventilation and surface curvature factors, re-
spectively; Dr and DT are the density and temperature
differences between the ice crystal and the environment,
respectively; and HR denotes the radiative effect on the
individual ice crystal.

The analytic expressions for the mass growth rate and
ice crystal temperature can be derived by solving Eqs.
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(2.17) and (2.18) simultaneously. Moreover, using the
Clausius–Clapeyron equation, the ideal gas law, and
Kelvin’s expression for vapor pressure, we obtain the
following equation for ice crystal growth:

dm
5 AS 2 BH , (2.19)Rdt

where

2s
S 5 (s 2 1) 2 , (2.20)i r R Tri w

4p f K9C92A 5 , (2.21)
B9

LsB 5 , (2.22)
2R T B9W

2L f K9R Ts 2 WB9 5 1 , (2.23)
2R T f D9eW 1 s

and s i is the ice saturation ratio, s is the surface free
energy of ice, r i is the bulk ice density, T is temper-
ature in kelvins, Rw is the gas constant for water, r is
half of the ice crystal width, and es is the saturation
vapor pressure with respect to ice at temperature T.
The values for the unknown coefficients are taken
from Laube and Holler (1988), Ramaswamy and De-
twiler (1986), Heymsfield (1972), and Auer and Veal
(1970). The coefficients defined in Eqs. (2.19)–(2.23)
are listed in appendix B.

2) RADIATIVE EFFECTS

The heating due to radiation effect on the individual
ice crystal must be the product of the absorption cross
section and the net radiative flux density and can be
expressed as follows:

`

1 2H 5 s (m )[F 1 F 2 2pB (T )] dlR E a,l i l l l

0

1 2 4ù s (m )[F 1 F 2 2sT ], (2.24)a i

where HR is the rate of radiative energy gained by an
individual particle and is determined separately for each
size bin, F1 and F2 are the upward and downward net
radiative fluxes, and Bl(T) is the Planck function at
temperature T. To simplify the calculations, we may use
a mean absorption cross section of an ice crystal sa ,
which can be obtained from

I

s 5 s /I, (2.25)Oa a,i
i51

where I is the total number of the spectral bands in the
parameterization, and sa,i is the absorption cross section
of an ice crystal for a given wavelength determined from
the parameterization equations presented in Fu and Liou
(1993).

The radiative flux within a volume element of cloud
can be obtained from the radiation scheme described in
section 2b. In this manner, the ice crystal size distri-
bution is fully interactive with radiation via the ice crys-
tal mean effective size and IWC.

3) TERMINAL VELOCITY

We follow the formula developed by Böhm (1989)
for the terminal velocity of ice particles, given by

R heU 5 , (2.26)f rL

where h denotes the air viscosity; L is the ice crystal
characteristic length, which can be computed from the
empirical relationship given by Auer and Veal (1970);
and Re is the Reynold number, which can be calculated
from the unified Davis number (Böhm 1989).

4) NUCLEATION

Ice nucleation processes can be generally classified
in four modes: homogeneous freezing nucleation, het-
erogeneous freezing nucleation, heterogeneous de-
position nucleation, and contact freezing nucleation.
As Chen and Lamb (1994) pointed out, homogeneous
freezing nucleation usually occurs at or below 2408C,
while heterogeneous freezing is likely to be more ef-
fective when sufficient water is involved. Since the
temperature in the present model ranges from 2208
to 2408C and since no liquid water is considered,
only heterogeneous deposition nucleation is included.
The nucleation process requires the presence of ice
nuclei (IN). Fletcher (1962) developed a relationship
between the effective IN concentration and temper-
ature as follows: NIN 5 N 0 exp[b(TSTD 2 T )], where
N 0 and b are constants, and TSTD 5 273.15 K. This
expression implies that NIN is a well-defined function
of temperature. However, Meyers et al. (1992) found
that Fletcher’s equation tends to underpredict ice crys-
tal concentrations for temperatures warmer than
2208C, while overpredicting them for colder clouds.
Gagin (1972) and Huffman (1973) found that the
number concentration of effective IN increases with
increasing supersaturation over ice Si in the form

NIN 5 c ,kS i (2.27)

where c and k are constants determined from Huffman
(1973) and Chen and Lamb (1994). Heterogeneous de-
position nucleation is taken into account using this re-
lationship. The effective INs nucleate immediately, im-
plying that their appearance is the same as the creation
of new ice particles. The nucleation process is assumed
to be irreversible, that is, dNIN $ 0.

d. Boundary conditions and numerical methods

Cyclic boundary conditions are specified at the lateral
boundaries. The upper and lower boundaries are set so



2468 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 1. Vertical profile of the horizontally averaged IWC simulated
from the model at five time steps.

FIG. 2. Vertical profiles of the horizontally averaged heating rates due to (a) phase change
and (b) radiation at four time steps.

that the evolving disturbances remain isolated within
the domain, that is,

z 5 0, c 5 0, and (2.28)

]u ]u ]q ]q0 05 2w , 5 w . (2.29)0 0]t ]z ]t ]z

No cross-boundary transport of perturbation quanti-
ties is allowed at the lower and upper boundaries such
that

]z ]u ]q
5 5 5 0. (2.30)

]z ]z ]z

The second-order turbulence moments are simply set to
zero.

The C grid presented by Arakawa and Lamb (1977)
is used in the model, with dynamic quantities defined
at grid points and thermodynamic variables defined at
points offset by a one-half grid interval in both the x
and z directions. The horizontal turbulent fluxes are lo-
cated at the physical lateral boundaries, while the ver-
tical turbulent fluxes are located at the physical upper
and lower boundaries following Krueger (1988). The
model domain covers 3 km in the vertical and 6 km in
the horizontal with a uniform horizontal and vertical
grid spacing of 100 m. To test if this grid spacing is
sufficient to resolve the cloud cluster, we have carried
out a simulation in which the spacing is reduced to 50
m. The mean profiles of the basic variables obtained
from the simulations using these two resolutions are
substantially the same. Thus, the former has been used
in the presentation of results. The nonlinear term of the
vorticity equation (2.8) is evaluated by the finite-dif-
ference scheme in terms of the flux form using Arak-
awa’s (1966) nine-point Jacobian, which conserves both
the mean kinetic energy and mean square vorticity. The
nonlinear terms in Eqs. (2.9) and (2.10) are computed
following the method developed by Lilly (1965). The
turbulence equations also contain a number of nonlinear
terms in which the simplest centered difference forms
are employed. Equations (2.8)–(2.10) are solved by us-
ing the second-order Adams–Bashforth scheme, except
that the Euler forward scheme is used for the initial time
step. The Euler forward scheme is also adopted for the
solution of ice crystal size distributions denoted in Eq.
(2.11).
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FIG. 3. Contour maps of IWC (mg m23) at four time steps. (a) t 5 10 min, (b) t 5 20 min, (c) t 5 60 min,
and (d) t 5 120 min.

FIG. 4. The vertical profile of the horizontally averaged supersatu-
ration ratio with respect to ice at five time steps.

3. Simulation results

a. Initial condition

To investigate the physical interaction of radiation,
ice microphysics, and turbulence in the life cycle of
cirrus clouds, we have performed a number of simu-
lations involving the formation and evolution of a thin
cirrus cloud. The initial thermal stratifications used in
the present model are a number of specified lapse rates

in various vertical regions, which are expressed in terms
of the pseudoadiabatic lapse rate governing the unmixed
vertical displacements at ice saturation, typical of thin
cirrus cloud layers. The lapse rates of 7.28, 8.78 (which
corresponds to the pseudoadiabatic lapse rate governing
unmixed convection at ice saturation), and 4.78C km21

are set below 6.95 km, between 6.95 and 7.55 km, and
above 7.55 km, respectively. The temperature ranges
from 2208 to 2408C. The relative humidity with respect
to ice is set at 115% in the initial cloud generation region
(6.55–7.55 km), and 60% otherwise. The initial state is
horizontally uniform and at rest, except for the large-
scale vertical motion that is related to the dynamic forc-
ing and is prescribed as a constant with a value of 2 cm
s21. There is no ice water initially. The mean spring
U.S. Standard Atmosphere, 1976, is used outside the
model domain for initialization of the radiative transfer
scheme. The solar zenith angle is calculated from the
geometric relationship involving the latitude (408N), the
time of the year (18 March), and the local solar time
(1300 LST). The disturbance is initiated through the
prescribed potential temperature perturbations at all grid
points covering the layer from 6.55 to 7.55 km, with a
maximum and a mean value of 0.18 and 0.058C, re-
spectively. Both positive and negative perturbations oc-
cur in this region.

b. Cirrus cloud simulation results

Figure 1 shows the vertical profile of the horizon-
tally averaged IWC (IWC ) during a 120-min cirrus
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FIG. 5. Ice crystal size distributions at different altitudes: (a) cloud top, (b) midcloud, and (c) cloud base, at four time steps.

cloud simulation. Ice crystals form initially by the
deposition nucleation associated with the saturated air
produced by dynamic and thermodynamic forcings.
At t 5 10 min, IWC increases from 0 to about 5.7
mg m23 . The nucleation process stops when the su-
persaturation ratio begins to decrease due to deposi-
tion. Ice crystals are then subject to diffusional
growth, advection, sedimentation, and eddy diffusion.
Ice crystals become larger and fall to lower levels.
At t 5 20 min, IWC reaches its maximum value of
about 9 mg m23 , and the location of its maximum
shifts from 7.55 km at t 5 10 min to 7.15 km at t 5
20 min. At the same time, the cloud base is moving
downward. After ice crystals fall into the drier lower
region, sublimation occurs and the simulated maxi-
mum IWC decreases to about 4.2 mg m23 at t 5 40
min. After t 5 60 min, a near steady state is reached.
Observations of cirrus IWC in weak synoptic forcing
situations have been reported to be between 3 and 8
mg m23 over a horizontal path longer than 3 km and
with a temperature range of 2308–2408C (Heyms-
field 1975). The present model results thus appear to
compare reasonably with these previous observations.

The updrafts in the cloud layer are larger than the
downdrafts in the earlier stage of the simulation, with
maximum values of about 30 and 5 cm s21, respectively,
at t 5 20 min. Toward the end of the simulation, updrafts
and downdrafts are of the same magnitude with a value
of about 15 cm s21. The simulation results are com-
parable to the observed vertical velocities in cirrostratus,
with typical values ranging from 5 to 20 cm s21 and a
maximum of about 60 cm s21 (Heymsfield 1977).

The ice water formation processes can also be illus-
trated from the vertical profiles of heating rate associ-

ated with the phase change of ice and radiation at dif-
ferent time steps as shown in Fig. 2. In the cloud gen-
eration region, temperature increases because latent heat
is released by the formation and growth of ice crystals.
In the lower region where the air is not saturated, how-
ever, ice particles sublimate and temperature decreases.
Thus, by the release of latent heat, the upper part of the
cloud is heated and the lower part is cooled, resulting
in the increase of stability (Fig. 2a). Net radiative cool-
ing occurs in the upper part of the cloud, whereas heat-
ing takes place in the subcloud region, implying that
radiation plays an active role in decreasing cloud sta-
bility. The preceding radiation and latent heat effects
on cloud stability during cirrus cloud evolution are in
line with those presented in Starr and Cox (1985). The
horizontally averaged IR cooling rate is negative
throughout the cloud with a maximum of about 23.68C
day21 at the cloud top, whereas the solar heating rate
is positive, having a maximum of about 38C day21 in
the middle part of the cloud. These results, while smaller
than those obtained from the models using bulk micro-
physics parameterizations (e.g., Starr and Cox 1985; Gu
and Liou 1997a,b), are in good agreement with the val-
ues reported by Khvorostyanov and Sassen (1998b),
who also used an explicit microphysics module in the
cirrus cloud model. Finally, it should be noted that heat-
ing due to the turbulent transport is negative in the cloud
generation region and is positive in the subcloud region.
Contribution from this term, however, is much smaller
than that from phase change and radiation terms by
about two orders of magnitude.

Distributions of the simulated IWC at four time steps
are shown in Fig. 3. In the calculation of IWC, the
minimum number density is assumed to be a small value
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FIG. 6. Distributions of the mean effective ice crystal size (mm) at
three time steps: (a) t 5 20 min, (b) t 5 40 min, and (c) t 5 60 min.

of 1 m23 in order to obtain the maximum possible con-
tribution of ice crystals. Usually the significance of the
total ice crystal number density becomes negligible
when its value is less than about 10 m23 or even larger.
Zhang et al. (1989), for example, used 50 m23 as the
minimum number density in their simulation study, and
a value of about 1022 was obtained in terms of the ice
crystal size distribution (m23 mm21). As shown in Fig.
3, some small cells are observed around 7.4 km at t 5
10 min. At t 5 20 min, the maximum simulated IWC
is located at about 7.2 km with a value of about 20 mg
m23, which is close to that reported by Heymsfield
(1975). The cells become vertically elongated with time,
similar to the results presented by Starr and Cox (1985).
The cloud base moves from 6.8 km initially to about
6.4 km at the end of the simulation as a result of the
relative fall speed of ice crystals and the weakening of
updrafts during the cloud’s evolution. Overall, the fore-
going results are in general agreement with those ob-
tained from the 2D cirrus cloud model that uses param-
eterizations to account for the phase change of ice and
the vertical flux of ice water (Gu and Liou 1997a,b).
The main difference, however, is that IWC increases to
its maximum value much faster in the parameterized
scheme in which the total excess water vapor is depos-
ited to ice water immediately in one time step and the
depletion of water vapor by diffusional growth after the
formation of ice crystals is not taken into account. This
result is in agreement with the conclusion presented in
Khvorostyanov and Sassen (1998b) that the ice crystal
phase relaxation time takes about 0.5–2.0 h.

Figure 4 illustrates the time-dependent evolution of
the supersaturation ratio, which decreases with time in
the cloud formation layer but increases in the subli-
mation region below. It is clear that in the region where
water vapor is deposited to ice crystals, water vapor in
the ambient air is diminishing and thus the saturation
ratio decreases. When ice particles are sublimating, wa-
ter vapor is released and the saturation ratio increases.
At the same time, the ice crystal sedimentation process
transports ice into the sublimation region where it serves
as a moisture source. Note that the supersaturation ratio
decreases slowly after t 5 40 min and is still slightly
positive after t 5 60 min. This again demonstrates the
difference between the explicit ice microphysics and
parameterization schemes. In the latter, the excess water
vapor is depleted into ice water immediately at the be-
ginning of the simulation, with the corresponding max-
imum IWC reached as early as t 5 5 min (Starr and
Cox 1985).

The evolution of ice particle size distribution at
different altitudes is displayed in Fig. 5. Ice crystals
are first formed by nucleation and subsequently grow
through diffusional growth. The size distribution
changes as a result of the diffusional growth, advec-
tion, sedimentation, and turbulence processes. At t 5
5 min, the maximum ice crystal size is about 200 mm
at the cloud top of 7.55 km. At t 5 10 min, the number

densities of ice crystals with sizes smaller than 300
mm have the largest values and decrease after this
time period. Ice crystals grow continuously and the
largest one of about 600 mm is generated at t 5 20
min when the IWC reaches its maximum value. After
t 5 20 min, the number densities of larger ice crystals
are reduced because they fall to the lower level, while
those of smaller ice particles remain almost un-
changed. The ice crystal size distributions reach a
near steady state after t 5 40 min (Fig. 5a). Figure
5b shows the time-dependent evolution of the ice
crystal size distribution at 7.15 km, corresponding to
the middle of the cloud. The number densities of small
ice crystals here are much less than those at higher
altitudes, while those of larger ice particles are rough-
ly comparable after t 5 20 min. The number densities
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FIG. 7. Differences (with radiation minus without radiation) of the vertical profiles of the horizontally averaged (a) IWC,
(b) the heating rate due to phase change, and (c) the saturation ratio at four time steps.

FIG. 8. Ice crystal size distributions at different altitudes: (a) cloud top, (b) midcloud, and (c) cloud base, at t 5 120 min
for simulations with (solid) and without (dashed) radiation.

of ice crystals smaller than 500 mm reach their max-
imum values at t 5 20 min. These ice crystal numbers
then decrease due to sublimation in favor of the
growth of larger particles. The largest ice particle size
is about 600 mm after t 5 40 min. At 6.75 km (near
the cloud bottom), no ice crystal is formed initially.

At t 5 10 min, the largest ice crystal size there is
about 400 mm. The number densities of large ice crys-
tals then increase rapidly after t 5 20 min. This, again,
is because larger ice crystals have greater terminal
velocities and fall more rapidly to the lower level (Fig.
5c). The ice crystal size distributions at the middle
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FIG. 9. (a) Vertical profile of the horizontally averaged IWC at three time steps and (b) ice
crystal size distributions at cloud top and bottom at t 5 120 min for simulations with (solid) and
without (dashed) including the radiation effect in the diffusional growth of ice crystals.

and lower parts of the cloud reach a near steady state
after t 5 60 min.

Figure 5 also illustrates the temporal and spatial
variabilities of ice crystal size distributions simulated
by the model. At t 5 5 min, no ice crystal is formed
below the supersaturated level. Ice crystals grow and
fall to the lower region. Finally, ice crystals smaller
than 300 mm dominate at the cloud top, while larger
particles are located mainly at lower levels. These size
distributions are in general agreement with the ice
crystal size distributions collected during FIRE II In-
tense Field Observation (IFO) and analyzed by Ou et
al. (1995), as well as those presented by Heymsfield
and Platt (1984). For the temperature range from 2208
to 2408C, observations of the average size spectra
show that the number densities tend to increase with
decreasing temperature for small particles, while they
decrease with decreasing temperature for large par-
ticles. In the present model, the lower parts of the
cloud have higher temperatures and possess higher
number densities of large ice particles. The cloud top,
on the other hand, is cooler and shows the presence
of more small ice particles.

Figure 6 shows the mean effective ice crystal sizes
over the model domain at 20, 40, and 60 min. These
sizes range from 0 to 120 mm and are in general agree-
ment with those determined from the FIRE II IFO data
reported by Ou et al. (1995). The mean effective ice
crystal sizes determined from both replicator data and
satellite retrieval for a number of carefully selected cir-
rus cloud cases were mostly between 40 and 100 mm.
The location of the maximum ice crystal size and the

cloud base simulated from the model moves downward
with time.

c. Radiation effects in cirrus cloud evolution

Vertical profiles of the differences of IWC, latent
heat, and the saturation ratio at four time steps between
simulations with and without radiation are shown in Fig.
7. Inclusion of the radiation effect enhances the latent
heat release in the cloud generation region after t 5 10
min, implying that the deposition and hence the rate of
net formation are enhanced. Moreover, the sublimation
process in the lower area is also strengthened after t 5
40 min. The corresponding supersaturation ratio de-
creases (increases) in the cloud formation region (the
region below) due to radiation effects, revealing that
radiation enhances both deposition and sublimation. Ev-
idently, radiation appears to enhance stability during the
maintenance and dissipation periods of the cirrus cloud
evolution. The simulated IWC is also larger during the
cloud formation period when radiation is included.
However, less IWC occurs in the cloud generation re-
gion after t 5 40 min with radiative processes included
in the model. This surprising result may be explained
by the effects of radiation on ice crystal growth as de-
tailed in the following.

Figure 8 presents the details of radiation effects on
the ice crystal size distributions. Radiative cooling tends
to increase the number densities of larger ice crystals.
This can be explained from Eq. (2.14), in which radi-
ative cooling contributes to the growth of ice crystals.
Larger ice crystals and corresponding larger fall speeds
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FIG. 10. Vertical profiles of the horizontally averaged cloud-
scale (solid) and turbulence-scale (dashed) (a) vertical component
of kinetic energy, (b) buoyancy flux, and (c) water vapor flux at
t 5 90 min.

result in less IWC in the cloud generation region, but
more in the subcloud region during the maintenance
period (Fig. 7a). The sublimation process is also
strengthened by radiative effects, leading to smaller
number densities of ice crystals with sizes less than 300
mm in the subcloud region after t 5 40 min. Because
more sublimation occurs when radiation is included at
t 5 40 min, the corresponding IWC becomes less after
t 5 60 min (Fig. 7a). The ranges of size spectra become
narrower when radiation is not included in the model.
Similar results have also been reported by Zhang et al.
(1989).

The effects of radiation on the diffusional growth of
individual ice crystals are illustrated in Fig. 9. Radiative
cooling significantly enhances the production of large ice
crystals at the cloud top, but the production is decreased
by heating in the level below. Clearly, radiation plays an
important role in the ice crystal growth process and hence
substantially modulates the ice crystal size distributions
(Fig. 9b). According to the diffusional growth equation,
when radiative cooling is present at the cloud top (i.e., HR

, 0), the radiation effect contributes more significantly to
the diffusional growth of ice crystals with larger cross
sections. The cloud-scale updraft speeds with a maximum
value of about 15 cm s21 are now smaller than the fall
speed of larger ice crystals. These ice crystals then fall to
the lower drier level where the diffusional mass growth
becomes negative because subsaturation occurs. The ra-
diative heating in the lower part of the cloud then tends
to strengthen the sublimation process. The simulated IWCs
are larger before t 5 40 min but smaller after t 5 60 min
when the radiation effect on individual ice crystals is taken
into account in diffusional growth (Fig. 9a). It appears that
this effect is significant when ice crystal size distributions
are explicitly simulated in cirrus cloud models.

d. Role of turbulence in cirrus cloud evolution

The primary role of turbulence-scale turbulence is to
modulate the supersaturation condition, which affects
the rate of phase change between water vapor and ice
crystals. Thus turbulence can interact with radiation by
enhancing the net cooling rate and by increasing the
radiative destabilization (Gu and Liou 1997a,b). Figure
10 depicts the horizontally averaged vertical component
of the turbulent kinetic energy at t 5 90 min. A max-
imum value is shown in the upper part of the cloud with
a magnitude of about one-third of the vertical compo-
nent of the cloud-scale kinetic energy. The buoyancy
flux produced by cloud-scale drafts is negative at the
cloud top and positive within the cloud. The turbulence-
scale buoyancy flux is comparable in value but opposite
in sign. Turbulence tends to generate upward (down-
ward) buoyancy flux in the upper (lower) part of the
cloud and redistribute water vapor within the cloud.
Cloud-scale drafts, on the other hand, mainly transport
water vapor downward within the cloud, which may
slow down the cloud formation process.

Simulation without turbulence-scale turbulence has
also been carried out to examine the role of turbulence
in the evolution of cirrus clouds. Turbulence-scale tur-
bulence normally provides smoothing effects in the
model. To prevent the growth of numerical instabilities
when turbulence closure is turned off, we have included
a very small fourth-order damping term in each prog-
nostic equation, which is small enough not to affect the
resolvable variables, following Klemp and Wilhelmson
(1978). The direct effect of turbulence on the ice crystal
size distributions is shown in Fig. 11. After t 5 40 min,
the action of turbulence leads to the generation of more
intermediate to large ice crystals (L . 200 mm), es-
pecially in the middle and lower parts of the cloud. The
corresponding time-dependent behavior of the domain-
averaged IWC also shows substantial differences after
t 5 40 min, revealing that turbulence is likely to be
more important in the maintenance and dissipation stag-
es. The heating rates due to latent heat release during
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FIG. 11. Ice crystal size distributions at different altitudes: (a) cloud top, (b) midcloud, and (c) cloud base, at t 5
120 min for simulations with (solid) and without (dashed) turbulence-scale turbulence.

FIG. 12. Differences averaged over a period of 60–90 min for (a) the heating rate due to
phase change and (b) the saturation ratio between simulations using second-order and first-
order turbulence closures (second-order minus first-order) in the cloud model.

this period indicate that turbulence enhances both de-
position in the cloud generation region and sublimation
in the region below. The effects of turbulence closure
in the cirrus cloud model are further examined in the
following.

Figure 12 shows the differences (second-order results
minus first-order results) in saturation ratio and the heat-
ing rate associated with phase change averaged over a
time period of 60–90 min between second- and first-

order closures. Use of the second-order turbulence clo-
sure appears to enhance the latent heat release within
the cloud and decrease the stability in the lower region.
Starr and Cox (1985) stated that occurrence of a second
convectively active region below the initial cloud layer
is very common, which may lead to the formation of
multilayered thin cirrus. Turbulence appears to play an
important role in this process, as is evident from the
incorporation of second-order closure that reduces low-
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er-level stability. The saturation ratio decreases at the
cloud top but increases above the cloud, implying that
more moisture is transported to higher levels when the
second-order closure is employed.

4. Summary

A 2D time-dependent numerical model focusing on
cloud-scale processes with a grid resolution of 100 m
has been developed to investigate the interaction among
radiative processes, turbulence, and ice microphysics,
and their effects on the formation of cirrus clouds. The
new features of the model include a radiation scheme
that interacts with the ice crystal size distribution via
IWC and a mean effective ice crystal size, the effect of
radiation on the growth of individual ice crystals, and
a second-order closure for turbulence. Large-scale dy-
namic forcing is taken into account through an initial
large-scale vertical motion. The ice microphysical prop-
erties are determined by nucleation, diffusional growth,
horizontal and vertical advection, sedimentation, and
eddy diffusion. The ice crystal lengths are divided into
a finite number of bins in the simulation of ice crystal
size distributions.

Numerical results show that ice crystals form ini-
tially by nucleation associated with the saturated air
and the dynamic and thermodynamic forcings. Sub-
sequently, they grow by means of the diffusional
growth process, advection, gravitational sedimenta-
tion, and turbulence. Radiative processes begin to
play an important role once a sufficient amount of ice
water is produced in the atmosphere. Radiative cool-
ing provides an impetus to the growth of ice crystals
at the cloud top through its effect on individual ice
crystals, while radiative heating enhances the subli-
mation of ice crystals in the lower region. Radiatively
forced processes play an important role during the
evolution of ice crystal size distributions. The action
of radiative heating and cooling increases the number
densities of large ice particles but reduces those of
the small ones in the lower level. When radiative
properties are included in the model, larger ice crys-

tals and larger fall speeds lead to less ice in the cloud
generation region. The simulated size spectra become
narrower when radiation is not included in the model.
Since cirrus is not opaque, radiative cooling or heating
is distributed within the entire cloud. Consequently,
radiatively driven convection is closely associated
with the ice mass vertical distribution. The effects of
the magnitude of radiative heating rates and the lo-
cations of the cloud top and base in the present cirrus
cloud case are smaller than those in the radiatively
driven stratiform cloud. The induced turbulence-scale
turbulence begins to play a substantial role in the
evolution of cirrus soon after the effects of radiation
become significant. Turbulence affects the phase
changes of ice and the formation of ice crystal size
distributions. Differences in the simulation results be-
tween the use of second- and first-order turbulence
closures show that turbulence effects are more vig-
orous when the former is used in the model, resulting
in enhanced instability and more moisture being trans-
ported to higher levels.

As shown in the preceding presentation, radiative
fluxes and heating rates play important roles in the evo-
lution of cirrus clouds. Radiation calculations involving
clouds in this model have been carried out by using the
plane-parallel assumption on a column-by-column basis.
It is clear from the model simulation of IWC and ice
crystal size distribution that cirrus clouds are highly
inhomogeneous and finite in extent. How would the
horizontal radiative flux exchanges affect the growth of
ice crystals? It is our intent to investigate the cloud
inhomogeneity effects on the distribution of radiative
fluxes and heating rates and their feedback to ice mi-
crophysical properties and dynamic fields in a cirrus
cloud model by using an appropriate 3D radiative trans-
fer model for inhomogeneous clouds.
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APPENDIX A

The Second-Order Turbulence Closure

A second-order turbulence closure is developed and
incorporated in the present cirrus cloud model. We fol-

low the level-4 closure model developed by Mellor and
Yamada (1974) and further apply the assumptions made
for the potential temperature to the moisture field. The
mean Reynolds stress model equations for the calcu-
lation of the evolution of turbulent fluxes can be written
in the forms

3]u9u9 ]u9u9 ]u9u9 ]u d ]u] ]u9u9 ]u 2 E E ]ui j i j j k j ij ji k i i2 22 El 1 1 5 2u9u9 2 u9u9 2 d 2 u9u9 2 E 1 c9E 11 k i k j ij i j 11 2 1 2 1 2[ ]]t ]x ]x ]x ]x ]x ]x 3 ` 3, 3 ]x ]xk k j i k k 1 1 j i

2
2 b(g u9u9 1 g u9u9) 1 c9b g u9u9 1 g u9u9 2 d g u9u9 , (A.1)j i i j 2 j i i j ij k k1 23

2 2]u9 ] ]u9 ]u E
22 El 5 22u9u9 2 2 u9 , (A.2)2 k1 2]t ]x ]x ]x `k k k 2
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(A.6)

Equation (A.1) contains prognostic equations involv-
ing the turbulent kinetic energy components and the
turbulent fluxes of momentum. Equation (A.3) includes
equations for the turbulent fluxes of potential temper-
ature, while (A.5) for moisture turbulent fluxes. In these
equations, b is the coefficient of thermal expansion; gj

5 (0, 0, 2g) is the gravity vector; E is the square root
of twice the turbulence kinetic energy; , , and arec9 c9 c91 2 3

constants taken from Mellor and Yamada (1974); and
l1, l2, l3, l1, l2, and `1, `2 are all length parameters
that are related to the turbulent length scale l, which is
proportional to the size of the largest turbulent eddies.
Since they are confined to the turbulent region, l is
related to the mixed-layer depth. For the length scale,
we have adopted the interpolation formula given by
Blackadar (1962) in the form

kz
, 5 , (A.7)

1 1 kz /,`

which interpolates between two limits l ; kz as z → 0
and l ; l` as z → `, with k the von Kármán constant.
Various propositions for l` have been suggested in the
literature. Following Bougeault (1981) we set l` 5
0.15H, with H the mixed-layer depth. Studies by Krue-
ger and Bergeron (1994) on the sensitivity of the cu-
mulus ensemble model to the turbulent length scale
showed that a constant or uniform value for H should
be used if Blackadar’s formula is employed. We have
set H 5 800 m in this study. Finally, it should be pointed
out that the first-order exchange concept has been used
for ice crystal number density in the prognostic equa-
tion. Thus, second-moment terms associated with phase
change have been neglected due in part to the lack of
physical foundation.
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