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Abstract

This study focuses on how the variability of land surface temperature and vegetation density at the SGP ARM-CART site changes
over episodic (day to day) and seasonal time scales using AVHRR satellite data. Four drying periods throughout the year are analyzed.
Land surface temperature had an erratic relationship with time exhibiting no deterministic pattern from day-to-day or season-to-season.
Furthermore, it did not exhibit spatial pattern persistence. On the other hand, vegetation density had a consistent spatial pattern and
temporal decay during average length drying periods (less than 7 days) as well as within a season. However, there were distinct differences
in the seasonal pattern of variation between winter and growing seasons. In addition, the paper highlights a methodology to quantify the
relationships that exist at the land surface between the primary parameter of interest and the controlling variables.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Land surface temperature and vegetation density are
important surface characteristics for estimating hydrologic
surface fluxes. The development of remote sensing technol-
ogies has enabled intense study of these two characteristics.
Several studies have indicated that the scale at which these
characteristics are parameterized is too large to be ade-
quately described by the first moment alone [8,9]. Much
progress has been made in recent years on methods to
incorporate spatial variability in flux formulations
[1,7,13]. These parameterization schemes tend to assume
a static description of variability; however, in the real
world, this variability rarely retains the same characteristics
over time. Some aspects of the temporal evolution of spa-
0309-1708/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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tial variability were analyzed by Chen et al. [4] and Chen
and Brutsaert [3]. Further investigation into the spatial pat-
tern persistence of land surface parameters was investi-
gated by Cosh et al. [5]. In the present paper, some of
these ideas are reconsidered; accordingly, a systematic
methodology is put forth to prioritize the significance of
different land surface parameters, specifically land surface
temperature and NDVI, to determine which characteristics
are most important in modeling surface flux spatial
variability.

The main objective of this paper is to show the evolu-
tion of variability of vegetation density and land surface
temperature at the time scales of a drying period (day-to-
day) and across seasons. The study uses standard statis-
tical tools, including moment analysis, regression analy-
sis, aggregation analysis, and correlation analysis to
determine whether the variability of the surface parame-
ters is consistent and stable, and statistically predictable.
Also, the predictability of a variable can be assessed
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Nomenclature

The following symbols are used in this paper

Ck coefficient of kurtosis
Cs coefficient of skewness
eijtL residual
i land cover index
j site index
L latitude
n number of observations
R2 coefficient of determination
rk correlation coefficient
s standard deviation of data
t time index
xi data value at point i
�x average of data
YijtL value of variable (LST or NDVI) at land cover i,

site j, for time i, for latitude L

Yijt value of variable at land cover i, site j, for
time i

Yij(t+k) value of variable at land cover i, site j for time
t + k

Y ��t average of variable for all land covers, for all
sites, and for time t

Y ��ðt þ kÞ average value of variable for all land cover
types for all sites, for time t + k

a coefficient for time t

b coefficient for latitude L

dij categorical variable for land cover i and site j

/ a constant
ci categorical variable for land cover type i

git interaction term between categorical time t and
land cover type i

qNIR reflectance in the near infrared band (0.7–1.1 lm)
qVIS reflectance in the visible band (0.4–0.7 lm)
jt categorical variable for time t

t coefficient for interaction term for time t and
latitude L

wi coefficient of interaction term for latitude L and
land cover i and

fi coefficient for interaction between time t and
land cover i.
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versus several land surface components, and their corre-
lation can be measured. This will determine how a land
surface variable could be modeled by component param-
eters. The area of study was the Southern Great Plains
of the United States, which has a wealth of surface data
available; this region has been the focus of intense exper-
imental investigations in recent years and the benefit of
this information should aid in the development of future
land surface databases and modeling efforts. Estimates of
both variables of interest, land surface temperature and
vegetation density, are available from the National Oce-
anic and Atmospheric Administration (NOAA) Satellite
Program.
2. Variables and experimental data

2.1. Land surface temperature and vegetation density

Remote sensing can be used to estimate land surface
temperature (LST) and vegetation density measured by
the normalized difference vegetation index (NDVI).
Two techniques are commonly used to carry out the
atmospheric correction in the estimation of LST from
satellites. The split-window technique is an empirical
approach that uses the relationship between emissivities
from two satellite channels to estimate the land surface
temperature [2]. Split-window equations are based on
numerous satellite scenes, which are calibrated with sur-
face measurements. This technique is efficient, but does
not consider the specific atmospheric attenuation of the
signal on a given day. The second technique is physically
based and it accounts for this attenuation by incorporat-
ing atmospheric soundings to characterize the moisture
and absorption properties of the air between the satellite
sensor and the surface. The attenuation is then estimated
by a radiative transfer model, such as MODTRAN
(MODerate spectral resolution atmospheric TRANsmit-
tance algorithm and computer model). The signal at
the satellite is corrected to accurately show the tempera-
ture at the surface. For this study, Ou et al. [12] demon-
strated that a split-window technique is roughly
equivalent to a radiative transfer inversion technique
for the Southern Great Plains, so this technique is used
to generate LST maps for this study because of its ease
of use.

Several indices have been developed over the years,
which measure the ’greenness’ of the land surface and
could be used to approximate vegetation density or bio-
mass. A popular index is the normalized difference vegeta-
tion index (NDVI) [14], which is defined as

NDVI ¼ qNIR � qVIS

qNIR þ qVIS

ð1Þ

Here qNIR is the reflectance in the near infrared band
(AVHRR infrared band 2 is 0.725–1.10 lm) and qVIS is
the reflectance in the visible band (AVHRR visible band
1 is 0.58–0.68 lm). A higher value indicates a more ’green’
surface. Conversely, urbanization and waterways yield low
and sometimes negative values.
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2.2. Description of the experimental area

Satellite data were collected over the SGP ARM-CART
area. As described by Stokes and Schwartz [15], this testbed
is a 500 km by 350 km experimental area located in Kansas
and Oklahoma in the Southern Great Plains of the United
States. This study region is heavily monitored for a variety
of radiation and soil variables to characterize the land
atmosphere interface. Remote sensing measurements taken
over the region permit analysis of many different surface
variables, including land surface temperature, surface soil
moisture, and vegetation. The region has gently rolling
topography and a semi-humid climate. The dominant land
cover types are: Cropland – 12%, Grassland – 38%, and
Savanna – 27%. For the purposes of this study, only vege-
tated surfaces were analyzed. Less than 5% of the area was
urbanized so that ignoring the non-vegetated pixels should
not be significant. This data is available from the SGP data
archive and is derived from the Oklahoma and Kansas
Geological Surveys.

2.3. Description of satellite data

Thirty-five daytime scenes were retrieved for dates from
within the period 1997 to 2000. AVHRR on board the
NOAA-14 satellite retrieved the necessary information
for deriving the surface variables in this study. AVHRR
scans the entire earth twice a day with a resolution of
1 km2 across five spectral bands. For this study, only the
�20:00 GMT (Greenwich Mean Time) overpass is consid-
ered, which for Oklahoma and Kansas (GMT–5:00) is
approximately 15:00 local time. The surface temperature
is derived from two thermal bands, channel 4 (10–
11.5 lm) and channel 5 (11.5–12.5 lm). Ou et al. [12] dem-
onstrated the ability of the split window method to esti-
mate LST in this region with sufficient accuracy for the
purpose of this analysis. Cloud masking techniques [11]
were used to identify pixels containing clouds. These tech-
niques included a combination of taking histograms of var-
ious channels and ratios of channels and masking pixels,
which meet various criteria. These criteria are established
from visual inspection per scene. These were removed for
the analysis of both land surface temperature and vegeta-
tion density. Drying periods were defined as consecutive
clear days of no precipitation.

A spatial analysis of this data set is presented in Cosh
et al. [5]. The spatial distribution of vegetation density
was anisotropic and statistically heterogeneous. However,
as a drying period progressed the heterogeneity decreased
and the characteristic length scale shortened. When the
analysis was confined to similar land cover, the vegetation
density was homogeneous with a characteristic length scale
of up to 40 km. Conversely, land surface temperature was
anisotropic and heterogeneous with no dependence on land
cover. The spatial structure of land surface temperature
was highly variable and changed dramatically from day
to day.
3. Methods of analysis

The following four sets of analyses were used in this
study to explore and define the significant parameters,
which affect the surface variables under consideration,
namely LST and NDVI.

3.1. Moment calculations

An investigation into the character of surface variability
often begins with an analysis of the moments of the vari-
able. These moments are capable of adequately describing
a probability distribution function for a variable [16]. The
mean, variance, and coefficient of variation were computed
with the standard estimators. The coefficient of skewness
was computed by

Cs ¼
n

ðn� 1Þðn� 2Þ
Xn

i¼1

xi � �x
s

� �3

; ð2Þ

and the coefficient of excess kurtosis as

Ck ¼
1

ns4

Xn

i¼1

ðxi � �xÞ4 � 3: ð3Þ

Confidence intervals can be estimated for each moment
estimate by means of bootstrapping [6]. Given a set of n

observations, m sets of n samples are randomly selected
with replacement. The desired statistic is then calculated
for each m subset and sorted. For m equals 1000, the
25th and 975th (sorted) statistics provide an approximate
95% confidence interval for the population value.
3.2. Regression analysis

Regression analysis was used to study the relationship of
the variability of surface temperature and vegetation den-
sity with three surface characteristics, namely vegetated
land cover, time, and latitude. Latitude was included to
determine if the scale of the study region influences the sur-
face variables. In the Southern Great Plains, precipitation
and soil moisture decrease with distance from the Gulf of
Mexico in general. If a study region is significantly large
enough to be affected by this spatial trend, this will be
apparent in the regression analysis. Time measures the evo-
lution of the surface variables from day to day as well as
over a yearly cycle. In this case, time is quantified as Day
of Year. Land cover was chosen as a categorical variable
to study if the type of vegetated land cover affects the sur-
face variables of vegetation density and land surface tem-
perature. Land cover was represented by the three
dominant types (cropland, grassland, and savanna), which
account for approximately 75% of the total area. The var-
iation in YijtL represents the variable of interest (in the pres-
ent study LST or NDVI) and was determined by

Y ijtL ¼ /þ ci þ ðaþ fiÞ � t þ ðbþ wiÞ � Lþ t � t � Lþ eijtL

ð4Þ
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Specifically, YijtL is the variable of interest for the jth site of
the ith land cover type with the covariates of time, t, and
latitude, L. The categorical variable for land cover type,
ci, has levels i = 1,2,3, (cropland, grassland, and savanna).
The covariates, time and latitude, are represented by t and
L with coefficients of a and b. The terms, fi*t, wi*L, and
t*t*L, represent the interactions between the categorical
variable and the covariates. The coefficients for the interac-
tion terms, fi and wi, each have three levels. The residual is
represented by eijtL, where j refers to the site. / is a con-
stant. The model is over-parameterized so two constraints
are added:

P
ci ¼ 0 (zero) and

P
bi ¼ 0 (zero) [10]. Precip-

itation amount (or antecedent precipitation index) is not
included in the current study, but could be analyzed in
the future.

This model can be fit to the remote sensing data
retrieved for this study. The coefficient of determination,
R2, describes the variability that this model explains [10].
It is possible to represent the amount of variability due
to a single factor by dividing the sum of squared errors
for that factor by the total sum of squares. In this analysis,
an incremental R2 is calculated, because a sequential sum
of squares is used. This method of analysis assumes a hier-
archy of importance in predicting the variable in question.
These R2 values can be used to study the influence of a fac-
tor on the overall variability of a variable.
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3.3. Correlation analysis

Correlation analysis is a useful tool to study variability
pattern persistence over a drying period. Persistence is
the tendency of a variable at a site to remain unchanged
relative to the adjacent locations over time. The correlation
coefficient, rk, between two days, t = i and t = i + k, in a
data matrix, Yijt, is given by

rk ¼
P

i

P
j

P
tðY ijt � Y ��tÞðY ijðtþkÞ � Y ��ðtþkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j

P
t Y ijt � Y ��t
� �2

h i
�
P

i

P
j

P
tðY ijðtþkÞ � Y ��ðtþkÞÞ2

h ir

ð5Þ

where Y ��t and Y ��ðtþkÞ are the means of LST and NDVI for
all soil types and all sites for times t and t + k. In the pres-
ent study, (5) was applied to the residuals of a regression
model with a term for land cover type. The residuals are de-
fined as the difference between a regression model estimate
and the observed values. This accounts for the dependence
of the variable on land cover type, which can be substan-
tial. Preliminary results indicated that land cover was the
most practical to consider for each of the land surface char-
acteristics in question.
-10
12/22/99 12/26/99 12/30/99 1/3/00

Date

Fig. 1. Moments of LST (in Kelvin) for a December/January drying
period with 95% confidence intervals. The symbol s refers to the standard
deviation, Cs to the coefficient of skewness, and Ck to the coefficient of
excess kurtosis.
3.4. Aggregation analysis

Lastly, aggregation analysis is a method of investigating
how the statistical structure of a surface variable is affected
by scaling [13]. In this analysis, the variance of an image is
plotted versus the area of an aggregated pixel to create a
variance cascade, as the resolution is linearly aggregated
to more coarse resolutions. The results of this analysis
can assist in making decisions regarding needed sampling
density and remote sensing strategies. Modelers will often
aggregate satellite data to a more coarse resolution, there-
fore it is necessary to determine how the aggregation tech-
nique affects the scaling behavior of a variable.

4. Results of analysis

4.1. Land surface temperature

4.1.1. Moment calculations
Four drying periods were identified within the AVHRR

data available for the study. The study days during each
drying period followed a precipitation event and were con-
secutive days without precipitation. In some instances only
two of these will be presented, but the results were similar
for all four. Fig. 1 contains the plots of the standard devi-
ations (a), coefficients of skewness (b), and coefficients of
excess kurtosis (c) for a drying period extending from 12-
28-99 to 1-2-00 (December/January). Fig. 2 illustrates
those same moments for a drying period from 7-4-00 to
7-8-00 (July) with 95% confidence intervals calculated by
bootstrap. The coefficients of skewness and excess kurtosis
vary considerably throughout a drying period. No pattern
or trend is apparent in any of the calculated moments for
either drying period.

The moment analysis was extended to an annual scale to
determine if there was a seasonal pattern. Moments were
calculated for 35 days across 1997–2000 and plotted
against day of the year. Shown in Fig. 3a, the variability
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Fig. 2. Moments of LST (in Kelvin) for a July drying period with 95%
confidence intervals.
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Fig. 3. (a) The standard deviations (s) for LST (in Kelvin) for the
AVHRR data with 95% confidence intervals plotted versus day of the
year, (b) the coefficients of skewness, Cs, for LST for the AVHRR data
with 95% confidence intervals plotted versus day of the year and (c) the
coefficients of excess kurtosis, Ck, for LST for the AVHRR data with 95%
confidence intervals plotted versus day of the year.
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of land surface temperature, as represented by the standard
deviations, did not display a seasonal pattern or trend. Val-
ues of s ranged between 1.0 and 7.0 with most values
between 1.0 and 4.0. These values vary significantly and
further analysis would be necessary to determine whether
this variation would affect modeling. The coefficients of
skewness (Fig. 3b) and excess kurtosis (Fig. 3c) did not
exhibit any annual pattern. The magnitudes of these
moments varied over a significant range. The coefficient
of skewness varied between �2.5 and 1.0, while the coeffi-
cient of excess kurtosis varies between �1.0 and 9.0. There
was no clear pattern from day to day or season to season.

4.1.2. Regression analysis
Regression analysis was used to investigate which land

surface characteristics play a role in the variability of
LST during a drying period. Table 1 summarizes the R2

values for each of the factors in a model. The model consid-
ers land cover first and then time. As will now be shown,
these results reveal much about the possible differences
between drying periods in different seasons. During most
of these drying periods, on the whole those factors were
responsible for between 10% and 57% of the variability
of land surface temperature. Only for the July drying per-
iod did the R2 value exceed 50%, with most of the increase
being attributed to time, which is most likely anomalous.
This will be addressed below. For all of the drying periods,
the variability due to each factor or interaction was gener-
ally small. No single factor appeared to account for a
major portion of the variability with any consistency. The
strength of the relationship of LST variability with land
use, time, and latitude changed markedly between the July
period and the other three periods considered. Further-
more, though most factors and interactions are statistically
significant in these models, the level of practical importance
is generally minimal. Specifically, the R2 values of the inter-
actions between the three factors studied, land cover, time,
and latitude contribute less than 4% of the variability of
LST, as shown in Table 1. Other factors need to be exam-
ined to determine whether there are any other land surface
variables that contribute consistently to LST variability or
Table 1
Incremental R2 values for LST for four drying periods in the AVHRR
data set

Factor Dec./Jan. April May July

Land cover, ci 0.8 0.5 2.2 4.8
Day, a*t 1.2 3.2 0.2 49.6
Latitude, b*L 31.5 14.5 2.8 0.1
Land cover*Day, fi*t 1.0 0.4 0.1 0.1
Land cover*latitude, wi*L 0.0 0.3 4.8 2.4
Day*latitude, t*t*L 0.2 4.0 0.1 0.1

Total 34.7 22.9 10.2 57.0

R2 describes the amount of variability of land surface temperature which
can be explained by each factor. All factors were determined to be sig-
nificant at 5% level with the exceptions underlined.
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that land surface is not a valuable factor in LST variability
parameterization.

A similar regression analysis can also be conducted to
determine exactly how much variability can be accounted
for by time. To accomplish this, a categorical time factor
is substituted into the model to determine the effect of time
beyond a linear relationship. This factor has the disadvan-
tage of not being useful for future modeling, but can aid in
the understanding of how much variability can be attrib-
uted to time and temporal effects. This new regression
model is

Y ijtL ¼ /þ ci þ ðbþ wiÞ � Lþ ðaþ fi � tÞ þ t � t � L

þ jt þ git þ eijtL: ð6Þ

Here jt is the new categorical time factor with 8 levels, and
git is an interaction term between categorical time and land
cover type. Additional constraints of

P
tjt ¼ 0 (zero) andP

tgit ¼ 0 (zero) are added. Table 2 provides a summary
of the results of an analysis of variance (ANOVA) for each
of the drying periods. The variables were reordered from
the original sequence so that in the new regression analysis
all non-time terms are introduced first. Linear time and its
interactions are introduced second, and finally categorical
time and its interaction with land cover is added. Categor-
ical time in this instance accounts for all non-permanent
land surface characteristics and could include such large
scale temporally dynamic conditions as wind speed, solar
radiance, and humidity. Including each of these temporal
dynamic parameters can be computationally exhaustive
and may yield invalid results, but they can be accounted
for by the categorical time variable. The R2 values are cal-
culated for each step of this model so that a clear under-
standing of the effects of time can be discerned. The
amount of variability that could be explained by the cate-
gorical variable of time varied between the periods. Its con-
tribution to the overall variable was as small as 2.7% for
July and 2.8% for December/January and as large as
45.9% for April and 31.6% for May. Time played a signif-
icant role in the variability of LST when considered as both
a categorical and linear variable. Time was the largest con-
tributing factor for three of the four periods studied. The
linear model appeared to work only during the July drying
period and further study of other drying periods would be
necessary to determine whether this was truly anomalous.
Table 2
Incremental R2 values for LST for four drying periods with an additional
time factor, which is treated as a categorical variable, daycat

Factor December/January April May July

Model w/o day terms 32.3 15.2 0.8 7.3
Day, (a + ni)*t 2.4 0.8 0.4 49.7
Daycat, jt 2.8 45.9 31.6 2.7
Daycat*land, nit 1.5 0.2 0.1 1.0

Total 39.1 69.0 41.9 60.7

The table is based on a sequential sum of squares and all factors are
significant at the 5% level, with exceptions underlined.
4.1.3. Correlation analysis

Correlation analysis was conducted on the dates
included in this study and two drying periods are examined
in more detail below. Two hundred sites (pixels) were ran-
domly sampled and regression analysis conducted, while
maintaining the relative proportions of land cover types
in the sample. The residuals from this regression were used
to study the correlation structure from day to day. This
was done to ensure that the persistence measured is not a
result of underlying patterns of land surface temperature
due to any of the patterns of land cover, such as the distri-
bution of forest and pastures or agricultural fields. Tables 3
and 4 contain the correlation coefficients between days for
the December/January and July drying periods. The results
demonstrate that there is no clear spatial pattern of land
surface temperature during a drying period. Confidence
intervals for the values of rk are approximately ±0.15.

It is possible to calculate the amount of variability
attributable to persistence by revisiting the regression
model and introducing a new factor. If a categorical vari-
able is added to the model (Eq. (6)) to account for site-
to-site differences in LST, the R2 for that factor would give
an additional (beside correlation analysis) estimate of the
amount of pattern persistence. This new model is defined as

Y ijtL ¼ /þ ci þ ðaþ fiÞ � t þ ðbþ wiÞ � Lþ t � t � L

þ dij þ eijtL ð7Þ

where dij is the categorical variable for the jth site with the
ith land cover. The constraint, Rdij = 0 (zero), is added to
the analysis also. Table 5 is a summary of the results of a
regression of the four drying periods. The amount of vari-
ability attributable to this site factor is between 10% and
20%, which is not a large amount when considering the
variability of LST from day to day. In fact, for the Decem-
ber/January and April drying periods, the p-values reveal
that the site factor is not significant at the 5% level. It
can be concluded that there is little persistence of LST dur-
ing a drying period.

This obvious lack of a consistent structure during a dry-
ing period would lead one to conclude that there is no per-
sistent structure in the LST pattern throughout the year. It
appears that the structure of LST from day to day is
affected by factors which vary on a daily scale and at a
smaller scale than the study region, the most obvious being
weather conditions for a region of this scale, 350 km by
Table 3
Correlation coefficients among residuals of the regression analysis for LST
for a December/January drying period

12/28/99 12/30/99 12/31/99 1/1/00 1/2/00

12/28/99 1.000 0.222 0.233 0.063 0.113
12/30/99 1.000 0.359 �0.034 0.204
12/31/99 1.000 �0.068 0.191
1/1/00 1.000 �0.210
1/2/00 1.000

A 95% confidence interval for each coefficient is approximately ±0.15.



Table 4
Correlation coefficients among residuals of a regression analysis for LST
for a July drying period

7/4/00 7/5/00 7/7/00 7/8/00

7/4/00 1.000 �0.004 0.248 0.191
7/5/00 1.000 0.452 0.427
7/7/00 1.000 0.612
7/8/00 1.000

A 95% confidence interval for each coefficient is approximately ±0.15.

Table 5
Summary table of the incremental R2 values for the regression model of
LST containing the site factors (Eq. (5))

Factor December/January April May July

Model w/o sites 34.7 22.9 10.2 57.0
Sites, dij 13.7 10.8 22.3 17.4
Model 39.1 69.0 41.9 60.7

All factors are significant at a 5% level with exceptions underlined.

0.1 0.2

Is
a

1100 M.H. Cosh et al. / Advances in Water Resources 30 (2007) 1094–1104
500 km with a 1 km resolution. This may not be true for
imagery with a smaller resolution or of smaller scale.

4.1.4. Aggregation analysis

The satellite data used to estimate LST are based on
radiance values that are related to LST by the Stefan–
Boltzmann equation, where temperature is to the fourth
power. Aggregation analysis was used to determine if the
non-linear calculation of LST affected the variance estima-
tion significantly. Two variance cascades were calculated;
one based on a derived LST image, the other based on
the original radiance scene used to calculate LST. The radi-
ance scene is linearly aggregated to more coarse resolutions
and then after taking the one-fourth power, the LST vari-
ance is calculated. This analysis demonstrated that the
non-linear relationship between the variable, land surface
temperature, and the observed variable, radiance, does
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Fig. 4. Variance cascade for LST on 1/28/97 with 95% confidence
intervals. The variance cascades are coincident and the confidence
intervals overlap.
not affect the variance cascade. As shown in Fig. 4, the var-
iance cascade of the temperature maps derived from the
temperature aggregation was virtually the same as that
derived from the radiance (temperature brightness)
aggregation.

4.2. Vegetation density

4.2.1. Moment calculations

Four sets of drying period data were available for an
analysis of vegetation density. Those four drying periods
were analyzed at the scale of the SGP ARM-CART area.
The moments of NDVI are presented in Fig. 5 for the
December/January drying period and in Fig. 6 for the July
drying period. One thousand sites (pixels) were randomly
sampled and moment estimates (with bootstrap confidence
intervals) were calculated for each day. The coefficients of
variation for the July drying period vary between 0.18
and 0.24, which may be represented as a constant without
introducing significant error. It can be seen that NDVI pre-
sented a much more stable variable throughout each of the
four drying periods so that it can be assumed that estimates
for a given day are reasonable estimates for that entire dry-
ing period. This assumption can also be justified from
observations of vegetation and its slow response to drying
conditions. Usually, it will take several days of drying
before the vegetation begins to be affected.

At the annual scale, the higher moments of NDVI
exhibited a definite pattern. This pattern showed that the
December/January period was more variable than the
other seasons. Fig. 7a shows the evolution of the standard
deviation of NDVI in the region. The increase in variability
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Fig. 5. Dimensionless moments of NDVI for a December/January drying
period beginning 12/28/99 to 1/2/00 with 95% confidence intervals.
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Fig. 6. Dimensionless moments of NDVI for a July drying period
beginning 7/4/00 to 7/8/00 with 95% confidence intervals.
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Fig. 7. (a) The standard deviations for NDVI for the AVHRR data with
95% confidence intervals plotted versus day of the year, (b) the coefficients
of skewness for NDVI for the AVHRR data with 95% confidence intervals
plotted versus day of the year and (c) the coefficients of excess kurtosis for
NDVI for the AVHRR data with 95% confidence intervals plotted versus
day of the year.
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during the winter can be traced to the diverse nature of
land cover and land use in the region. Savanna was dor-
mant in the winter and green during the growing season,
which when combined with the annual cycle of the various
crops contributed to an increase in variability during the
winter. Fig. 7b shows the coefficient of skewness went
through a similar cycle.

During the winter months, the skewness was approxi-
mately equal to 1.0, while, during the growing months, it
was closer to 0.0. The winter wheat and forest/wooded
regions still have a high NDVI, while most of the fallow
and bare soil will have low NDVI, resulting in a very differ-
ent pattern from the growing season. During these grow-
ing/harvesting months, the greenness of the surface
remained relatively constant because the cropland, grass-
land, and savanna were all relatively green.

Finally, the coefficient of excess kurtosis followed a pat-
tern of positive values for winter, and negative values for
the growing seasons, as shown in Fig. 7c. A thick-tailed dis-
tribution has a positive excess kurtosis, while negative val-
ues result from a thin-tailed distribution. This seasonality
can be explained by the preponderance of green vegetation
and therefore less variability during the growing seasons.
The confidence intervals for the winter Ck are larger than
those for the summer dates. This increase in the confidence
intervals can be attributed to the wider distribution of veg-
etation ‘greenness’ during the winter months. In the sum-
mer, most of the land surface is green. However in the
winter, much of the land is in fallow, but there are still size-
able areas of green vegetation in the form of evergreen tree
stands and winter wheat.

A simple analysis of means can reveal how the vegeta-
tion density varies over the year. Table 6 contains the
means of NDVI for each of the four drying periods in
the study. Cropland goes through an evolution during
the year as the crops are planted, grown, and harvested.
Grassland and savanna go through a similar evolution,
but the range of vegetation is more extreme. For example,
cropland has a similar NDVI for December/January as for
July (post-harvest), while savanna goes from 0.09 for
December/January to 0.33 for May, height of the growing
season.

4.2.2. Regression analysis

Regression analysis was conducted to determine how the
model (Eq. (4)) predicts the vegetation density. The pri-
mary land surface characteristic used in the analysis was
Table 6
Average values of NDVI for each land cover type

Cropland Grassland Savanna

December/January 0.17 ± 0.01 0.11 ± 0.01 0.09 ± 0.01
April 0.32 ± 0.02 0.26 ± 0.01 0.24 ± 0.01
May 0.24 ± 0.02 0.28 ± 0.01 0.33 ± 0.01
July 0.16 ± 0.01 0.23 ± 0.01 0.29 ± 0.01

95% confidence intervals derived from standard error are also listed.



Table 7
Incremental R2 values for NDVI for the four drying periods in this study

Factor December/January April May July

Land cover, ci 16.2 4.2 6.0 23.4
Day, a*t 6.4 1.2 9.0 9.3
Latitude, b*L 2.7 12.2 1.8 0.0
Land cover*day, fi*t 0.3 0.4 0.1 0.6
Land cover*latitude, wi*L 2.2 1.4 3.4 2.9
Day*latitude, t*t*L 0.0 0.0 0.5 0.0

Total 27.9 19.4 20.9 36.3

Those factors that have a p-value less than 0.05 are underlined.

Table 9
Correlation coefficients among the residuals from the regression analysis
for the December/January drying period for NDVI

12/28/99 12/30/99 12/31/99 1/1/00 1/2/00

12/28/99 1.000 0.697 0.454 0.395 0.389
12/30/99 1.000 0.569 0.459 0.496
12/31/99 1.000 0.695 0.738
1/1/00 1.000 0.690
1/2/00 1.000

A 95% confidence interval for each coefficient is approximately ±0.10.

Table 10
Correlation coefficients among the residuals of the regression analysis for
the July drying period for NDVI

7/4/00 7/5/00 7/6/00 7/7/00

7/4/00 1.000 0.636 0.385 0.491
7/5/00 1.000 0.521 0.473
7/6/00 1.000 0.465
7/7/00 1.000

A 95% confidence interval for each coefficient is approximately ±0.10.
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land cover type with two covariates, time since precipita-
tion and latitude, also included. Table 7 contains a sum-
mary of the incremental R2 values for each of the factors
and interactions included in the model. None of the models
achieved a very high R2 value. All were smaller than 0.40. It
should be noted that NDVI is obviously related to land
cover, but the ANOVA tables reveal that this relationship
is weak when considering the variability of NDVI through-
out the entire region.

Table 8 reports an analysis of variance was conducted
that included a categorical factor for time as well as its
interaction with land cover. The categorical variable for
time displays small R2 values with the largest being
12.9% for the May drying period. The categorical interac-
tion term for time and land cover also show very small
R2 values and for each of the drying periods the factor
was not significant at a 5% level. In all cases, time did
not appear to be a significant factor in contributing to veg-
etation density variability during a drying period.

4.2.3. Correlation analysis

The serial correlation matrices for the residuals of the
regression analysis for NDVI for two drying periods are
contained in Tables 9 and 10. There is a much stronger cor-
relation from day to day for NDVI than LST. However,
the persistence of this pattern degrades over time, as illus-
trated by how the values away from diagonal decreases as
time separation increases. Correlation coefficients tend to
be greater than 0.40, which is indicative of a moderate to
strong spatial structure.
Table 8
Incremental R2 values for simple linear regression of NDVI for four
drying periods with an additional time factor that is treated as a
categorical variable, daycat

Factor December/January April May July

Model w/o day terms 21.2 22.8 11.3 26.3
Day terms 6.7 2.0 9.6 9.9
Daycat, jt 4.2 0.8 12.9 1.2
Daycat*land, fit 0.1 0.1 0.9 0.2

Model 32.2 25.7 34.7 37.6

The results are based on a sequential sum of squares. Those factors which
have a p-value less than 0.05 are underlined.
As before, regression analysis can also be used to study
the persistence in the NDVI data. In the manner described
for LST, a categorical variable for each site was added to
the regression model. Table 11 contains a summary table
of all the drying periods. The R2 values for the site factor
are between 37% and 55%, which would indicate that per-
sistence plays a significant role in NDVI variability. When
considering the influence of variables such as time since
precipitation, land cover, and latitude, on NDVI variabil-
ity, it would appear that persistence for a specific site is
more important to the overall characterization of variabil-
ity than any of these three factors.

The final step in the correlation analysis of variability is
the detection of pattern persistence at the seasonal scale.
NDVI demonstrates strong pattern persistence within both
the dormant (rk = 0.50+/�0.03) and growing seasons
(rk = 0.47+/�0.03), but those patterns are uncorrelated
(rk = 0.26+/�0.01) with each other.
4.2.4. Aggregation analysis

An aggregation analysis, which was developed in a man-
ner similar to that for LST, is presented in Fig. 8. NDVI
can be aggregated in two different ways. The first is based
on taking an NDVI image and aggregating the pixels
Table 11
Summary table of incremental R2 values for the regression model
containing the site factors

Factor December/January April May July

Model w/o sites 27.9 24.8 20.9 36.2
Sites, dij 47.8 55.0 43.5 37.3
Model 75.7 79.8 64.4 73.5

Factors with a p-value less than 0.05 are underlined.
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together to a lower resolution. The second method takes
the original AVHRR channels and aggregates them prior
to computing NDVI. These results illustrate how the
non-linearity of the NDVI calculation affects the variance
cascade. It is intuitive that the appropriate method of
aggregation is to use the original satellite channel readings
in any map generation. In Fig. 8, it is shown that, if origi-
nal channel readings are not used, the variance is under-
estimated in the case of NDVI. This will also hold true
for variables derived from NDVI as well as other non-lin-
ear formulations. As scaling issues becoming more impor-
tant with the variety of satellite sensors available at
different resolutions, it is important to recognize that
derived data products such as NDVI, may not be scalable
in their calculated state.
5. Conclusions

This study documents how surface variability evolves
with time. Specifically, it examines the key aspects of land
surface temperature and vegetation density as represented
by NDVI at drought-episodic and seasonal time scales. It
is apparent from the moment analysis that the distribution
of LST is highly variable with respect to both time scales.
The range of variability of LST is small when considering
temperature on the grid scale. However, higher order
moments display erratic behavior, which could make
parameterization of the distribution difficult.

Using several factors, such as vegetated land cover, lat-
itude, and time since precipitation, a regression model for
LST was constructed. The fraction of variability, R2,
explained by different variables was almost always rela-
tively small, and changed in an inconsistent manner from
period to period. This study shows that with regards to
land cover and latitude, the region is indiscriminate and
statistically unpredictable. The dependence of LST on time
since precipitation varied dramatically between the drying
periods. Time as a linear variable accounted for nearly
50% of the variability during the July drying period, but
for the other periods it was practically insignificant. Similar
results were obtained when time was treated as a categori-
cal variable. Several drying periods can have a greatly
improved R2 if time is included as a categorical variable,
while others showed only small increases of no practical
importance. This indicates that the variability of LST
showed no pattern with time and is no doubt the result
of factors that operate on time scales shorter than a day.
Residual correlation analysis demonstrates that LST did
not maintain a consistent spatial pattern from one day to
the next and less than 20% of the variability could be
attributed to temporal persistence. The results of this study
show that the temporal change of LST subgrid scale vari-
ability is more complex than generally assumed in the
SGP-ARM-CART region at a resolution of 1 km. Because
of the dynamic nature of the variability, it would be diffi-
cult if not impossible to correctly parameterize it in a
model.

In contrast, vegetation density has a persistent pattern at
the two time scales of interest. NDVI showed no differences
in variability over a drying period of five days or less. This
is reasonable considering the resilience of most plants to
such drying periods. The moment analysis indicated that
the coefficients of skewness and excess kurtosis were posi-
tive during the growing season and negative during the
dormant season. Savanna, land covered by small trees
and low shrubs, covers a significant portion of the study
area and exhibits a strong seasonal pattern. Table 6 reveals
that during the summer months, it is very green with an
average NDVI higher than cropland and grassland. How-
ever, during the winter months, savanna goes dormant
and brown, while the cropland maintains some greenness.
Cropland undergoes a different type of evolution during
the year. During the winter months, there is often a cover
of winter wheat making the land more green than sur-
rounding dormant grassland and savanna. During the sum-
mer months, cropland varies in greenness because of the
growing/harvesting cycle. The proportions of these land
cover types combined with their annual patterns may result
in the annual patterns in the moments.

Another observation made by this study is that NDVI
variability estimation is dependent on the source data. Var-
iability estimates were affected by the method of pixel
aggregation. It was demonstrated that NDVI maintains a
spatial structure during at least the first stage of drying in
the Southern Great Plains. Correlation coefficients for the
residuals (observed minus average for a specific day) at
the same location but separated in time were usually
greater than 0.35 for up to five days. It was determined that
the temporal persistence can account for between 37% and
55% of the variability of vegetation density. Furthermore,
the year could be divided into periods which exhibited dif-
ferent patterns. Within the winter months considered, there
was a moderate to strong positive temporal correlation.
Similarly, within the July data from the growing season
there was a strong pattern persistence. Vegetation density
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variability does change over the course of the year; there-
fore, it is important to consider this change when working
on a large scale, but this study shows that for normal dry-
ing periods, an assumption of constant vegetation green-
ness is not inappropriate.

In summary, the methodology presented in this paper
demonstrates a simple and quick way to quantify the rela-
tionships between a surface parameter and other variables
that have an impact on its variability. This should enable
the prioritization of land surface characteristics for the pur-
pose of understanding the subgrid scale variability.
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