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Abstract

The three-dimensional (3D) diffusion radiative transfer equation, which utilizes a four-term spherical
harmonics expansion for the scattering phase function and intensity, has been efficiently solved by using the
full multigrid numerical method. This approach can simulate the transfer of solar and thermal infrared
radiation in inhomogeneous cloudy conditions with different boundary conditions and sharp boundary
discontinuity. The correlated k-distribution method is used in this model for incorporation of the gaseous
absorption in multiple-scattering atmospheres for the calculation of broadband fluxes and heating rates in
the solar and infrared spectra. Comparison of the results computed from this approach with those
computed from plane-parallel and 3D Monte Carlo models shows excellent agreement. This 3D radiative
transfer approach is well suited for radiation parameterization involving 3D and inhomogeneous clouds in
climate models.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Clouds, which occupy more than 50% of the sky, are generally finite and inhomogeneous. They
are the most important element in modulating the energy budget of the earth–atmosphere system
see front matter r 2004 Elsevier Ltd. All rights reserved.

jqsrt.2004.07.029

ding author. Tel.: +1-310-825-5039; fax: +1-310-267-2252.

ress: knliou@atmos.ucla.edu (K.N. Liou).

www.elsevier.com/locate/jqsrt


ARTICLE IN PRESS

Y. Chen et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 92 (2005) 189–200190
and hence climate. The potential effects of cloud geometry and inhomogeneity on the transfer
of radiation must be carefully studied to understand their impact on the radiative properties
of the atmosphere as well as to perform proper interpretations of radiometric measurements
from the ground, the air, and space. Moreover, incorporation of these effects on radiative
transfer in climate and general circulation models (GCMs) remains one of the most difficult
problems due to the complexity of cloud formation treatment in the model and the associated
radiative transfer calculations. All GCMs at present consider clouds to be plane-parallel and
homogeneous with respect to radiation calculations. However, several studies have shown that the
inhomogeneity effects are significant in overcast clouds [1] and potentially large in broken cloud
fields [2–5].
Several methods have been developed for the calculation of the transfer of radiation in

three-dimensional (3D) domain based on a spherical-harmonics method in multiple dimensions
for thermal infrared and solar radiative transfer [6,7]. Radiative transfer in 2D inhomogeneous
cloud fields was studied by using a spherical-harmonics method [8] and a Fourier-Riccati
approach [9]. Liou and Rao [10] presented a successive-orders-of-scattering approach, which can
be directly applied to specific geometry and inhomogeneous structure of a medium, for
application to cirrus clouds. Evans [11] utilized a spherical harmonics discrete-ordinates method
to model radiative transfer in inhomogeneous 3D media. More recently, Gu and Liou [5]
developed a 3D inhomogeneous radiative transfer model based on a modified diffusion
approximation employing the Cartesian coordinates, specifically for application to climate
models.
In Gu and Liou’s model, the diffusion approximation for the basic radiative transfer equation

was solved by the successive over-relaxation method. While this numerical approach is generally
adequate in terms of accuracy, we encounter difficulty at the sharp internal interface. For this
reason, we have further developed a more efficient method based on the full multigrid numerical
approach to obtain a numerical solution for the inhomogeneous partial differential diffusion
equation in which different boundary conditions can be imposed. This paper is organized as
follows. Section 2 presents the 3D inhomogeneous radiative transfer model, including basic
equations and different boundary conditions for solar and thermal infrared radiation. In Section
3, we discuss the full multigrid method that numerically solves the 3D inhomogeneous diffusion
equation. In Section 4, we provide a general check of the accuracy of the present multigrid method
by comparison with the results computed from the plane-parallel and Monte Carlo methods.
Finally, conclusions are given in Section 5.
2. Diffusion approximation for radiative transfer

2.1. Diffusion approximation equation

The general steady-state radiative transfer equation for diffuse intensity I in 3D space can be
expressed in the form [12]

�
1

beðsÞ
ðX � rÞIðs;XÞ ¼ Iðs;XÞ � Jðs;XÞ; (1)
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where s is the position vector; X is the scattering angular direction vector at s; and be; the
extinction coefficient, is also a function of the position vector. The source function term J includes
single scattering of the direct solar irradiance, multiple scattering of the diffuse intensity, and
thermal emission. Expanding the phase function P and the intensity I in terms of the spherical
harmonic functions [7,8] in the Cartesian coordinates and taking first four terms, the so-called
diffusion approximation, the 3D inhomogeneous diffusion equation for radiative transfer can be
derived as follows [5,12]:

r � ðrI00=btÞ � 3atI
0
0 ¼ �F t þX0 � rðF tg=btÞ; (2)

where

bt ¼ beð1�$gÞ;

at ¼ beð1�$Þ;

F t ¼
3be$F0e

�ts=4p solar;

3beð1�$ÞBðTÞ IR:

(

In these equations, all the variables are functions of the coordinate ðx; y; zÞ; $ ¼ bs=be is
the single-scattering albedo; X0 is the incident solar angular direction vector; F0 is the incident
solar irradiance; ts is the optical depth in the direction of the incident solar beam; BðTÞ is the
Planck function of temperature T; I00 is the first component of the intensity expansion; g is the
asymmetry factor; and F t is associated with the direct solar radiation and thermal emission
depending on the wavelength. For thermal infrared radiation transfer, the last term in Eq. (2)
vanishes.
Once we obtain I00 from Eq. (2), which can be solved numerically, the diffuse intensity and

fluxes can be expressed as follows:

Iðx; y; z;XÞ ¼ I00ðx; y; zÞ �
3

2hbe

X3
j¼1

qI00
qxj

Oxj
þ
9q

2h
ðX �X0Þe

�ts ; (3)

F�xi
ðx; y; zÞ ¼

Z
2p

Iðx; y; z;XÞOxi
dO; (4)

where x1 ¼ x; x2 ¼ y; x3 ¼ z; h ¼ 3ð1�$gÞ=2; q ¼ $gF0=12p; Ox ¼ ð1� m2Þ1=2 cos f; Oy ¼

ð1� m2Þ1=2 sin f and Oz ¼ m: For thermal infrared radiation, the last term in Eq. (3) can be
removed.

2.2. Boundary conditions

2.2.1. Solar radiation boundary conditions
The upward/downward fluxes F"#z can be obtained from Eq. (4) through the angular

integration over upward and downward hemispheres, i.e., ð0; 2pÞ for f and ð0;�1Þ for m in the
form

F"#z ¼ pI00 �
p

hbe

qI00
qz
�
3q

h
pm0e

�ts : (5)
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The vertical boundary conditions can be expressed in the form

qI00
qz
þ ezI

0
0

� �
z¼ 0

z�ð Þ
¼ f z¼ 0

z�ð Þ
; (6)

where z ¼ 0 represents the top of the domain, z ¼ z� denotes the lower boundary. If a constant
incident downward diffuse flux F

#
top is allowed and the lower surface albedo is denoted as sðx; yÞ;

the coefficients ez and f z in Eq. (6) can be derived as follows:

ez¼0 ¼ �hbe; f z¼0 ¼ 3qbem0e
�ðtz¼0Þ þ

hbeF
#
top

p
;

ez¼z� ¼
1� sðx; yÞ
1þ sðx; yÞ

hbe; f z¼z� ¼ 3qbem0e
�t þ

hbeF
#

0 ðz ¼ z�Þsðx; yÞ
p½1þ sðx; yÞ�

;

where F
#

0 ðz ¼ z�Þ is the direct solar irradiance at the surface.
For the lateral boundaries, we have the option of implementing open, isolated, or periodic

boundary condition.
(1)
 Open lateral boundary condition. This condition imposes the radiation field on the boundary
to be 2D, i.e., at lateral boundaries, the radiation field does not vary in the direction
normal to the surface. Let xa and xb be the x-direction boundaries, and yc and yd be the
y-direction boundaries, the radiation field is then homogeneous in the x- and y-directions
such that

qI00
qxi

� �
xi¼

xia
xib

� � ¼ ½3qbeOxi0e
�ts �

xi¼
xia
xib

� �; (7)

where i ¼ 1; 2; x1 ¼ x; x2 ¼ y; Ox10 ¼ Ox0 ¼ ð1� m20Þ
1=2 cos f0; Ox20 ¼ Oy0 ¼ ð1�

m20Þ
1=2 sin f0; x1a ¼ xa; x1b ¼ xb; x2a ¼ yc; x2b ¼ yd ; and m0; f0 are the cosine of the solar

zenith and the solar azimuth angles, respectively.

(2)
 Isolated lateral boundary condition. Under this condition, there is no diffuse radiation
propagating into the domain from outside. This can be achieved by setting the appropriate
lateral fluxes to be 0 so that

qI00
qxi

� hbeI
0
0

� �
xi¼

xia
xib

� � ¼ ½3qbeOxi0e
�ts �

xi¼
xia
xib

� �: (8)
(3)
 Periodic boundary condition. In this case, the flux is assumed to be periodic on the lateral
boundaries, where the diffuse radiation propagating outside the domain from xb is equal
to that propagating into the domain from xa: Likewise, the same condition applies to the
flux from xa to outside, and from outside into xb such that F!x¼xb

¼ F!x¼xa
and F x¼xa

¼ F x¼xb

(i.e., I00ðxþ xb � xa; y; zÞ ¼ I00ðx; y; zÞ for all x, y, z). For the y-direction, we have
I00ðx; yþ yd � yc; zÞ ¼ I00ðx; y; zÞ for all x, y, z. Note that for different boundary conditions,
a consistent approach must be used to calculate the optical depth along the solar direct
beam.
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2.2.2. Thermal infrared radiation boundary conditions

For thermal infrared radiation, the upward/downward fluxes are similar to Eq. (5) except that
the last term vanishes. We can use the same vertical boundary conditions as in Eq. (6), except that
the coefficients should be

ez¼0 ¼ �hbe; f z¼0 ¼
hbeF

#
top

p
;

ez¼z� ¼
eðx; yÞ

2� eðx; yÞ
hbe; f z¼z� ¼

eðx; yÞhbeB½T sðx; yÞ�

2� eðx; yÞ
:

Here F
#
top is the incident downward diffuse infrared flux, and eðx; yÞ and T sðx; yÞ are the surface

emissivity and surface temperature, respectively. As in the case of solar radiation, we may choose
the following three different boundary conditions for lateral boundaries: (1) open lateral
boundary condition in which the right-hand side (RHS) of Eq. (7) is 0; (2) isolated lateral
boundary condition in which the RHS of Eq. (8) is 0; and (3) periodic boundary condition, which
is the same as in the solar radiation case.
3. The full multigrid method

In Gu and Liou [5], the general second-order partial differential equation (PDE) shown
in Eq. (2) was solved with the successive over-relaxation (SOR) method. Although
SOR is straightforward for implementation, it has a problem of convergence when a
sharp internal discontinuity occurs. For this reason, we have developed a new numerical
approach based on the multigrid method [13–15]. This method can speed up the convergence
by solving the PDE on a series of coarser grids first and then interpolating the coarse-grid
corrections back to the pre-specified fine grids. Considerable computer time can be saved
by carrying out major computational work on coarse grids. A signal having a low frequency
on a fine grid ~uh will take substantial iterations for convergence by using the traditional
relaxation methods (e.g., Jacobi, Gauss-Seidel). However, if we represent the same
signal on a coarsened grid with a mesh size H ¼ 2h as ~uH ; this signal has a relatively higher
frequency and converges more rapidly. Therefore, in the multigrid method, the high frequency
errors are relaxed onto the fine grid and the low frequency errors are relaxed onto the coarse grid.
The PDE in Eq. (2) can be rewritten as follows:

r2I00 �
1

bt
ðrbt � rI00Þ � 3atbtI

0
0 ¼ bt½�F t þX0 � rðF tg=btÞ�: (9)

With the appropriate boundary conditions on the domain, ½xa; xb�; ½yc; yd �; and ½ze; zf �; we can
define a linear second-order elliptic differential operator, L; such that Eq. (9) can be expressed in
the form

LI00 ¼ f ; (10)
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where f is the RHS of Eq. (9). Assuming that an equally spaced n�m� l grid is superimposed on
the domain and letting

Dx ¼
xb � xa

n� 1
; Dy ¼

yd � yc

m� 1
; Dz ¼

zf � ze

l � 1

be uniform grid increments in the x-, y-, and z-directions, respectively, we can implement the
second-order central differencing scheme for all differentiation terms in the forms

q2I00
qx2
¼

I00ði þ 1; �Þ � 2I
0
0ði; �Þ þ I00ði � 1; �Þ

ðDxÞ2
; (11)

qI00
qx
¼

I00ði þ 1; �Þ � I00ði � 1; �Þ

2Dx
: (12)

In Eqs. (11) and (12), the symbol ‘‘�’’ is used to represent the other two dimensions. At the
boundary, we may add the ‘‘virtual’’ points to the center differencing formula by introducing a
variable, xð0Þ ¼ xa � Dx: We then have

qI00
qx

� �
x¼xa

¼
I00ð2; �Þ � I00ð0; �Þ

2Dx
(13)

in the x-direction boundary, x ¼ xa: In this manner, the unknown I00ð0; �Þ; which is determined
from the discretization of the boundary condition equation, can be eliminated from the
discretization of Eq. (9).
There are many elements in the multigrid method that can be employed for efficient solution

involving the inhomogeneous partial differential equation. The first is associated with
‘‘discretization’’ and ‘‘finest grid’’ both of which strongly depend on the differential operators
and the domain involved. In our problem, the unknowns I00 are placed at the intersections of grid
lines.
The second is related to the ‘‘smoothing operator S’’ (the relaxation operator), which is the

most important operator in the multigrid method. Its role is to damp the high frequency
component of the errors on current grids, while remove the low frequency component of the
errors on coarser grids. For the strongly anisotropic diffusion-absorption problem considered in
this study, we use the block oriented scheme referred to as the alternating direction (AD) ZEBRA
relaxation as the smoother. This scheme is highly recommended for solving anisotropic problems
[15] to assure a sufficient smoothing effect. The ZEBRA relaxation scans the even-numbered
blocks first and subsequently the odd-numbered blocks. It has been shown that block oriented
schemes reduce the number of the required iteration for a fixed accuracy compared to the point
relaxation method, which leads to a guaranteed convergence for the radiative transfer problem in
multigrid iterations. The number n ¼ n1 þ n2 of relaxations representing the number of pre- and
post-smoothing steps on the current level may be predefined.
The third is associated with ‘‘cycle’’. In the multigrid method, one iteration from the finest grid

to the coarser grid, and back to the finest grid again, is called a cycle. The exact structure of a cycle
depends on the recursion parameter g; which is the number of two-grid iterations at each
intermediate stage, greater or equal to one. With g ¼ 1; the so-called V-cycle is generated, while
g ¼ 2 leads to the W-cycle. With the fixed values n1 and n2; the cycle is denoted as Vðn1; n2Þ or
Wðn1; n2Þ: The four level structure of the V- and W-cycles is illustrated in Fig. 1. In this study, we
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denotes post-smoothing steps, " denotes prolongation, # denotes restriction, and ’ denotes direct solver.
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used W (2,1) because it is more robust than the V-cycle in which g determines in a certain sense the
accuracy of the coarse grid correction.
The final one is related to the ‘‘restriction operator R’’ and ‘‘prolongation operator P’’. The

proper choice of both the residual restriction and prolongation plays a key-role in the successful
development of the multigrid method. The 27-point fully weighted residual restriction is used in
this study, which is actually a natural extension from the 2D 9-point full weighting restriction to
3D space. The restriction R is defined by [16]

R dhðx; y; zÞ ¼
Xþ1

a;b;Z¼�1

sabZdhðxþ aDx; yþ bDy; zþ ZDzÞ; (14)

where

sabZ ¼

1=8 if a ¼ b ¼ Z ¼ 0;

1=16 if jaj þ jbj þ jZj ¼ 1;

1=32 if jaj þ jbj þ jZj ¼ 2;

1=64 if jaj þ jbj þ jZj ¼ 3:

8>>><
>>>:

(15)

In this manner, the weighting satisfies the conservation property of the integrals. The
transformation from a coarse grid to the next finer one, i.e., prolongating the correction, is
usually done by interpolation. The multicubic interpolation in 3D space is sufficient for our
problem, which is a 4th order problem and is greater than the order of the differential operator
(2nd order).
4. Computational results and discussions

We first compare the results computed from the multigrid method with those from the SOR
method presented in Gu and Liou [5] to ensure the results are the same for the cases presented in
that paper. In that paper, validation of the 3D delta-diffusion radiative transfer model employing
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the SOR approach has been performed extensively, including comparisons of the model
results to those from the plane-parallel (PP) method, the successive-orders-of-scattering
method [10], and the spherical harmonics discrete-ordinates method [11]. Excellent agreements
for both the broadband and monochromatic results have been demonstrated. In these
comparisons, the broadband radiative transfer calculation is performed by using six solar
bands with 54 correlated k-distribution and 12 thermal infrared bands with 67 correlated
k-distribution [17,18], the same spectral divisions as in Gu and Liou [5]. A 3D homogeneous
cirrus cloud field was constructed with a uniform ice water content value of 0.015 g/m3 and a
mean effective ice crystal size of 25mm: The cloud was located between 7 and 11 km in a
standard midlatitude winter atmosphere and had a dimension of 4 km in the x, y, and z directions.
A uniform grid with 33 points was used in the cloud for each of the three directions resulting
in a 0.125 km resolution. The cloud-top and base temperatures were fixed at 219.2, and
238.5K, respectively, while a surface temperature of 272.2K was used. The solar zenith angle
used was set at 601 and the solar beam propagation was directly toward the positive x
direction. The cloud optical properties, including the extinction coefficient, the single-scattering
albedo, and the asymmetry factor, were parameterized in terms of the ice water content and mean
effective ice crystal size [19]. The delta-function adjustment was also used to account for the
strong forward-diffraction nature in the phase function of cloud particles to enhance
computational accuracy.
We subsequently carry out comparison of the heating fields produced by different boundary

conditions, which have not been considered in Gu and Liou [5]. The domain-average (i.e.,
averaged over the x, y, and z directions) broadband radiative heating rates for a cloud with a
relative dimension of 1/1/1 computed from the present 3D model and a PP program are presented
in Fig. 2. A strong solar heating in the cloud, which increases with the cloud height, is shown. On
the other hand, there is a strong IR cooling at the cloud top with a substantial warming at the
cloud bottom. For the horizontal open boundary condition (dash line), the heating rates
computed from the 3D model are very close to those computed from the PP program for both
Fig. 2. Comparison of the broadband solar and thermal infrared heating rates computed from the present 3D delta-

diffusion model with open and isolated boundary conditions (see text for definitions) and the plane-parallel method for

a homogeneous cirrus cloud layer.
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solar and infrared radiation, which is not surprising since the cloud extends to infinity in
the horizontal direction under the open boundary condition. In this case, the 3D homogeneous
cloud field can be treated as the PP cloud. For the isolated boundary condition, leaking of
photons from the side surfaces results in a smaller solar heating rate in the upper portion
of the cloud (above 9 km) for the 3D model as compared to the PP results. The 3D heating
rate is greater than the PP counterpart at the lower portion of cloud (below 9km). This is
because the attenuation of the direct solar beam does not occur for the facing boundaries
(yz plane) so that the input photons at these boundaries are stronger than those of
other boundaries. For thermal infrared radiation, the cooling rate from the present 3D
model is much greater than the PP results for the isolated boundary condition (dash–dot line)
due to the following reasons: (1) there are no diffuse fluxes input from the outside to the
domain; (2) there are no thermal infrared emission from the outside to the domain; and (3) the
photons (scattering and direct emission) leaving the domain do not return. For these reasons,
large cooling rates at the boundary are present, which have a great impact on the domain-average
value.
Finally, we compare the solar heating rate results computed from the present delta-diffusion

model to those computed from the broadband solar Monte Carlo method [20]. For this
comparison, we use the optical depth and mean effective ice crystal size over an area of 30 km
by 20 km near Coffeyville, Kansas, on 5 December 1991, retrieved from the advanced very
high resolution radiometer (AVHRR) presented in Gu and Liou [5]. The cloud thickness
used is 2 km. The 3D extinction coefficient field can then be constructed from the optical
depth and mean effective ice crystal size for input to radiative transfer models. Base on the
multigrid method, the 3D cirrus field is divided to produce a pattern consisting of 29� 17� 9
grid points. With the domain defined in Fig. 3(a), the resolution for each point is 1 km� 1km�
0:25 km: Because of the difficulty in visualizing the 3D results, we have presented them in
the xy, xz, and yz planes. Value of the IWC varies from about 1–7mg=m3; revealing that
this cloud is highly inhomogeneous in both the vertical and horizontal directions. Fig. 3(b)
displayed the solar heating rates in the xy, yz and xz planes computed from the present 3D
model. The heating rates range from about 1 to 2.2K/day and its pattern is correlated with
the extinction coefficient or IWC: stronger (weaker) heating rates correspond to larger
(smaller) extinction coefficients. For comparison, Fig. 3(c) shows the ‘‘exact’’ results
computed from the Monte Carlo method. The solar heating rate patterns computed from
these two methods are strikingly similar. Absolute differences between the two range from
�0:08 to 0.08K/day with a percentage difference less than about 5%. In the xy plane, we
find the delta-diffusion model produces less heating compared to that from the Monte Carlo
method in the area where IWC is large. On the other hand, the reverse is true for the heating
rate near the cloud bottom. This comparison and those not presented in this paper
demonstrate that the delta-diffusion model is indeed an excellent approximation for
the calculation of 3D radiative transfer in inhomogeneous medium. A final note regarding
the compute time is in order. For the preceding calculations, the present delta-diffusion
model with the 29� 17� 9 grid point domain took only 3min to complete on a
SUN workstation, whereas with the same grid point configuration, the Monte Carlo
method requires about 7 h to achieve the converged result (using 500 000K photons) on the
same computer.
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Fig. 3. 3D images for (a) ice water content (g/m3) (after Gu and Liou [5]), (b) solar heating rates in K/day computed

from the 3D delta-diffusion model, (c) solar heating rates computed from the 3D Monte Carlo method, and (d) solar

heating rate differences between (b) and (c). The 3D results are presented in the xy, yz, and xz planes over a 27 km�

15km� 2km domain.
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5. Conclusions

In this paper, we have solved the 3D inhomogeneous diffuse radiative transfer equation
based on the full multigrid method. It is a differential method that can be applied to
specific geometry with different boundary conditions imposed and can adequately account
for sharp boundary discontinuity. We have used the Cartesian coordinate systems in solving
the transfer of both solar and thermal infrared radiation employing discretized spatial grids.
The accuracies of the 3D delta-diffusion model are first checked with the results presented
in Gu and Liou [5] who used the over-relaxation method for the solution. Subsequently,
we compared the present model results using different boundary conditions with those
computed from the 1D plane-parallel method in terms of solar and infrared heating
rates in a homogeneous cloud layer. We showed that the present 3D model with the
open boundary condition gives similar results to those calculated from the plane-parallel
method.
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We then compare the solar heating rates for a 3D inhomogeneous cirrus cloud layer
constructed from remote sensing based on the 3D delta-diffusion model and the ‘‘exact’’ Monte
Carlo method with the same input parameters. We found that the results computed from the
former are within about 5% of those computed from the latter, which requires a much large
computational effort to achieve the convergence. The present 3D delta-diffusion model for
radiative transfer in 3D inhomogeneous clouds based on the full multigrid numerical method is
computational efficient and is ideal for use in radiative transfer parameterization involving finite
and inhomogeneous clouds and aerosols in climate models.
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