
Polarized light scattering by hexagonal ice crystals: theory

Qiming Cai and Kuo-Nan Liou

A scattering model involving complete polarization information for arbitrarily oriented hexagonal columns

and plates is developed on the basis of the ray tracing principle which includes contributions from geometric

reflection and refraction and Fraunhofer diffraction. We present a traceable and analytic procedure for

computation of the scattered electric field and the associated path length for rays undergoing external reflec-
tion, two refractions, and internal reflections. We also derive an analytic expression for the scattering elec-

tric field in the limit of Fraunhofer diffraction due to an oblique hexagonal aperture. Moreover the theoreti-

cal foundation and procedures are further developed for computation of the scattering phase matrix contain-
ing 16 elements for randomly oriented hexagonal crystals. Results of the six independent scattering phase

matrix elements for randomly oriented large columns and small plates, having length-to-radius ratios of

300/60 and 8/10 gm, respectively, reveal a number of interesting and pronounced features in various regions

of the scattering angle when a visible wavelength is utilized in the ray tracing program. Comparisons of the

computed scattering phase function, degree of linear polarization, and depolarization ratio for randomly ori-

ented columns and plates with the experimental scattering data obtained by Sassen and Liou for small plates

are carried out. We show that the present theoretical results within the context of the geometric optics are
in general agreement with the laboratory data, especially for the depolarization ratio.

1. Introduction

Angular scattering and polarization behaviors of at-
mospheric ice crystals are fundamental to development
of remote sounding techniques for the inference of cloud
compositions. They also influence the radiation budget
of the earth's atmosphere containing ice clouds and
consequently affect the weather and climate of the
earth. Previous theoretical and experimental studies
on light scattering by nonspherical ice crystals have
been limited to unpolarized cases1-3 or cases involving
two components of linear polarization. 4' 5

In this paper, we wish to develop a scattering model
for hexagonal ice crystals including the complete po-
larization information based on the geometric ray
tracing principle. In Sec. II we first describe the basic
coordinate system with respect to the hexagonal ice
crystal and incident electric vector. We then present
the electric field vectors and the corresponding direction
cosines for rays undergoing external reflection, two re-
fractions, and internal reflections. Subsequently we
discuss phase shifts of these rays due to different optical
-paths and derive the total scattered electric vector due
to geometric reflection and refraction. In Sec. III we
provide a discussion on diffraction in the Fraunhofer
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limit for the far field and derive an analytic expression
for wave disturbance of light beams produced by an
aperture which is a projection of a hexagonal crystal on
the plane normal to an oblique incident ray. In Sec. IV
we present equations for computation of the 4 X 4
scattering phase matrix for randomly oriented ice
crystals in 2- and 3-D space based on results derived
from Secs. II and III. Computational results for ran-
domly oriented hexagonal columns and plates using a
visible wavelength are given in Sec. V. In this section
we also compare the phase function, degree of linear
polarization, and depolarization ratio computed from
the present theory for columns and plates with those
obtained from the laboratory scattering and cloud
physics experiments. Finally concluding remarks are
in Sec. VI.

11. Geometric Ray Tracing Analyses

The laws of geometrical optics can be applied under
the condition that the size of a hexagonal ice crystal is
much larger than the wavelength of light. In this case,
a light beam may be thought of as consisting of a bundle
of separate rays which hits the ice crystal so that the
width of the light beam is much larger than the wave-
length and yet small compared with crystal size. Every
ray hitting the crystal undergoes reflection, refraction,
and diffraction on the hexagonal ice crystal surfaces and
pursues its own specific path. In the course of reflec-
tion, refraction, and diffraction the rays emerge from
various directions and have different amplitudes and
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Fig. 1. Geometry of the orientation of a hexagon with respect to the
incident electric vector of a geometric ray. The incident electric
vector is defined in the OX'Y'Z' coordinate, whereas orientation of
the hexagon is fixed in the OXYZ coordinate. Points Bi (i = 1, 8)
denote the position of the eight vertices of the hexagon corresponding
to the aperture cross section for diffraction calculations (also see

Fig. 4).

Table I. Definitions of the Direction Cosines

X Y z

X' cosa1 ll COMSa12 COsM1 3
Y, cosa 21 COsM2 2 COSa23
Z COS 31 COSa32 COsa33

in Fig. 1. Thus the orientation of a hexagon in space
relative to the incident electric vector can be completely
expressed by the direction cosines between the six axes

Exw of OXYZ and OX'Y'Z' which are listed in Table I.
Only three of the nine direction cosines listed in Table

0>, I are independent because of the following six geometric
relationships:

3
E cos2aij = 1,

i=1

3

E cos 2aij = 1, ij = 1, 2, 3.
j=1

(1)

Now let L denote the length of the ice crystal and a
the width of the hexagon. The plane equations which
describe the eight crystal surfaces in the OXYZ coor-
dinate system may be written in the form

Cos(nrX +sin(nr~y_ X a=0 n=O 1 23,4,5

cos[(n - 6rlz - 2 = 0, n = 6,7. (2)

In Eqs. (1) and (2) n = 0 denotes the surface per-
pendicular to the OX axis. The other five side surfaces
are successively represented by n = 1, 2, 3, 4, and 5,
while n = 6 and 7 denotes the top and bottom surfaces,
respectively. The direction cosines for the normals of
the surfaces in the coordinate system OXYZ are given
by

cosan = cos

cos/n = sin (-)c 3
COSYn = 

n = 0,1,2,3,4,5, (3)

phases. We wish to find the amplitude and phase of the
outgoing electric fields due to reflection and refraction
as a function of the scattering angle and to consider the
phase shift due to the optical path lengths of the rays.
We will then sum the electric fields of the rays which
have the same scattering angle. Finally diffraction due
to a hexagonal ice crystal will be added to obtain a
complete scattered electric field.

A. Coordinate Systems

We shall first describe a number of coordinate sys-
tems which are pertinent for the geometric ray tracing
discussion involving an oriented hexagonal ice crystal
in space. There are two series of independent variables
with respect to the incident and scattered electric fields
and with respect to the position of a hexagon. We de-
fine two Cartesian coordinate systems, OXYZ and
OX'Y'Z', in such a way that the origin 0 is placed at the
center of the hexagon. The relative orientation of the
hexagon is fixed on the OXYZ coordinate system. Let
OZ be the vertical axis of the hexagon and OX be per-
pendicular to one of its side surfaces as illustrated in Fig.
1. Let the coordinate system OX'Y'Z' be associated
with the electric field vector so that the axis OZ' is along
the incident direction, and axes OX' and 0Y' represent
the directions of two electric field components as shown

COSan = 0

Cosin = ) n = 6,7.

cos'Yn = cos[(n -6)r]

(4)

Let E 0o and Eyb be two components of the incident
electric fields along the OX' and 0 Y' directions which
have arbitrary amplitudes and phases. The traveling
direction of the ray is along the OZ' axis. Assume that
the ray hits the crystal surface n at the point
N1 (x1 ,yi,z1 ), where nj = 0, 1, 5, or 6. Let n1 denote the
normal vector of the surface n, and its direction is
pointing toward space. The three direction cosines
relative to the axes OX', 0 Y', and OZ' are denoted by
costi, costj, and coste, which can be obtained by a
coordinate transformation from its direction cosines in
the OXYZ system into the OX'Y'Z' system in the
form

[cost1
cosr1

COSfl1

cosasl

= A Cos1, 

COSiJ

where the A matrix is given by

cosai cosaI 2 cosaM

A = cosa2l cos0522 cosM2 3 .

COSas31 cosa 3 2 cosas33

(5)

(6)
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The plane denoted by BO'AO", which contains both
the normal n1 and the axis OZ', is the incident plane of
the electric vector [see Fig. 2(a)]. It is convenient to
define a new rectangular coordinate system OXYkZ'
so that the axis OZ' coincides with OZ', while OX' and
OY' are on and perpendicular to the incident plane.
The angle between the positive OXi and n1 is <1800
[Fig. 2(a)]. The other two coordinate systems 0X1YlZ
and OX'Y'Z in which the coordinate axes OZr and 0Z
are the directions of the first reflected and refracted
rays, OXr and OX' are on the incident plane, and OYr
and OYI are perpendicular to the incident plane.

B. External Reflection and First Refraction

To obtain the electric fields for rays undergoing ex-
ternal reflection and first refraction, it is necessary to
define the two components of the electric fields on and
perpendicular to the incident plane so that the Fresnel
formulas can be used. Let EX1 and E,1 denote the
electric field components of the incident ray along the
OX' and OY' directions. Through a coordinate
transformation from OX'Y'Z' to OX 1YkZ' we may
write them in a matrix form as

E 1 cosol sinkol E'
E 1 - i I I i i ,

Er fEt ] (10)

Ri = [rxl 01 , T1 = T0x 0 (11)
The elements in the matrices E' 1 and E'1 represent two
components of the externally reflected field in the di-
rections of OX' and OY', Et 1 and E'1 the corresponding
components for the refracted field in the directions of
OX' and OY', R. 1 and Ry1 the Fresnel reflection coef-
ficients on and perpendicular to the incident plane, and
Tx1 and Ty1 the corresponding Fresnel refraction coef-
ficients. On the basis of the relative direction shown
in Fig. 2(a), the Fresnel coefficients may be written

- m2 cosr~ mi cosrlX1-~~ - t
R =M2m COST lCOTm2 COSTi + ml cosTt

2m, cosi-l
Ml cosAJ + M2 cosT'l

mi cosrT-m2 cosrT

ml COSTi + m2 cosrt

-y~ = 2mI cosTr
m l cosTl + m2 COST1

(12)

where m1 and m2 are the refractive indices of air and ice,
respectively, and -r and 4l are the incident and refracted
angles of the ray. According to reflection and refraction
laws in the context of geometrical optics, we find

COST = - COS7 |

sinT, = sinT/m J(7)
(13)

where O', representing the angle between the axes OX'
and OX', is the angle of the incident plane relative to
the axis OX' as shown in Fig. 2. From the geometry we
find

coqi cos~i
COW0 =- slnfli,

si cosAi
sins 

Note that in Fig. 2(a) ql and 4l are given by the arcs
O'AC and DC, respectively, and ti is the angle between
n1 and 0 Y', which is not shown in the figure.

Now we may use the Fresnel formulas to obtain ex-
pressions for the reflected and refracted electric fields
in matrix forms6

E= RlEi, E = TlEi, (9)

where

where m is the ratio m2/m1 . Generally it is a complex
number given by m = mr + imi, where mr and mi are
the real and imaginary parts of the complex refraction
index.

Equations (11) and (12) include not only the infor-
mation of the amplitude but also the phase of the fields.
Consequently Eqs. (9) and (10) describe the complete
optical characteristics of one-time reflected and re-
fracted electric fields.

After the magnitude of the electric fields has been
obtained, the next problem is to determine the direc-
tions of the electric vector and the rays, i.e., the direc-
tions of axes OX1, OY1, OZr, OX', OY', and OZ'.
These vectors may be determined since the direction
cosines of the six axes of the coordinate systems
OX'jYlZl and OX'Y'Z' relative to OX 1YkZ' are

.t '-. Fig. 2. Geometry defining the incident, reflected,n4 / I s and refracted rays and angles. Figure 2(a) is for

external reflection and first refraction (n = 1). The
-,X $' -z' incident, reflected, and refracted ray paths are de-

_flJ Y~ fined on the plane BO'ACO", and n1 is the normal
* vector to one of the hexagonal surfaces. Figure 2(b)
is for two refractions and internal reflections (n >
2). The incident ray is now in the hexagon. The

, incident, internally reflected, and refracted ray
paths are defined on the plane QTRPS. All the

Incident ray angles and coordinate systems are described in the
text.
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Table II. Direction Cosines Between OX' Y'Z' and OX, YZr and
ox, YZ1

X1 yr Zr Xt Yt zt

X1 cos(2T) 0 sin(2r'r) cos(r, -Tj) 0 -sin(r - Ttj)
YI 0 -1 0 0 1 0
Zi sin(2Tj) 0 -cos(2T') sin(Tr - T) 0 COS(T - Tt)

known. Because the orientation of the incident ray has
been given in the coordinate system OX'Y'Z', it would
be more convenient to express the direction of the re-
flected and refracted electric fields in the same system.
Referring to Fig. 2(a), the direction cosines of the six
axes of the coordinate systems OX'Y'Z' and OXt Y'Z'
with respect to OX Y'Z' are listed in Table II.

Thus the direction cosines of the six axes relative to
OX'Y'Z' may be written

= D, (14)

where the matrices Z , t, and 01 represent the direc-
tion cosines of the nine axes in the coordinate systems
0X1YlZl, 0X Y1Zl and OX' Y'Z' in reference to the
OX'Y'Z' coordinate system, respectively, and are de-
fined by

grt - cost,,, costrt coszt (15)
cosl't cosr' cos.'f,1
_COS1q,,'t COS77rft COSI1rst 

Fcosoi -sini 0 . (16)
sinoi cos l 01

The matrices D' and Dt denote the direction cosines of
the coordinate systems 0X YlZ' and OXt YtZ in
reference to OX'Y'Z, respectively, and are defined
by

r =cos2-r 0 sin2rX (17)

0 -1 0
sin2Tr 0 -cos2T j

D' = [COS(1- T) 0 -sin(T' - r) (18)

0 1 0

sin(T -70) 0 cos(rT Tt) j
In these matrices, the elements cost 1 , cos~1 , coi 1 ),
costr , cos 1y, and cosq,1 represent the direction cosines
of the first reflected field in relation to OX'Y'Z', re-
spectively. costr1 , cosr, and cosqr, are the direction
cosines of the ray. The cosine notations with the su-
perscript t are the corresponding quantities for refrac-
tion.

C. Two Refractions and Internal Reflections

The refracted ray proceeds into the ice crystal and
will hit another hexagonal surface. Consequently in-
ternal reflections and additional refractions will take
place. The major difference between treatment of in-
ternal reflections and refractions and the previous
analyses is due to the possible existence of the total in-
ternal reflection when the incident angles become larger
than a certain critical angle. Assume that a ray inside
the crystal hits the next surface at point Nn (xn ,yz,,).

Let n, denote the normal to the surface whose direction
cosines cosao,, Cos3n, and cos-Yn are given by Eqs. (3) or
(4). Thus the new incident plane defined by QTRPSQ
in Fig. 2(b) can be constructed. As before, three new
coordinate systems involving the new incident, reflec-
tion, and refraction rays OX YZ, OXr YrZr, and
OX Yt Zt may be defined. Again it is noted here that
the positive direction of the axis OX' is chosen so that
the angle between the axis and nn is <1800 [see Fig.
2(b), the arc RP <180].

General mathematical expressions for electric fields
involving both the amplitude and phase and the trav-
eling directions of the rays may be formulated based on
previous analyses. Let the subscript n denote the
number of reflections or refractions (n = 2, two refrac-
tions, n > 3, internal reflections). For the reflected and
refracted electric fields using Fresnel formulas we
have

Ewn = RnE' Et = TnE' (19)

where

E' I =En I PAE', n = 2,
IE'n lPn-iEnl

[Er ] Et]

n 3,

n > 2,

(20)

(21)

where (E y represent the electric fields of the in-
cident rays, and (E'nE' and (E are the corre-
sponding electric fields for the reflected and refracted
rays on and perpendicular to the incident plane, re-
spectively. The matrix Pn, which represents the nec-
essary coordinate rotation from the incoming refracted
ray coordinate system OX'Y'Z' (for n = 2) or internal
reflected ray coordinate system OXn 1 Y'n-Z'- 1 (for
n > 3) to OX'Y Z1 , is given by

n[cos~4 sin n 1 2

-sinoi cosoin2 (22)

where Al is the angle between the axes OX' and OX'
(when n = 2) or between the axes OXr_ 1 and OX'
(when n 2 3) and is given by

Coson = cs X
snv,

sin4,n = 
sinun

(23)

In this equation, cosXn, cost'n, and coswn are the di-
rection cosines of the normal nn with respect to
OX'Y'Z' (for n = 2) or with respect to nX 1 Y 1Zn_
(for n >3). In Fig. 2(b) Xn and wn are arcs UR andRT,
respectively, and An is not shown in the figure. Once
the direction cosines of nn in the OXYZ coordinate are
known, its direction cosines cosXn, cosn, and coswn
may be obtained through a coordinate transformation
as follows:

[cosxn] = $1D 2 D2 .n-.Dn- 1 A Fl
COS4n COSn S n > 2,

LOSCOn Ccosyn

(24)

where the A matrix is given in Eq. (6) and o and D (n
> 2), which represent the coordinate transformation
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between OX'YiZn and OX'-_1 Yt-1 Zt- (or
OX'n 1Y'_1 Z,_1 ) and OX'Y'Z and OX'Y'ZX, re-
spectively, are determined by

qX coso' -sinol 0

_ 0 0 1

I n > 2,

= os2i% 0 -sin2T" n2 (6Drn = [n n 2, (26)

sin2Ti 0 -cos2T

where T' is the incident angle. When ri is less than a
certain critical value, i.e., m sinTr < 1, the refracted
angle rT' can be determined by

Cosrn = COSWCn, sin-r5 = m sinrn. (27)

In Eq. (19) the matrices Rn and Tn are given in Eq. (11),
except subscript 1 is changed to n and their expressions
are described in Eq. (12), but m1 and m2 now represent
the refractive indices of ice and air, respectively.
However, when the incident angle is such that m sinn
> 1, total internal reflection takes place, and the Fresnel
coefficients are given by6

Cosri/m + j(m2 sin27'i - 1)1/2
cosTi /m - j(m 2 sin2 i - 1)1/2

= m cosr, + j(m
2 sin2-r - 1)1/2 (28)

m cOsTi - j(m 2 sinre - 1)1/2

and T = T = 0. Note thatj = A. The directions
of the electric fields and the ray in this case may be ob-
tained based on their direction cosines with respect to
OX'Y'Z', which may be expressed in a matrix form:

2rt = qtjD42D'.. . 4 r1Drn Drt, (29)

where Ant represents the direction cosine matrices of
the reflected and refracted electric fields and rays in the
OX'Y'Z' coordinate, and D' is a matrix for transfor-
mation of the OXt Y Zt coordinate to the OX' YXZX
coordinate. They are given by

r = COSrt COstrt COstrt '

COS Px COS!By COS Prn

_9°S?7r'n COStnry COS-qr't

H, Yn Zn-

I n ~ ~ ~ ~ ~ I(30)
Fn= COS(rt,-i%) 0 -sinl(rt -T ) . (1

0 1 0

LSin(-rl - T') 0 cos(T, - ) _

Pl PO

; A;,~~~Q

Fig. 3. Geometry of the phase shift of the rays undergoing external
reflection a,, two refractions a2, and internal reflection an. PQO,
PjQj, and PnQn denote planes normal to the direction of these rays

So far we have derived a number of mathematical
expressions governing the electric fields and the
outgoing rays relative to the coordinate system OX'Y'Z'
defined previously. Now we need to transform the
electric vectors due to reflection and refraction events
to the scattering plane containing the incident and
outgoing rays. Let Es and Esn be the electric field
vector parallel and perpendicular to the scattering
plane, respectively, for the externally reflected (n = 1)
and nth refracted (n > 2) ray, and let On and 'On (n = 1,
2,... ) denote the corresponding polar and azimuthal
angles with respect to the coordinate system OX'Y'Z'.
Thus by rotating the direction cosines matrix for the
externally reflected and nth refracted outgoing ray in
the X' and Y' directions to the plane containing On and
(n , we obtain

El = (SlNl)E1, Es = (SnNn)Et, n 2,

where

E` =[E "] n = 1, 2,.. 

S = C°Sn CoS¢n CoSn sinen -sin0n1

sinkn -cosqgn 0 1

cost' 1 costy,9
cOStr 1 COS77y

I I r I

01 = ,r1 coi costr,
sinfl 1

On = 1qznl COSCn =S- 
sin-q'Zn

(32)

(33)

n = 1, 2_ ., (34)

= cos~,t cos~t 1Nn = CO~Ic n cosYn
COS n2n COS(3n

COS'?Itn COSq'Yn.-

n > 2, (35)

COS gsinol = . 1't,1

sin = C=S-on
sintn

(36)

n 2 2. (37)

All notations in these equations have been previously
defined.

D. Phase Shift and the Total Electric Field Vector

In the foregoing sections, we have shown that the
amplitude and phase as well as the direction of the
electric fields of the rays vary due to reflection and re-
fraction events. Moreover the optical path lengths of
the rays also lead to changes in the phase of the electric
field. Because the incident rays which hit the ice sur-
face at different positions will experience different op-
tical path lengths in or outside the ice crystal, these
phase shifts will produce changes in the phase of the
outgoing rays.

As shown in Fig. 3, assume that an incident ray a0 hits
the ice surface at the point N1. The outgoing rays al,
a2, and an are successively produced by the external
reflection, two refractions, and internal reflections.
Through the center point 0, we may construct four
planes PoQo, P1 Ql, P2Q2 , and PnQn perpendicular to
the rays a0, al, a2, and an, respectively. Now imagine
that there are rays a0 , a, a2, and a' traveling in the space
through point 0 without the existence of the ice crystal
and assume that they are parallel to ao, a,, a2, and an,
respectively. Thus the phase shift of the outgoing ray
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ai from the imaginary ray a' is determined by the dis-
tances between point N1 and planes PoQo and P1 Ql In
reference to the geometry, the distance between N1 and
PoQO is given by

do = Ixi cosa 31 + Yi cosa 32 + Z1 cosa331,

and the weight of the electric field for oblique incident
rays may be derived on the basis of the energy conser-
vation principle and is given by

(38)

where xi, Yi, and z1 are the three coordinates of point
N1 with respect to the OXYZ coordinate system.
Likewise the distance between N1 and P1Q is

d = Ixi cosar, + Yi cosr', + Z1 cosyrI, (39)

where coscaZ1 , cos 3y, and cosZy§ are the three direction
cosines of the ray a,. They may be derived from coor-
dinate transformation as follows:

cos/3,= A* Cost I (40)

LOSyr OS' L
where A* is the transpose of the matrix defined in Eq.
(6). Thus the phase shift of the ray a1 from a may be
written

A01 =-i (do + di), (41)

where X is the wavelength of the light beam.
To find the phase shift of the nth outgoing ray, we

define the reflection points Nn- 1 and Nn on the surface
of the crystal. Analogous to the discussions above, the
path length of Nn-,Nn is given by

dnan- = [(xn - Xn-1)2 + (Y. - Yn- 1)2 + (Zn - Zn- 1 )211/2, (42)

and the distance between Nn and PnQn is

dn= Xn COSatn + Yn CSOfn + Zn COS-Ytn I, (43)

where
Eosal - zost'-

cosfl'z. = A* COS!t!n 

.gos'Y'ZL costedA

(44)

Thus the phase shift of the nth ray an leaving the ice
crystal with respect to the ray a, may be written= - -pi [do + dn -m(d2l + d32+ * * + dnn-,) (45)

where m is the complex refractive index of ice relative
to air.

The total electric field vector, including the ampli-
tude and phase for all incident rays which undergo ex-
ternal reflection, two refractions, and internal reflection,
may be obtained by summing the outgoing electric field
vectors having the same direction in space as follows:

ES(0,0) = E E (n - 0, 0 - On)WnEn(00n)
q n

X exp [-1k (do + dn - m E d+i, l)J]q

{1, n = 1,

Wn= COSTn COST m,
1COS' COSi m + m

n > 2. (48)

When mi = 0, w2 reduces to the form given in Born and
Wolfr (p. 41).

11. Diffraction

In the limit of Fraunhofer diffraction for the far field,
the wave disturbance of the light beam at an arbitrary
point P may be expressed by8

up= - Ad exp(-jkr)dxdy',
- ;r ffdB'

(49)

where u0 represents the disturbance in the original wave
at point 0 on the plane wave front with wavelength X,
r is the distance between point P and point 0'(X',Y')
on the aperture with an area B' and k = 2r/X. The
eight apexes BI (i = 1-8) shown in Fig. 4 are the pro-
jections of the eight vertices Bi (i = 1-8) of the hexagonal
crystal on the plane perpendicular to an oblique inci-
dent light ray. The coordinates of the eight vertices as
set up in Fig. 1 are given by B 1(0,a,L/2),
B2(-/_3a/2,a/2,L/2), B3(--\Xa/2,-a/2,L/2),
B4(0,-aL/2), B5(0,-a,-L/2), B6(\_a/2,-a/2,-L/2),
B7(\/ a/2,a/2,-L/2), and B8(0,a,-L/2). Their pro-
jections on the aperture plane normal to the incident ray
in the OX'Y'Z' system (i.e., X'Y' plane) may be ob-
tained through a coordinate transformation as fol-
lows:

Y B.J Lcosa2l cosa22 co0a23J YBi]

'B; I =[cosail cosa22 cosa 31[
ZBi

(50)

Let Op and p be the polar and azimuthal angles of the
diffracted light beam with respect to the OX'Y'Z' sys-
tem. Then Eq. (49) may be integrated to give

z

B8

B'2

(46)

where q denotes the number of the incident rays used,
the -function

0 , 4On 4 , n) = J1, when 0 = n, 0 = n, (47)
to, otherwise,

Fig. 4. Geometry for Fraunhofer diffraction at an arbitrary point
p. B (i = 1-8) are the projections of the eight vertices of a hexagonal
crystal on the plane normal to an oblique.incident ray. p and p are
the polar and azimuthal angles of the diffracted light beam with re-

spect to the OX'Y'Z' system.
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= r -U0 exp[-jk (x' cos4p + y' sino,) sinOpdx'dy']

juo 81 g1 h, 

k2Xr i=1 v i Pi 

where

Ci = qi + Pial+i, Di = qi + Pibi,

gi = exp(-jkDivi+) - 1,

h = exp(-jkPiui)[exp(-jkCivi+i) - 11,

Pi = sin0p cos(op - i), qi = sin0p sin(4p,, -

tan4i = ysiIx'i,

ui = x'B'i cos~i + y'Bi sini,

Vi= -X'B'i sin4i + Y'B'i Cosoi,

ai = ui/vi, bi = (ui+l - ui)/vi+i, i = 1, 2,..., 7.

For i = 8, we should have aj+j = a,
uj= u1 , and vi+1 = v. When Op
from Born and Wolf7 (p. 386) that

up (0,0) =- X SSBdx'dy'

=- [(XB''B'' - X`B'1Y B'8)2X\r
7

+ (X'B'jY'B'i+-XB'jlY'B'i)]-
i=l

bi = (U1 - U8)/V1 ,
= p = 0, we find

(52)

Let the incident electric fields be denoted as E. 0 and
Eyo; then the diffracted electric fields on the OX'Y'Z'
system are given by

where El and Er represent the parallel and perpendic-
ular components of the scattered electric field, respec-

[) tively, with respect to the scattering plane Z'OP, and
E~b and Eyb are those of the incident electric field with
respect to the incidence plane Z'OX' as shown in Fig.
5. Based on the analyses given in Secs. II and III, the
amplitude functions A1, A2, A3, and A4 defined in Eq.
(57) may be written

A = Af + A [Af 2( 3 A 1 

where

Af = uprsf,

As = |E (0 -0,,; O - 0n)WnCSn(0n,04)
q n

X exp [<k (do,+ dn M E d+1,1)]

(58)

(59)

(60)

C = (S 1N1)RjP 1 ,

C2 = (S2 N2 )T2P 2TPj,

(61)

Cs = (S,,N)TP,R, 1Pn-1Rn-2Pn-2 ... R2P2T1 P1.

The Stokes parameters of the scattered light are now
given by

Ef' = [Ef = u,(0,'l,,) [E °]J- (53)

As before, the two components of electric fields of dif-
fraction with respect to the scattering plane can be ob-
tained through a coordinate transformation as fol-
lows:

Ef= u,,Sf
IEJ:

where the transformation matrix is
Sf = [cos°p cosop cos0p sinop],

(54)

xI

(55)
I sin4,p -cos4,p J

the electric fields parallel and perpendicular to the
scattering plane are

Ef [] (56)

IV. Scattering Phase Matrix for Randomly Oriented
Ice Crystals

The electric field vectors for the geometric reflection,
refraction, and diffraction have been derived in Secs.
II and III, respectively. In this section we wish to derive
the relevant equations for computations of the scat-
tering phase matrix for randomly oriented ice crystals.
According to the coordinate systems described previ-
ously, we may express the scattered electric field for a
hexagonal ice crystal in the form9

1E,~ztoP [A4 A] [E4b] z(ox57)

I Incident ray

Fig. 5. Geometry of the scattering by an arbitrarily oriented hexagon
in space. The scattering plane is described by Z'OP. The incident
ray plane is defined by Z'OX'. 0 and are the scattering and azi-
muthal angles for the scattered rays at an arbitrary point P. cosMM1 ,
cosa33 , and cosa1 3 are the direction cosines between the axes OZ' and
OX, OZ' and OZ, and OX' and OZ, respectively. fl(=a33) and 2 are
orientation angles of the long axis of the crystal (Z axes) with respect
to the zenith (OZ') and azimuthal (OX') directions. V/1 is also an
orientation angle which is an angle between the normal to the crystal
surface (OX) and OQ, where Q is the intersection of the arc CAO'Q
on the sphere with the normal plane (X Y). 41 varies from 0 to 27r,
but because of the hexagonal symmetry it changes only from 0 to

7r/3.
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F ' F(0 ,1
LvJ Lvoi

where the general transformation matrix is

F1/2(M2+M3+M4+Ml) '/2(M2-M3+M4 -M1)

F= 1 /2(M2 + M 3 -M 4 - M1 ) 1
2(M - M 3 -M 4 + M1 )

S24 + S31 S24 - S31
LD2 4 + D13 D4 2 -D13

Mk = AkA = IAk 12 ,

Sk = Sk = /2 (AjA + AkAl),

-Dk = Dik = (AA - AkAI), 1,k = 1, 2,3,4.
2

The scattering phase matrix P is defined by

P = CF,

where C = 47r/as, and the scattering cross section

cs = f 2' f (ElEi + ErEr) sinOdOd4.

In this case the scattering phase matrix is said to be
normalized so that

S P 1l(Q)dQ/4r = 1.
4,r

(66)

In reference to Fig. 5, the scattering phase matrix
elements for an arbitrarily oriented hexagonal ice crystal
not only depend on the scattering and azimuthal angles
with respect to the incident light rays but also depend
on the orientation angles of the ice crystal 7, 2, and ij
defined in the figure. ^6j is the angle denoting the or-
ientation of a hexagonal crystal with respect to its long
axis on the X Y plane and cos4j = cosa3l/sina33. i is
the orientation angle in the zenith direction and cos?
= cosac33, the direction cosine between the Z and Z' axis.
i12 is the orientation angle in the azimuthal direction
and cos2 = cosa 3/sinca33. To obtain the scattering
phase matrix for randomly oriented hexagonal crystals
in 3-D space, an angular integration with respect to ij
is to be performed first as follows:

P(0,*;72) = 1 2 P(04,1;77,2, 1)d'l. (67)

Since the scattering phase matrix for randomly oriented
particles is independent of 0, which is in the same azi-
muthal plane as t2, we obtain

P(0) =- ' P(0,0;1,i2) sinijdjdn42. (68)
47r foJ

Moreover for randomly oriented particles, the scattering
phase matrix contains only six independent elements
in the form

Pll P12 0 0

P(0) = P12 P22 * (69)
O O P33 P43

LO O P13 P44

S2 3 + S41

S23 - S41

S21 + S34
D1 2 + D4 3

03

102

(64)

101

(65)

D23 + D4i]

D23 - D 41

D2 1 - D3 4

S21- S34_j

(63)

100 

lo~~~~~~~~~~~~~~~~~~Ijo- b...-...

10-2*-.

10-
3

0 30 60 90 120 150 180

SCATTERING ANGLE 8

Fig. 6. Contributions of the scattering phase function as a function
of the scattering angle for external reflection, two refractions, and
internal reflections up to four. The columns with a length-to-radius
ratio of 300/60 Am are assumed to be randomly oriented in a hori-
zontal plane when the incident beam with a 0 .5 5 -,um wavelength is

normal to this plane.

Computational results for these elements based on
geometrical ray tracing analyses will be presented in the
next section.

V. Computational Results and Discussions
To estimate the required internal reflections in the

geometric ray tracing calculations so that energies as-
sociated with incoming and outgoing rays are approxi-
mately conserved, we first examine the energies for
external reflection (p = 0), two refractions (p = 1), and
internal reflections (p > 2) for randomly oriented col-
umn crystals. These crystals have a length-to-radius
ratio of 300/60 ,um, and an incident light beam with a
0.55-,um wavelength is normal to the crystals. Shown
in Fig. 6 are separate normalized phase functions
(P11/4r) for external reflection, and the sums of the
individual components and external reflection are also
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Fig. 7. Averaged scattering phase function as a ft
scattering angle for randomly oriented columns in a hc

when the incident angles are 90 (normal incidence)

indicated in the figure. Contributions of th
reflected rays range over all scattering an
small peak near 175°. The 22' halo maxi
sically produced by two refractions. Ener
an 160° scattering angle and at backsc/
caused by internal reflections greater thai
ternal reflection accounts for -4.2% of the to
energy. The inclusion of two refractions a]
three, and four internal reflections gives, ra
85.7, 93.3, 94.8, 96.4, and 97.5% of the tot
energy. For oblique incidence, the percen-
ergy distributions are roughly about the 
above values. In the following presentatio
included internal reflections up to five.

Figure 7 illustrates the effect of the incid
(90° elevation angle) on the scattering phaE
Note that the scattered phase function has
aged over the azimuthal angle 2 and thE
angle 1j with respect to the ice crystal axes 
in Sec. IV. Incident angles of 90 (normal in
and 300 are used. For normal incidence, we
220 halo peak, a broad maximum at 1600, a]
the backscattering direction. For the obli
angle of 50, the scattering pattern becomes
complex. The halo shifts to a 30m scatterin
addition to the halo peak, there are also a
maxima located at scattering angles of
1600. For the oblique incident angle of 30°,
occur at 50, 100, and 150°. The phase fun
in the backscattering direction regardless c
tion of the incident light.

Figure 8 shows the degree of linear polar
function of the scattering angle for the afor

three incident angles when the column crystals are
randomly oriented in a horizontal plane. For normal
incidence, the most pronounced feature is the positive
polarization with a maximum of the order of 75% located
at the 1200 scattering angle. The pattern is broad and
differs from the rainbow features produced by spherical
water droplets. The 220 halo shows a negative polar-
ization of the order of 3-8%, which is in agreement with
observations presented by Minnaert.1 0 On the side of
the halo minimum, two maximum polarization patterns
are shown. For a 500 oblique incidence, polarization
values beyond the 100° scattering angle become very
small. The negative polarization for the 220 halo re-
duces somewhat, and the two polarization maxima be-
come larger than those from normal incidence. When

/\ /1 the incident angle is 300, polarization of the scattered
light is quite small, except at the 1200 scattering angle
where the large positive polarization (-94%) is caused
by external reflection. This scattering angle may be

.. thought of as the Brewster angle at which the unpolar-
ized light is totally polarized due to external reflection.
The degree of linear polarization for randomly oriented

150 180 columns in 3-D space will be presented below.
Figure 9 shows six independent elements of the

unction of the scattering phase matrix for column crystals randomly
rizontal plane oriented in 3-D space. Graphs for P12 , P2 2 , P3 3, P4 3, and
50, and 30. P44 are plotted relative to the normalized phase function

P1 l. For Pi,, a strong forward scattering caused by
e externally diffraction is seen. In addition the 22 and 460 halos are
gles with a both shown. The 220 halo is -1 order of magnitude
mum is ba- stronger than the 460 halo. The backscattering peak
gy peaks at is also quite pronounced. The minimum scattering
Lttering are pattern is found at 1250. At 1600, a broad maximum
i two. Ex- is seen which is produced by internal reflections. This
tal incident maximum resembles, but is not quite the same as, the

id one, two, rainbow features produced by water spheres. It should
espectively, be noted that columns with a 300-Aum length and a
;al incident 60-ptm radius probably would not be randomly oriented
tages of en- in realistic atmospheres so that some of the scattering
ame as the features shown in the left-hand side of Figs. 9 and 10
ns, we have may not be evidenced in the sky.

lent angleq
3e function.
been aver- .0 
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Fig. 8. Averaged degree of linear polarization as a function of the
ization as a scattering angle for randomly oriented columns in a horizontal plane
-mentioned where the incident angles are 90, 50, and 300.
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Physically -P1 2/P11 (= -QII) represents the degree
of linear polarization when the incident light is unpo-
larized. This figure shows that polarization values are
positive over most of the scattering angle. Negative
polarization is shown at angles associated with 22 and
460 halo maxima as well as near backscattering direc-
tion. The largest polarization is located at a scattering
angle of .125o with a value of -35% for randomly ori-
ented columns. The element P22/P11 is related to the

105

I.

IL:

SCATTERING ANGLE 

depolarization of scattering light when the incident light
is linearly polarized. It is approximately equal to unity
in the forward directions and approaches zero at ,175'
scattering angle. Values for P4 3 /Pll are generally small
and fluctuate around zero. This curve is very similar
to results presented by Asano and Sato"1 for a prolate
spheroid with a major-to-minor axis ratio of 5 which is
the same as the one used in the geometric ray tracing
calculation. The only exception is that the present

1.0

0.8

Ga

0.4

0.2

0

-0.2

Fig. 9. Angular distribution of six independent elements of the scattering phase matrix for 3-D randomly oriented columns with a length-
to-radius of 300/60,um illuminated by a wavelength of 0.55 Am.
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Fig. 10. Angular distribution of six independent elements of the scattering phase matrix for 3-D randomly oriented plates with a length-to-radius

ratio of 8/10 Am illuminated by a laser wavelength of 0.6328 m.
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results show positive values for scattering angles from
-120 to 1500. Values for P 33 /Pll and P 44/P1 1 are quite
different from results presented by Asano and Sato for
a prolate spheroid. The P44 component may be con-
sidered as an expression for the ellipticity of the scat-
tered electric field when the incident light is circularly
polarized. Both P33/Pll and P44/P11 values decrease
rapidly from -1 to -1 when the scattering angle in-
creases from 0 to 200. Values for P3 3 are usually larger
than those for P44. The P33 curve shifts from the neg-
ative to the positive when the scattering angle is ,120°.
However, values for P4 4 remain negative.

In Fig. 10, we show six phase matrix elements for
plate crystals having a 10-gm radius and a 8-gm length
randomly oriented in space using a 0.6328-gm laser
wavelength. Values for P2 2 are the same as those for
P11 below .60°. The P4 3 element is negative for small
plates except in the backscattering direction, and its
values are generally rather small. Values for P44/P1 I
and P33/Pll show an increase at a scattering angle of
-10° and then decrease rapidly to the 300 scattering

angle region. Both elements show maxima at scattering
angles of -140 and 1700. The patterns of the six phase
matrix elements for randomly oriented small plates
generally resemble those for randomly oriented large
columns. More detailed comparisons of P11 and
-P 1 2 /Pu1 for columns and plates will be given in the
following two figures.

In Fig. 11, we compare the computed and measured
scattering phase functions P11 for randomly/oriented
columns and plates. The measured scattering phase
function is derived from a number of scattering exper-
iments for plates using a 0.6328-gm laser beam de-
scribed by Sassen and Liou.4 The dimension of the
plates is -5 gim. In the experiment, the incident laser
beam was either horizontally or vertically polarized. In
addition to the original components, we also measured
the cross-polarized elements. This allows us to con-
struct four phase matrix elements defined in Sec. IV.
The vertical bars in this figure and the next figure depict
the standard deviation of the measured data as a func-
tion of the scattering angle. Large columns generate
a larger and broader peak at the 220 halo region and at
the 150° scattering angle region. However, the basic
features are the same for hexagonal columns and plates.
The computed phase function values are in general
agreement with experimental data. The experimental
data reveal small maxima at -22 and 1550 scattering
angles which agree with results derived from geometric
ray tracing calculations.

Comparisons of the computed and measured degree
of linear polarization and depolarization ratios using a
horizontally polarized light for columns and plates are
illustrated in the upper and lower diagrams of Fig. 12,
respectively. For the degree of linear polarization, there
is a general agreement between computed results and
experimental data. The computed linear polarization
for 20-gum sized plates closely matches the experimental
data for plates having a model diameter of -5 gim,
especially at the two maxima in the forward directions,
and the peaks in the 120-150° scattering region. In the

103
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2!OF

100

10-1 "'

10-2 -

13 L l EL 
0 30 60 90 120 150 180
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Fig. 11. Comparisons of the computed and measured scattering
phase functions for randomly oriented columns and plates. The
plates observed in a number of scattering and cloud physics experi-

ments have a modal dimension of -5 m.

90-120° scattering region, however, the computed po-
larization is smaller than the measured values, probably
because there might be a number of large columns
present during the scattering and cloud physics exper-
iments. In view of the geometric optics approximation
used in the theoretical analysis, it is apparent that the
agreement between the computed and measured po-
larization is very good. As for the depolarization ratio,
the computed results for 20-gm randomly oriented
plates quite closely match the measured data presented
by Sassen and Liou.12 The depolarization ratio in a
scattering angle of -10° shows a maximum of the order
of 10% for randomly oriented large columns. Also note
that large columns generate -60% depolarization in the
backscattering, while small plates produce a depolar-
ization of -25%. The backscattering depolarization
values shown in this figure and in Fig. 8 are in general
agreement with laboratory experimental results pre-
sented by Liou and Lahore13 and Sassen and Liou12 and
with the lidar field data obtained by Sassen14 for ice
clouds.

VI. Conclusion

We have developed a scattering model for arbitrarily
oriented hexagonal ice crystals including complete po-
larization information on the basis of the ray tracing
-principle. The ray tracing program includes the con-
tribution of the geometric reflection and refraction and
the Fraunhofer diffraction. For the geometric optics
part, a traceable and analytic procedure was derived for

1 October 1982 / Vol. 21, No. 19 / APPLIED OPTICS 3579



z
0

A4
r

0

0.

LII

CD
a

0

'N

4

0

0.6

0.4

0.2

0

-0.2

-0.4
too

01'

10-2

30 60 90 120
SCATTERING ANGLE 

150 180

Fig. 12. Comparisons of the computed and measured degree of linear
polarization (upper diagram) and depolarization ratio (lower diagram)
for randomly oriented columns and plates. The modal dimension

of the plates in the scattering experiments is -5 Am.

computation of scattered energies due to external re-
flection, two refractions, and internal reflections. From
consideration of the direction cosine of the incident
electric vector of a ray and the geometry of the hexag-
onal crystal, consisting of six symmetric and identical
sides and top and bottom surfaces, the electric vector
of this ray undergoing reflection and refraction can be
traced until it emerges out of the crystal. Moreover, the
phase shift caused by the different path lengths of a
bundle of rays can be included in the analysis to give
four complex amplitudes. The diffraction part is de-
termined on the basis of the Fraunhofer limit in the far
field in which an analytic expression can be derived for
the wave disturbance of light rays produced by an
oblique hexagonal aperture. We further developed a
theoretical foundation for computation of the scattering.
phase matrix for randomly oriented hexagonal crystals
in 2-D and 3-D space by carrying out proper integrations
on the total scattered electric vector with respect to the
scattering plane.

Scattered energies associated with external reflection,
two refractions, and a number of internal reflections are
analyzed, and we show that inclusion of up to five in-
ternal reflections gives -98% of the incident energy for
most refractive indices. Results of the phase function
and degree of linear polarization for randomly oriented
columns in 2-D space are presented for a number of el-
evation angles. The polarization patterns reveal in-
teresting features in various regions of the scattering
angle. Six scattering phase matrix elements for ran-
domly oriented large columns and small plates are il-
lustrated, and their relative magnitudes are discussed.
Finally we compare the computed scattering phase
function, degree of linear polarization, and depolar-

ization ratio for columns and plates with experimental
data measured by Sassen and Liou4 "12 for small plates.
We show that the present theoretical results in the limit
of the geometric optics principles are in general agree-
ment with laboratory data.
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