Polarized light scattering by hexagonal ice crystals: theory

Qiming Cai and Kuo-Nan Liou

A scattering model involving complete polarization information for arbitrarily oriented hexagonal columns
and plates is developed on the basis of the ray tracing principle which includes contributions from geometric
reflection and refraction and Fraunhofer diffraction. We present a traceable and analytic procedure for
computation of the scattered electric field and the associated path length for rays undergoing external reflec-
tion, two refractions, and internal reflections. We also derive an analytic expression for the scattering elec-
tric field in the limit of Fraunhofer diffraction due to an oblique hexagonal aperture. Moreover the theoreti-
cal foundation and procedures are further developed for computation of the scattering phase matrix contain-
ing 16 elements for randomly oriented hexagonal crystals. Results of the six independent scattering phase
matrix elements for randomly oriented large columns and small plates, having length-to-radius ratios of
300/60 and 8/10 um, respectively, reveal a number of interesting and pronounced features in various regions
of the scattering angle when a visible wavelength is utilized in the ray tracing program. Comparisons of the
computed scattering phase function, degree of linear polarization, and depolarization ratio for randomly ori-
ented columns and plates with the experimental scattering data obtained by Sassen and Liou for small plates
are carried out. We show that the present theoretical results within the context of the geometric optics are

in general agreement with the laboratory data, especially for the depolarization ratio.

. Introduction

Angular scattering and polarization behaviors of at-
mospheric ice crystals are fundamental to development
of remote sounding techniques for the inference of cloud
compositions. They also influence the radiation budget
of the earth’s atmosphere containing ice clouds and
consequently affect the weather and climate of the
earth. Previous theoretical and experimental studies
on light scattering by nonspherical ice crystals have
been limited to unpolarized cases'-3 or cases involving’
two components of linear polarization.*5

In this paper, we wish to develop a scattering model
for hexagonal ice crystals including the complete po-
larization information based on the geometric ray
tracing principle. In Sec. II we first describe the basic
coordinate system with respect to the hexagonal ice
crystal and incident electric vector. We then present
the electric field vectors and the corresponding direction
cosines for rays undergoing external reflection, two re-
fractions, and internal reflections. Subsequently we
discuss phase shifts of these rays due to different optical
paths and derive the total scattered electric vector due
to geometric reflection and refraction. In Sec. I1I we
provide a discussion on diffraction in the Fraunhofer
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limit for the far field and derive an analytic expression
for wave disturbance of light beams produced by an
aperture which is a projection of a hexagonal crystal on
the plane normal to an oblique incident ray. InSec.IV
we present equations for computation of the 4 X 4
scattering phase matrix for randomly oriented ice
crystals in 2- and 3-D space based on results derived
from Secs. IT and III. Computational results for ran-
domly oriented hexagonal columns and plates using a
visible wavelength are given in Sec. V. In this section
we also compare the phase function, degree of linear
polarization, and depolarization ratio computed from
the present theory for columns and plates with those
obtained from the laboratory scattering and cloud
physics experiments. Finally concluding remarks are
in Sec. VL.

Il. Geometric Ray Tracing Analyses

The laws of geometrical optics can be applied under
the condition that the size of a hexagonal ice crystal is
much larger than the wavelength of light. In this case,
a light beam may be thought of as consisting of a bundle
of separate rays which hits the ice crystal so that the
width of the light beam is much larger than the wave-
length and yet small compared with crystal size. Every
ray hitting the crystal undergoes reflection, refraction,
and diffraction on the hexagonal ice crystal surfaces and
pursues its own specific path. In the course of reflec-
tion, refraction, and diffraction the rays emerge from
various directions and have different amplitudes and
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Fig. 1. Geometry of the orientation of a hexagon with respect to the
incident electric vector of a geometric ray. The incident electric
vector is defined in the OX’Y’Z’ coordinate, whereas orientation of
the hexagon is fixed in the OXYZ coordinate. Points B; (i = 1, 8)
denote the position of the eight vertices of the hexagon corresponding
to the aperture cross section for diffraction calculations (also see

Fig. 4).
Table . Definitions of the Direction Cosines
X Y Z
X’ cosay1 cosag cosag
Y’ CoScgy COSig cOSao3
Z’ cosigy cosagp cOoS(33

phases. We wish to find the amplitude and phase of the
outgoing electric fields due to reflection and refraction
as a function of the scattering angle and to consider the
phase shift due to the optical path lengths of the rays.
We will then sum the electric fields of the rays which
have the same scattering angle. Finally diffraction due
to a hexagonal ice crystal will be added to obtain a
complete scattered electric field.

A. Coordinate Systems

We shall first describe a number of coordinate sys-
tems which are pertinent for the geometric ray tracing
discussion involving an oriented hexagonal ice crystal
in space. There are two series of independent variables
with respect to the incident and scattered electric fields
and with respect to the position of a hexagon. We de-
fine two Cartesian coordinate systems, OXYZ and
OX’Y’Z’,in such a way that the origin O is placed at the
center of the hexagon. The relative orientation of the
hexagon is fixed on the OXYZ coordinate system. Let
OZ be the vertical axis of the hexagon and OX be per-
pendicular to one of its side surfaces as illustrated in Fig.
1. Let the coordinate system OX’Y’Z’ be associated
with the electric field vector so that the axis 0Z’ is along
the incident direction, and axes O X’ and O Y’ represent
the directions of two electric field components as shown
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in Fig. 1. Thus the orientation of a hexagon in space
relative to the incident electric vector can be completely
expressed by the direction cosines between the six axes
of OXYZ and OX’Y’Z’ which are listed in Table I.
Only three of the nine direction cosines listed in Table
I are independent because of the following six geometric
relationships:
% cos?a;j =1, % cos?q;j = 1, ij=123. 1)
i=1 Jj=1
Now let L denote the length of the ice crystal and a
the width of the hexagon. The plane equations which
describe the eight crystal surfaces in the OXYZ coor-
dinate system may be written in the form
n V3

cos (%)x + sin (l)y —-—a=0,

n=0,123,4,5,
3 2

cosf[(n — 6)wlz — % =0, n=6"7T 2),

In Egs. (1) and (2) n = 0 denotes the surface per-
pendicular to the OX axis. The other five side surfaces
are successively represented by n = 1, 2, 3, 4, and 5,
while n = 6 and 7 denotes the top and bottom surfaces,
respectively. The direction cosines for the normals of
the surfaces in the coordinate system OXYZ are given
by

€osal, = COS (M)
" 3
nr n=0,1,23,4,5, 3)
cosB, = sin (—
3
cosy, =0
cosa, =0

cosB, =0 n=6,17. 4)

cosyn = cosf[(n — 6)w]

Let E,, and Ey;, be two components of the incident
electric fields along the 0.X” and OY” directions which
have arbitrary amplitudes and phases. The traveling
direction of the ray is along the OZ’ axis. Assume that
the ray hits the crystal surface n; at the point
Ni(x1,y1,21), wheren; = 0,1,5,0r 6. Let n; denote the
normal vector of the surface ny, and its direction is
pointing toward space. The three direction cosines
relative to the axes 0X’, 0Y’, and OZ’ are denoted by
cosy, cos{, and cosny, which can be obtained by a
coordinate transformation from its direction cosines in
the OXYZ system into the OX’Y’Z’ system in the

form
coséy cosq
cosé1| =A |cospy | » (5)
cosm €o8Y1

where the A matrix is given by

CoSq;  COSQ2  COSQY3
A = Jcosaa; coSagy cosaag| - (6)

COSQg] COS(gz2 COS33



The plane denoted by BO’AO”, which contains both
the normal n; and the axis 0Z’, is the incident plane of
the electric vector [see Fig. 2(a)]. It is convenient to
define a new rectangular coordinate system 0X}Y1Z]
so that the axis OZ} coincides with 0Z’, while X} and
QY are on and perpendicular to the incident plane.
The angle between the positive OX} and n; is <180°
[Fig. 2(a)]. The other two coordinate systems OX{YiZ]
and 0X!Y*%Z4 in which the coordinate axes OZ] and OZ}
are the directions of the first reflected and refracted
rays, 0X7 and OX} are on the incident plane, and OY]
and OY} are perpendicular to the incident plane.

‘B. External Reflection and First Refraction

To obtain the electric fields for rays undergoing ex-
ternal reflection and first refraction, it is necessary to
define the two components of the electric fields on and
perpendicular to the incident plane so that the Fresnel
formulas can be used. Let E;, and E%, denote the
electric field components of the incident ray along the
OX% and OYY directions. Through a_coordinate
transformation from OX’Y’Z’ to OX}YiZ} we may
write them in a matrix form as

. [EL] _ [cosei  singi] [EL,

B { "yl] [—sintb‘i cosqbi] [E'yo] ’ @

where ¢}, representing the angle between the axes 0.X’
and 00X}, is the angle of the incident plane relative to
the axis O.X’ as shown in Fig. 2. From the geometry we
find

cosgf = cf)s& s singi= &sﬁ .

s smn

Note that in Fig. 2(a) 7, and &; are given by the arcs
0’AC and DC, respectively, and {; is the angle between
n; and OY’, which is not shown in the figure.

Now we may use the Fresnel formulas to obtain ex-
pressions for the reflected and refracted electric fields
in matrix forms®

®)

E; =R,E{, Ei=TE| 9)
where

r t
Ef= [ j*] : Ei= [EI] ; (10)
pat

E3,
R1=[R’“ 0 ] '1‘1=[T"1 0 ] (11)
0 Ry 0 Ty,

The elements in the matrices E%, and E7, represent two
components of the externally reflected field in the di-
rections of 0X} and OY?, E¢, and E!, the corresponding
components for the refracted field in the directions of
0X' and OYY, R,, and R, the Fresnel reflection coef-
ficients on and perpendicular to the incident plane, and
T, and T}, the corresponding Fresnel refraction coef-
ficients. On the basis of the relative direction shown
in Fig. 2(a), the Fresnel coefficients may be written

Mg cosTY — my cosT}

_om cos7i — ma cost}
mg cosTh + my costh

Ry, = n =

. b
my cosT} + mg cost}

2m costh 2my cosT}

Ty 1

x1 B e—
mq cosTi + mg cost!

(12)

where m; and mg are the refractive indices of air and ice,
respectively, and 74 and 7§ are the incident and refracted
angles of theray. According to reflection and refraction
laws in the context of geometrical optics, we find

= ik
my cosTi + ma cosT}

cos7i = — cosm ] 13)

sin7} = sinti/m
where m is the ratio mo/m;. Generally it is a complex
number given by m = m, + im;, where m, and m; are
the real and imaginary parts of the complex refraction
index.

Equations (11) and (12) include not only the infor-
mation of the amplitude but also the phase of the fields.
Consequently Egs. (9) and (10) describe the complete
optical characteristics of one-time reflected and re-
fracted electric fields.

After the magnitude of the electric fields has been
obtained, the next problem is to determine the direc-
tions of the electric vector and the rays, i.e., the direc-
tions of axes 0X}, 0Y5, 0Z7, 0X4, OY%, and OZ!.
These vectors may be determined since the direction

cosines of the six axes of the coordinate systems
OX1Y5Z5 and OX!YiZY relative to OXiYiZ} are

Fig.2. Geometry defining the incident, reflected,
and refracted rays and angles. Figure 2(a) is for

incident ray

(a) (b)

—_—

incident ray

external reflection and first refraction (n = 1). The
incident, reflected, and refracted ray paths are de-
fined on the plane BO’ACO”, and n, is the normal
“vector to one of the hexagonal surfaces. Figure 2(b)
is for two refractions and internal reflections (n =
2). The incident ray is now in the hexagon. The
incident, internally reflected, and refracted ray
paths are defined on the plane QTRPS. All the
angles and coordinate systems are described in the
text.
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Table I Direction Cosines Between OX’ Y2} and OX! Y!Z! and
oxiy!z}
Xi Y] A X4 Y Z4
X4 cos2r) 0 sin(@7) cos(ri—7i 0 —sin(ri— 1Y)
Yy 0 -1 0 0 1 0

ZY sin(27) 0 —cos(27i) sin(ri—7Y) 0 cos(vi—7Y)

known. Because the orientation of the incident ray has
been given in the coordinate system OX’Y’Z’, it would
be more convenient to express the direction of the re-
flected and refracted electric fields in the same system.
Referring to Fig. 2(a), the direction cosines of the six
axes of the coordinate systems OX7Y1Z] and OX!{Y{Z}
'with respect to OX}Y4Z", are listed in Table II.

Thus the direction cosines of the six axes relative to
OX'’Y’Z’ may be written

= QlD?ty (14)

where the matrices 2}, 2§, and ¢; represent the direc-
tion cosines of the nine axes in the coordinate systems
0X1Y1Z5, 0X4Y4Z4 and OX' Y, Z} in reference to the
0X'Y’'Z’ coordinate system, respectively, and are de-
fined by

ey _ | COSERL  cosEli cosElf

- 3 (15)
cos{  cos{yi  cos{yt
| cosnyi  cosnyf  cosnyt
[cos —sin 0-

A R I 16)
singj cosgpi O
o o0 1

The matrices D] and D! denote the direction cosines of
the coordinate systems OX]Y{Z] and OX{Yi{Z} in
reference to OX{Y{Z!, respectlvely, and are defined

by

[cos27i 0 sin2r]

Df = cos27 sin27} ’ an

0 -1 0

Lsin27§ 0 —cos27}
— it —cin (i — ot

Dt = cos(r:) 74) (1) sm(;l Tl)j' . (18)
| sin(ri —7%) 0 cos(ri—7%)

In these matrices, the elements cos&’,, cos{%;, cosn,,l,
cos£y;, cos{Y,;, and cosn), represent the direction cosines
of the first reflected field in relation to OX’Y’Z’, re-
spectively. cosé},, cos{l,, and cosn}, are the dlrectlon
cosines of the ray. The cosine notations with the su-
perscript ¢ are the corresponding quantities for refrac-
tion,

C. Two Refractions and Internal Reflections

The refracted ray proceeds into the ice crystal and
will hit another hexagonal surface. Consequently in-
ternal reflections and additional refractions will take
place. The major difference between treatment of in-
ternal reflections and refractions and the previous
analyses is due to the possible existence of the total in-
ternal reflection when the incident angles become larger
than a certain critical angle. Assume that a ray inside
the crystal hits the next surface at point N, (x5,¥n,2n)-
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Let n,, denote the normal to the surface whose direction
cosines cosc,, cosf,, and cosy, are given by Egs. (3) or
(4). Thus the new incident plane defined by QTRPSQ
in Fig. 2(b) can be constructed. As before, three new
coordinate systems involving the new incident, reflec-
tion, and refraction rays OX.Y'Z Z, OXrYrzr, and
(0). 43 / Y!Z! may be defined. Agaln itis noted here that
the positive direction of the axis 0X? is chosen so that
the angle between the axis and n, is <180° [see Fig.
2(b), the arc RP <180°].

General mathematical expressions for electric fields
involving both the amplitude and phase and the trav-
eling directions of the rays may be formulated based on
previous analyses. Let the subscript n denote the
number of reflections or refractions (n = 2, two refrac-
tions, n = 3, internal reflections). For the reflected and
refracted electric fields using Fresnel formulas we
have

E,=R,E, E.,=T,Ei, (19)
where

[ ] {PZE n= 2, (20)

Ei] |PuiEf, nz3,

5= ] E$,=’ ik )

where (E: ,E} ) represent the electric fields of the in-
cident rays, and (E7,,E},) and (E?, ,E', ) are the corre-
sponding electric fields for the reﬂected and refracted
rays on and perpendicular to the incident plane, re-
spectively. The matrix P,,, which represents the nec-
essary coordinate rotation from the incoming refracted
ray coordinate system OX!Y{Z!} (for n = 2) or internal
reflected ray coordinate system OX}, 1Y, 1Z% 1 (for
n =z 3) to 0X'\Y'Z", is given by

cos¢l,  singl
—singi, cospi]
where ¢}, is the angle between the axes 0 X! and 0X5
(when n = 2) or between the axes OX’_; and OX},
(whenn = 3) and is given by

P, = n=2, (22)

B singf, = cos¥n . (23)

inw, sinwy,
In this equation, cosx,, cosy,, and cosw,, are the di-
rection cosines of the normal n, with respect to
0X'Y'Z! (for n = 2) or with respect to OX_,Y" _,Z"_,
(forn = 3). InFig. 2(b) x, and w, are arcs UR and RT,
respectively, and ¥, is not shown in the figure. Once
the direction cosines of n,, in the OXYZ coordinate are
known, its direction cosines cosX,, cos¥,, and coswy,
may be obtained through a coordinate transformation
as follows:

OXn | — $,D{®,D5... §,_ DA | O ,
cosy, cosfp| > n>2,

COSWy, COSYp

cos¢l, =

(24)

where the A matrix is given in Eq. (6) and ®, and D7, (n
= 2), which represent the coordinate transformation



between OX.Y.Z! and OX:_,Y% .Z%_, (or
OXi_Yr 12— 1) and 0X.Y"'Z" and OX.LY: Z;, re-
spectively, are determined by

el —aindi (
8, = cosd).n smfb,, 0 ’ n>2, (25)
sing}, cos¢l, O
L 0 0
D = cos2ri, 0  —sin27} , nz2, 26)
0 -1 0
'_—sinZT‘;, 0 —cos2r,

where 7%, is the incident angle. When 7%, is less than a
certain critical value, i.e., m sin7t, < 1, the refracted
angle 7%, can be determined by

27

In Eq. (19) the matrices R, and T, are given in Eq. (11),
except subscript 1 is changed to n and their expressions
are described in Eq. (12), but m; and ms now represent
the refractive indices of ice and air, respectlvely
However, when the incident angle is such that m sin},
> 1, total internal reflection takes place, and the Fresnel
coefficients are given by®

cos7, = coswy, sintt, = m sint,.

__cosT L /m + j(m?2 sin?7i, — 1)1/2

R, =
n cos7h/m ~ j(m?2sin?ri, — vz’

R =_™ cos7h + j(m? sin?rf, — 1)V2
7" m costh, — j(m2sintt, — 1)1/2 ’
and Ty, = Ty, =0. Notethatj=+/—1. Thedirections
of the electric fields and the ray in thls case may be ob-
tained based on their direction cosines with respect to
0X’Y’Z’, which may be expressed in a matrix form:

‘:r,t = Q1]:)“P2:D£ Qn-—an—l‘I’rL n ’ (29)

where E7:! represents the direction cosine matrices of
the reﬂected and refracted electric fields and rays in the
0X’Y’Z’ coordinate, and D, is a matrix for transfor-

mation of the 0X4Y!Z¢, coordlnate to the OX1Y:Z:,
coordinate. They are given by

(28)

[ r,t Tt r,t
Ert = cosEy:  cosEly cosE{: ) (30)
cos{%t  cos{ht cos{Z
Lcosn;t  cosnft  cosn’
R t i : t i
cos(vh, —74) 0 —sin(ry —71%)
Diy _ (t% n n n (31)
0 1 0
L:_sin(‘rf, —7i) 0 cos(rt, —7i)

Fig.3. Geometry of the phase shift of the rays undergoing external
reflection aj, two refractions ag, and internal reflection a,. PoQo,
P1@1, and P,Q; denote planes normal to the direction of these rays

L)

So far we have derived a number of mathematical
expressions governing the electric fields and the
outgoing rays relative to the coordinate system OX’Y’Z’
defined previously. Now we need to transform the
electric vectors due to reflection and refraction events
to the scattering plane containing the incident and
outgoing rays. Let Ej, and E7, be the electric field
vector parallel and perpendicular to the scattering
plane, respectively, for the externally reflected (n = 1)
and nth refracted (n = 2) ray, and let 8,, and ¢, (n =1,
2, ... ) denote the corresponding polar and azimuthal
angles with respect to the coordinate system OX'Y’Z’.
Thus by rotating the direction cosines matrix for the
externally reflected and nth refracted outgoing ray in
the X’ and Y’ directions to the plane containing 6,, and
¢n, we obtain

E{ = (S1N)Ef, E.=(8.N.)E,, n22 (32)
where
E3
E; = [ ] . (33)
S, = [cosﬁf, cos¢pn, cosll, sing, —siné)n] " n=12.... 34)
singp, —Ccos¢p 0
N, = cosEy, cosEl, ’ N, = cosEl, costl, ,
cos{%; cos{l, cost, cos{l,
cosny; Ccosny, cosnt, cosn’,
n=2 (35)
.
=13,  cosp= c?sgf‘ sing; = coss?‘ (36)
smn;, Nz
t
0, =7,  cosp, = c?ssj" sing, = ¢ S%" n = 2.(37)
mnmn,, n”nz,

All notations in these equations have been previously
defined.

D. Phase Shift and the Total Electric Field Vector

In the foregoing sections, we have shown that the
amplitude and phase as well as the direction of the
electric fields of the rays vary due to reflection and re-
fraction events. Moreover the optical path lengths of
the rays also lead to changes in the phase of the electric
field. Because the incident rays which hit the ice sur-
face at different positions will experience different op-
tical path lengths in or outside the ice crystal, these
phase shifts will produce changes in the phase of the
outgoing rays.

As shown in Fig. 3, assume that an incident ray ag hits
the ice surface at the point N;. The outgoing rays aj,
ag, and a,, are successively produced by the external
reflection, two refractions, and internal reflections.
Through the center point O, we may construct four
planes PoQo, P1Q1, P2Q2, and P, Q, perpendicular to
the rays ag, a1, az, and An, respectively. Now i imagine
that there are rays ag, a;, a, and a,, traveling in the space
through point O without the existence of the ice crystal
and assume that they are parallel to ay, a1, a2, and a,,,
respectively. Thus the phase shift of the outgoing ray
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a; from the imaginary ray a; is determined by the dis-
tances between point N7 and planes PyQo and P16;. In
reference to the geometry, the distance between N; and
PyQy is given by

do = |x1 cosaz; + y1 cosags + 21 cosags), (38)

where %1, yl, and z; are the three coordinates of point
N, with respect to the OXYZ coordinate system.
Likewise the distance between N; and P1Q is

dy1 = |x1 cosal, + y1 cosPh, + 21 cosyy,|, (39)

where cosay,, cos(%,, and cosv%, are the three direction
cosines of theray a;. They may be derived from coor-
dinate transformation as follows:

cosay; Cos£y,
cosf;, | =A* |cos{t, | (40)
CosY’ cosn}

where A* is the transpose of the matrix defined in Eq.
(6). Thus the phase shift of the ray a; from a; may be
written

Apr=— 27" (do +d), (1)

where M is the wavelength of the light beam.

To find the phase shift of the nth outgoing ray, we
define the reflection points N,—; and N,, on the surface
of the crystal. Analogous to the discussions above, the
path length of N,~1N,, is given by

dn.n—l = [(xn - xn—l)z + (.Yn - yn—l)2 + (2p = zn_1)2]1/2’ (42)
and the distance between N,, and P, @, is

dn =[x, cosal, + yn cosB, + z, cosyi,|, (43)

cosact, costl,
cosB:,| = A* [cos{t,] - (44)
cosvyt cosn’,

. Thus the phase shift of the nth ray a, leaving the ice
crystal with respect to the ray a,, may be written

where

2
Agn = - 7" [do+dn —m(day +dga ¥ ...+ dnp-v)], (45)

where m is the complex refractive index of ice relative
to air.

The total electric field vector, including the ampli-
tude and phase for all incident rays which undergo ex-
ternal reflection, two refractions, and internal reflection,
may be obtained by summing the outgoing electric field
vectors having the same direction in space as follows:

Es(0)¢) =3 {Z 6(0n - 0, ¢ - ¢n)wnE71(0ny¢n)

q

X exp

—jk (do+ dp—m S d,ﬂ,z)” . (46)
=1 q

where ¢ denotes the number of the incident rays used,
the é-function
1,whenf = 0,, ¢ = ¢,,

47
0, otherwise, 7

6<a—an,¢—¢n)={
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and the weight of the electric field for oblique incident
rays may be derived on the basis of the energy conser-
vation principle and is given by

1, n=1,
2
w2 = {costt costd _Mr n2 (48)

: - o4 3
costt, costi Mrtmi

When m; = 0, w2 reduces to the form given in Born and
Wolf7 (p. 41).

lIl. Diffraction

In the limit of Fraunhofer diffraction for the far field,
the wave disturbance of the light beam at an arbitrary
point P may be expressed by

___M —_ I
up= =22 (| exp(=jkr)dwdy, (49)

where ug represents the disturbance in the original wave
at point O on the plane wave front with wavelength A,
r is the distance between point P and point 0’(X",Y’)
on the aperture with an area B’ and & = 2x/\. The
eight apexes B; (i = 1-8) shown in Fig. 4 are the pro-
jections of the eight vertices B;(i = 1-8) of the hexagonal
crystal on the plane perpendicular to an oblique inci-
dent light ray. The coordinates of the eight vertices as
set up in Fig. 1 are given by B:(0,a,L/2),
By(—+/3a/2,a/2,L/2), Bs(—+/3a/2,~a/2,L/2),
B4(0,~a,L/2), B5(0,—a,—L/2), Bs(/3a/2,—a/2,~L/2),

Bq(v/3a/2,a/2,—L/2), and Bg(0,a,~L/2). Their pro-

jections on the aperture plane normal to the incident ray
in the OX’Y’Z’ system (i.e., X’Y’ plane) may be ob-
tained through a coordinate transformation as fol-

lows:
[i’B;‘
4 Bi

Let 6, and ¢, be the polar and azimuthal angles of the
diffracted light beam with respect to the 0X’Y’Z’ sys-
tem. Then Eq. (49) may be integrated to give

COS(¥11 COS12 COS(13||XB;
(50)

COStg1 - COStg2 COS23 VB;

2B;

B7 ,
Bs
Bg % -
&
.
Bj
o Y’
8 ¢P 0’ ,
5 B2
8’
4 B3

X’

Fig. 4. Geometry. for Fraunhofer diffraction at an arbitrary point

p. B; (i = 1-8) are the projections of the eight vertices of a hexagonal

crystal on the plane normal to an oblique.incident ray. 8, and ¢, are

the polar and azimuthal angles of the diffracted light beam with re-
spect to the 0X'Y’Z’ system.



11p Opshp) = — 22 f f exp[~jk(x’ cosdp + ¥’ singp) sinflpdx'dy’]

o odte (P (51)
kz)\r; =1 \PiC; PD
where
Ci=qi+Piaiy1, D;y=gqi+Pb;,
g = exp(—jkDis1) — 1,
h; = exp(~jkPu;)[exp(—jkCivi+1) — 1],
P; = sinf, cos(dp — ¥i),
tany;

q; = sind, sin(¢p — ¥i),
= yB/%B;»

u; = x’'p; cosy; + y'py, sing;,

v; = —x'p; siny; + ¥'pr; cosy;,

a =uwifvi, b= (Ui —u)iv,  1=1,2,...,7

For i = 8, we should have a;+1 = a1, b; = (uy — ug)/vy,
ui+1 = U1, and v;4+1 = v. When 0, = ¢, = 0, we find
from Born and Wolf? (p. 386) that

up(o,0)=—’“° f J‘ dx'dy’

=~ E [(x’'Bgy’By — %'BY B8

+ Zl (x,B’iy/B'i-H — %'BY B)] (52)
Let the incident electric fields be denoted as E,;, and
E,;; then the diffracted electric fields on the oxX'y'z
system are given by

f,
B = [E = upOprt) (53)

Ef,

x

Eyo]
As before, the two components of electric fields of dif-
fraction with respect to the scattering plane can be ob-
tained through a coordinate transformation as fol-
lows:
- By

B =,/ [Ey()] : (54)

where the transformation matrix is
§f = [cosﬂp cosgp coslp singp

sing, —Ccosp
the electric fields parallel and perpendicular to the
scattering plane are

(55)

Ef = ’E{ (56)

Ef°
IV. Scattering Phase Matrix for Randomly Oriented
Ice Crystals

The electric field vectors for the geometric reflection,
refraction, and diffraction have been derived in Secs.
IT and III, respectively. In this section we wish to derive
the relevant equations for computations of the scat-
tering phase matrix for randomly oriented ice crystals.
According to the coordinate systems described previ-
ously, we may express the scattered electric field for a
hexagonal ice crystal in the form?

[Ez _[A2 Az] Exy
T,

- [ 57
Z'0P Ay Ay Ey’o

YA« ’

where E; and E, represent the parallel and perpendic-
ular components of the scattered electric field, respec-
tively, with respect to the scattering plane Z’OP, and
E., and E,; are those of the incident electric field with
respect to the incidence plane Z’0X’ as shown'in Fig.
5. Based on the analyses given in Secs. I and III, the
amplitude functions Ay, As, As, and A4 defined in Eq.
(57) may be written

A=Af+AS=[Aé A§l+[ : Aa], 58)
Al Af] 1A A3
where
Af =uprsf, (59)
As=3% [Z o(0 — en; ¢ - (f’n)wnc';(gm‘bn)
q n
X exp [—jk(d0;+ dn—m Iil disr)) ] , (60)
= q
Ci = (SiIN)R,Py,
C4 = (S2N2)T2PoT Py, W
> (61)

C, = (SuN,)T,PrRp1Pr-1R,3Pr—s... RoPoT Py

The Stokes parameters of the scattered light are now
given by

[ incident ray

Fig. 5. Geometry of the scattering by an arbitrarily oriented hexagon
inspace. The scattering plane is described by Z’OP. The incident
ray plane is defined by Z’0OX’. 6 and ¢ are the scattering and azi-
muthal angles for the scattered rays at an arbitrary point P. cosasy,
cosctgg, and cosaz are the direction cosines between the axes OZ’ and
0X,0Z and OZ, and 0X’ and OZ, respectively. n(=as3) and 5 are
orientation angles of the long axis of the crystal (Z axes) with respect
to the zenith (0Z’) and azimuthal (OX’) directions. 1 is also an
orientation angle which is an angle between the normal to the crystal
surface (0X) and 0Q, where Q is the intersection of the arc CAO’Q
on the sphere with the normal plane (XY). y; varies from 0 to 2,
but because of the hexagonal symmetry it changes only from 0 to
/3.
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I Ty

MBI (62)
U Uy
% Lvo
where the general transformation matrix is
VoMo + M3+ My + M) %Mo~ Ms+My—M;) Sas+ Sy Dog+ Daf
- Yo(Mo+ Mz~ My — M) %Mo~ Ms—Ms+M1) Soz—Ssu1 Daz—Dy (63)
Sa4 + Sa1 Soq — Sa; So1+ 834 Doy — D3y
24+ D13 Dy2— Dy3 Dia+Dyg So; — Sag
My = ArAj = |Ar]?
Skt = Su = Yo(AiA} + ArA}), 103 . - ' ' '
~Dy =Dy, = ’5 (AA} — AkAD),  Lk=1,2,3,4.
The scattering phase matrix P is defined by 02 Y 7
P =CF, (64) L e
where C = 4w/a,, and the scattering cross section ol o aes j
27 w
by = j; j; (EiE} + E,E}) sinfd0d. (65)

In this case the scattering phase matrix is said to be
normalized so that
j; _Pu(@d0/ir = 1. (66)
In reference to Fig. 5, the scattering phase matrix
elements for an arbitrarily oriented hexagonal ice crystal
not only depend on the scattering and azimuthal angles
with respect to the incident light rays but also depend
on the orientation angles of the ice crystal 0, s, and ¥
defined in the figure. ; is the angle denoting the or-
ientation of a hexagonal crystal with respect to its long
axis on the XY plane and cosy; = cosagy/sinass. 71is
the orientation angle in the zenith direction and cosn
= cosags, the direction cosine between the Z and Z’ axis.
Yo is the orientation angle in the azimuthal direction
and cosys = cosasz/sinass. To obtain the scattering
phase matrix for randomly oriented hexagonal crystals
in 3-D space, an angular integration with respect to ¥4
is to be performed first as follows:

1 T
POsin) =5 PO bbb din. 67

Since the scattering phase matrix for randomly oriented
particles is independent of ¢, which is in the same azi-
muthal plane as Y5, we obtain

1 r ™
PO) = j; ? j; P(0,0m,05) sinndndys. (68)

Moreover for randomly oriented particles, the scattering
phase matrix contains only six independent elements
in the form

Py Py O 0
Pz Py 0 0

0 0 P33 —Pg
0 0 Py Py

P9 = (69)

3576 APPLIED OPTICS / Vol. 21, No. 19 / 1 October 1982

107t

1072

10°3 1 Il 1 1
o] 30 60 90 120 150 180

SCATTERING ANGLE @
Fig. 6. Contributions of the scattering phase function as a function
of the scattering angle for external reflection, two refractions, and
internal reflections up to four. The columns with a length-to-radius
ratio of 300/60 um are assumed to be randomly oriented in a hori-
zontal plane when the incident beam with a 0.55-um wavelength is
normal to this plane.

Computational results for these elements based on
geometrical ray tracing analyses will be presented in the
next section.

V. Computational Results and Discussions

To estimate the required internal reflections in the
geometric ray tracing calculations so that energies as-
sociated with incoming and outgoing rays are approxi-
mately conserved, we first examine the energies for
external reflection (p = 0), two refractions (p = 1), and
internal reflections (p = 2) for randomly oriented col-
umn crystals. These crystals have a length-to-radius
ratio of 300/60 um, and an incident light beam with a
0.55-um wavelength is normal to the crystals. Shown
in Fig. 6 are separate normalized phase functions
(P11/47) for external reflection, and the sums of the
individual components and external reflection are also
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Fig. 7. Averaged scattering phase function as a function of the
scattering angle for randomly oriented columns in a horizontal plane
when the incident angles are 90 (normal incidence), 50, and 30°.

indicated in the figure. Contributions of the externally
reflected rays range over all scattering angles with a
small peak near ~175°. The 22° halo maximum is ba-
sically produced by two refractions. Energy peaks at
an ~160° scattering angle and at backscattering are
caused by internal reflections greater than two. Ex-
ternal reflection accounts for ~4.2% of the total incident
energy. The inclusion of two refractions and one, two,
three, and four internal reflections gives, respectively,
85.7, 93.3, 94.8, 96.4, and 97.5% of the total incident
energy. For oblique incidence, the percentages of en-
ergy distributions are roughly about the same as the
above values. In the following presentations, we have
included internal reflections up to five.

Figure 7 illustrates the effect of the incident angle 5
(90° elevation angle) on the scattering phase function.,
Note that the scattered phase function has been aver-
aged over the azimuthal angle ¥ and the rotational
angle Y, with respect to the ice crystal axes as presented
in Sec. IV. Incident angles of 90 (normal incidence), 50,
and 30° are used. For normal incidence, we see a sharp
22° halo peak, a broad maximum at 160°, and a peak in
the backscattering direction. For the oblique incident
angle of 50°, the scattering pattern becomes much more
complex. The halo shifts to a 30° scattering angle. In
addition to the halo peak, there are also a number of
maxima located at scattering angles of ~70, 85, and
160°. For the oblique incident angle of 30°, the maxima
occur at ~50, 100, and 150°. The phase function peaks
in the backscattering direction regardless of the direc-
tion of the incident light.

Figure 8 shows the degree of linear polarization as a
function of the scattering angle for the aforementioned

three incident angles when the column crystals are
randomly oriented in a horizontal plane. For normal
incidence, the most pronounced feature is the positive
polarization with a maximum of the order of 75% located
at the 120° scattering angle. The pattern is broad and
differs from the rainbow features produced by spherical
water droplets. The 22° halo shows a negative polar-
ization of the order of 3-8%, which is in agreement with
observations presented by Minnaert.1 On the side of
the halo minimum, two maximum polarization patterns
are shown. For a 50° oblique incidence, polarization
values beyond the 100° scattering angle become very
small. The negative polarization for the 22° halo re-
duces somewhat, and the two polarization maxima be-
come larger than those from normal incidence. When
the incident angle is 30°, polarization of the scattered
light is quite small, except at the 120° scattering angle
where the large positive polarization (~94%) is caused
by external reflection. This scattering angle may be
thought of as the Brewster angle at which the unpolar-
ized light is totally polarized due to external reflection.
The degree of linear polarization for randomly oriented
columns in 3-D space will be presented below.

Figure 9 shows six independent elements of the
scattering phase matrix for column crystals randomly
oriented in 3-D space. Graphs for Pyg, Poo, P33, P43, and
P44 are plotted relative to the normalized phase function
Py;. For Py, a strong forward scattering caused by
diffraction is seen. In addition the 22 and 46° halos are
both shown. The 22° halo is ~1 order of magnitude
stronger than the 46° halo. The backscattering peak
is also quite pronounced. The minimum scattering
pattern is found at ~125°. At 160°, a broad maximum
is seen which is produced by internal reflections. This
maximum resembles, but is not quite the same as, the
rainbow features produced by water spheres. It should
be noted that columns with a 800-um length and a
60-um radius probably would not be randomly oriented
in realistic atmospheres so that some of the scattering
features shown in the left-hand side of Figs. 9 and 10
may not be evidenced in the sky.
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Fig. 8. Averaged degree of linear polarization as a function of the
scattering angle for randomly oriented columns in a horizontal plane
where the incident angles are 90, 50, and 30°.
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Physically —P;9/P11 (= —@/I) represents the degree
of linear polarization when the incident light is unpo-
larized. This figure shows that polarization values are
positive over most of the scattering angle. Negative
polarization is shown at angles associated with 22 and
46° halo maxima as well as near backscattering direc-
tion. The largest polarization is located at a scattering
angle of ~125° with a value of ~35% for randomly ori-
ented columns. The element Poo/Py; is related to the

depolarization of scattering light when the incident light
is linearly polarized. Itis approximately equal to unity
in the forward directions and approaches zero at ~175°
scattering angle. Values for P43/P;; are generally small
and fluctuate around zero. This curve is very similar
to results presented by Asano and Sato!! for a prolate
spheroid with a major-to-minor axis ratio of 5 which is
the same as the one used in the geometric ray tracing
calculation. The only exception is that the present
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Fig. 9. Angular distribution of six independent elements of the scattering phase matrix for 3-D randomly oriented columns with a length-
to-radius of 300/60 um illuminated by a wavelength of 0.55 um.
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Fig.10. Angular distribution of six independent elements of the scattering phase matrix for 3-D randomly oriented plates with a length-to-radius
ratio of 8/10 um illuminated by a laser wavelength of 0.6328 um.
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results show positive values for scattering angles from
~120 to 150°. Values for P33/P1; and P4/Py; are quite
different from results presented by Asano and Sato for
a prolate spheroid. The P44 component may be con-
sidered as an expression for the ellipticity of the scat-
tered electric field when the incident light is circularly
polarized. Both P33/P1; and P44/P11 values decrease
rapidly from ~1 to —1 when the scattering angle in-
creases from 0 to 20°. Values for P33 are usually larger
than those for Py4. The P33 curve shifts from the neg-
ative to the positive when the scattering angle is ~120°,
However, values for P44 remain negative.

In Fig. 10, we show six phase matrix elements for
plate crystals having a 10-um radius and a 8-um length
randomly oriented in space using a 0.6328-um laser
wavelength. Values for Py, are the same as those for
Py; below ~60°. The P43 element is negative for small
plates except in the backscattering direction, and its
values are generally rather small. Values for Py/Py;
and P33/P;; show an increase at a scattering angle of
~10° and then decrease rapidly to the 30° scattering
angle region. Both elements show maxima at scattering
angles of ~140 and 170°. The patterns of the six phase
matrix elements for randomly oriented small plates
generally resemble those for randomly oriented large
columns, More detailed comparisons of P11 and
~P15/Py; for columns and plates will be g]ven in the
following two figures.

In Fig. 11, we compare the computed and measured
scattering phase functions Py, for randomly oriented
columns and plates. The measured scattering phase
function is derived from a number of scattering exper-
iments for plates using a 0.6328-um laser beam de-
scribed by Sassen and Liou.* The dimension of the
plates is ~5 um. Inthe experiment, the incident laser
beam was either horizontally or vertically polarized. In
addition to the original components, we also measured
the cross-polarized elements. This allows us to con-
struct four phase matrix elements defined in Sec. IV.
The vertical bars in this figure and the next figure depict
the standard deviation of the measured data as a func-
tion of the scattering angle. Large columns generate
alarger and broader peak at the 22° halo region and at
the 150° scattering angle region. However, the basic
features are the same for hexagonal columns and plates.
The computed phase function values are in general
agreement with experimental data. The experimental
data reveal small maxima at ~22 and 155° scattering
angles which agree with results derived from geometric
ray tracing calculations.

Comparisons of the computed and measured degree
of linear polarization and depolarization ratios using a
horizontally polarized light for columns and plates are
illustrated in the upper and lower diagrams of Fig. 12,
respectively. For the degree of linear polarization, there
is a general agreement between computed results and
experimental data. The computed linear polarization
for 20-um sized plates closely matches the experimental
data for plates having a model diameter of ~5 um,

especially at the two maxima in the forward directions.

and the peaks in the 120-150° scattering region. In the
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Fig. 11. Comparisons of the computed and measured scattering

phase functions for randomly oriented columns and plates. The

plates observed in a number of scattering and cloud physics experi-
ments have a modal dimension of ~5 um.

90-120° scattering region, however, the computed po-
larization is smaller than the measured values, probably
because there might be a number of large columns
present during the scattering and cloud physics exper-
iments. In view of the geometric optics approximation
used in the theoretical analysis, it is apparent that the
agreement between the computed and measured po-
larization is very good. As for the depolarization ratio,
the computed results for 20-um randomly oriented
plates quite closely match the measured data presented
by Sassen and Liou.l2 The depolarization ratio in a
scattering angle of ~10° shows a maximum of the order
of 10% for randomly oriented large columns. Also note
that large columns generate ~60% depolarization in the:
backscattering, while small plates produce a depolar-
ization of ~25%. The backscattering depolarization
values shown in this figure and in Fig. 8 are in general
agreement with laboratory experimental results pre-
sented by Liou and Lahore!3 and Sassen and Liou'2 and
with the lidar field data obtained by Sassen4 for ice
clouds.

V1. Conclusion

We have developed a scattering model for arbitrarily
oriented hexagonal ice crystals including complete po-
larization information on the basis of the ray tracing

principle. The ray tracing program includes the con-

tribution of the geometric reflection and refraction and
the Fraunhofer diffraction. For the geometric optics
part, a traceable and analytic procedure was derived for
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Fig.12. Comparisons of the computed and measured degree of linear

polarization (upper diagram) and depolarization ratio (lower diagram)

for randomly oriented columns and plates. The modal dimension
of the plates in the scattering experiments is ~5 um,

computation of scattered energies due to external re-
flection, two refractions, and internal reflections. From
consideration of the direction cosine of the incident
electric vector of a ray and the geometry of the hexag-
onal crystal, consisting of six symmetric and identical
sides and top and bottom surfaces, the electric vector
of this ray undergoing reflection and refraction can be
traced until it emerges out of the crystal. Moreover, the
phase shift caused by the different path lengths of a
bundle of rays can be included in the analysis to give
four complex amplitudes. The diffraction part is de-
termined on the basis of the Fraunhofer limit in the far
field in which an analytic expression can be derived for
the wave disturbance of light rays produced by an
oblique hexagonal aperture. We further developed a

theoretical foundation for computation of the scattering.

phase matrix for randomly oriented hexagonal crystals
in 2-D and 3-D space by carrying out proper integrations
on the total scattered electric vector with respect to the
scattering plane.

Scattered energies associated with external reflection,
two refractions, and a number of internal reflections are
analyzed, and we show that inclusion of up to five in-
ternal reflections gives ~98% of the incident energy for
most refractive indices. Results of the phase function
and degree of linear polarization for randomly oriented
columns in 2-D space are presented for a number of el-
evation angles. The polarization patterns reveal in-
teresting features in various regions of the scattering
angle. Six scattering phase matrix elements for ran-
domly oriented large columns and small plates are il-
lustrated, and their relative magnitudes are discussed.
Finally we compare the computed scattering phase
function, degree of linear polarization, and depolar-
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ization ratio for columns and plates with experimental
data measured by Sassen and Liou%12 for small plates.
We show that the present theoretical results in the limit
of the geometric optics principles are in general agree-

ment with laboratory data.
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