10. Los Angeles Smog

- History of LA Smog
- Main components of LA Smog
- London vs. LA Smog
- Emissions of primary pollutants
- Smog chemistry
- Particles / Visibility
- Environmental and Health Effects
- Politics / the future

History of LA Smog

1943: First recognized smog episode called "gas-attack" Visibility ~ 3 Blocks people suffer from discomfort, nausea, vomiting

2

4

1945: LA begins air pollution control program

1950: Public electric transit systems are replaced with buses

1952: Dr. Arie Haagen-Smit discovers the causes of photochemical (LA) smog

History of LA Smog

1956: Highway act starts increased highway construction

1963: First federal clean air act defines "air quality"

- 1965: Reliable ozone measurements in LA start max. 1-hour average ozone m.r.: 580 ppbv
- 1966: Auto tailpipe emission standards for CO and hydrocarbons are adopted in CA

1968: California Air Resources Board (CARB) funded

1970: US Environmental Protection Agency (EPA) funded

History of LA smog

1971: Air quality standards defined (O₃: 120ppbv) LA had 580 ppbv ozone!

1975: Two way catalytic converters come in use LA exceeds Stage 1 smog alerts (O₃ above 200 ppbv), 118 days per year!

1984: California Smog check program starts

1985: Ozone maximum in LA: 390ppbv LA exceeds Stage 1 smog alerts 118 days per year!

1995: Ozone maximum in LA: 0.26ppbv LA exceeds Stage 1 smog alerts 14 days per year!

Main Components of LA Smog

Primary Pollutants: (pollutants that are directly emitted)

NO (and NO₂): emitted by combustion sources i.e. cars, power plants

CO: emitted by combustion sources

Hydrocarbons (HC, VOC) or Reactive Hydrocarbons (RH, ROG): emitted by industry, cars, plants

Main Components of LA Smog

Secondary Pollutants: (pollutants that are formed chemically)

Ozone and Particles: VOC + NO + sunlight $\rightarrow ... \rightarrow$ ozone + NO₂ $\rightarrow ... \rightarrow$ particles

Health Effects of O₃

<u>ppmv</u>

0.02 Odor threshold (acrid/sweet smell)

0.10 Nose/throat irritation in sensitive people

0.30 Nose/throat irritation in most people

1.0 Airway resistance; headache; sleep difficulties

Los Angeles vs. London Smog London LA Primary Pollutant SO₂, soot CO, HC, NO_x

6

8

Secondary Poll.	particles H ₂ SO ₄ , acid droplets	O ₃ , particles
Temp.	cool	warm
Inversion	radiation	subsidence, marine
Time of pollutant peak	morning	afternoon

Carbon Monoxide (CO)

Emitted by combustion engines under oxygen poor condition (fat burning)

Catalytic converter reduces CO emissions

Fate of CO: $CO + OH \rightarrow CO_2 + H$

residence time: days - weeks

Nitrogen Oxides: NO and NO ₂			
$N_2 + O_2 + heat \rightarrow NO + NO$ very hot temperatures are needed as, for example, found in engines			
$NO + O_3 \rightarrow NO_2 + O_2$			
NO (nitric oxide):	natural m.r. $\sim 25 pptv$		
NO ₂ (nitrogen dioxide):	natural m.r. $\sim 25 pptv$		

9

Anthropogenic HC Emissions

Ozone

Ozone in the troposphere: (do not confuse with stratospheric ozone!)

Natural levels of O₃ on the ground: Paris in 1870: 10 - 20 ppbv Today in remote location: 30 - 40ppbv LA 1970's:

up to 600 ppbv LA today: up to 150 ppbv

17

