
Stably Stratified Turbulence

1 Introduction
Consider a flow with a stable mean density stratification,

N2(z) =
db

dz
(z) > 0 . (1)

Here, as usual, the vertical coordinate is in the opposite direction to the gravitational force. An
important regime parameter is the gradient Richardson number,

Ri = N2
/(∂uh

∂z

)2

, (2)

where the subscript h denotes the horizontal component. Rimeasures both the gravitational stabil-
ity of the stratification and the dynamical competition with the mean shear. When Ri < 0, the flow
will be in a state of convective turbulence for Re,Ra � 1, with possibly some influences by the
mean shear if it is strong enough. When 0 ≤ Ri ≤ O(1), the flow will be a type shear turbulence
(e.g., as in the Kelvin-Helmholtz flow) for Re � 1, with some modification by the weakly stable
stratification. However, when Ri� 1, the turbulence is different from either of these regimes and
is referred to as stratified turbulence when Re � 1. Because the influence of the stratification is
strong in this latter regime, its motions are anisotropic, w � u, v, because of the large gravita-
tional work required for vertical movement. The behavior of stratified turbulence is in contrast to
weakly nonlinear internal wave “turbulence,” which is also consistent with Ri, Re � 1 (Sec. 2).
In nature, away from boundary layers, Ri is usually� 1, and both turbulence and wave regimes
occur. There remains considerable uncertainty about the proportional occurrences of each type of
dynamics. In the 2D Homogeneous Turbulence chapter, a measured wavenumber spectrum was
shown for the atmospheric mesoscale. How much of the observed regime with Eh(k) ∝ k−5/3

is due to stratified turbulence and how much is due to internal waves? And can the portion at-
tributable to stratified turbulence be understood as a manifestation of 2D inverse energy cascade
(Sec. 5)?

Stratified turbulence does not have an obvious energy source from a local instability of its
environment: since N2 > 0, the flow is gravitationally stable, and since Ri > O(1) the flow is
Kelvin-Helmholtz stable. Thus, either this regime is one of decaying turbulence or else it must be
sustained by an energy cascade from some other phenomenon — such as a forward cascade from
geostrophic turbulence, inertial and internal gravity waves generated elsewhere that break locally
in the interior, or an inverse energy cascade from atmospheric convection.

Geostrophic turbulence is most likely to be energetically sustained by the rotating shear in-
stability of large-scale winds and currents, either climatological or transient. Its standard (i.e.,
quasigeostrophic) model exhibits an inverse energy cascade, analogous to 2D turbulence, which
implies a lack of energization for the smaller-scale stratified regime with Fr � 1 and Ro � 1.
Furthermore, there are plausible theoretical arguments why stratified turbulence might itself ex-
hibit an inverse energy cascade (Sec. 2). Nevertheless, there is increasing evidence that forward
energy cascades usually occur from larger scales into the stratified turbulence regime and continue
down to Kolmogorov universality and microscale dissipation (Sec. 5 and Geostrophic Turbulence).



In most locations inertial or internal gravity waves are energetically sustained by propagation
from some remote source, usually located at the vertical boundary and due either to tidal or sub-
tidal flow past topography or to fluctuating boundary stress. Internal waves also can be generated
by convective buoyancy flows, such as gravity currents or cumulus clouds, and even by stably
stratified planetary boundary layers. If the waves are strong enough to intermittently break and
overturn, then a local, more isotropic cascade to dissipation will occur.

It is an important — and until recently partially open — question whether stratified turbulence
satisfies the H1 hypothesis of 3D isotropic, homogeneous turbulence, i.e., whether g becomes
negligible on sufficiently small scales, but still larger than the dissipation (Kolmogorov) scale. The
implication of that this is false is that stratified turbulence would remain anisotropic throughout its
cascade to dissipation and — in combination with an expectation of an inverse energy cascade —
even have a conundrum about how its dissipation is accomplished. Most previous evidence favored
violation of the H1 hypothesis in situations where stratified advective dynamics is more important
than internal wave dynamics; however, most of this laboratory and computational evidence is from
situations where Re values are not too large (Secs. 2-3). More recent computational evidence
supports H1 at large enough Re (Sec. 5).

2 Internal Waves and Vortical Motions
In terms of characteristic scales, we can write Ri in in relation to the previously introduced Froude
number, Fr,

Ri ∼ N2H2/V 2 = Fr−2 . (3)

(Commonly Ri(x) is viewed as a local measure of the stratification and shear influences, while
Fr is viewed as a bulk measure.) Thus, stratified turbulence occurs when Fr � 1, and we can
develop an asymptotic dynamical approximation as Fr → 0 (Lilly, 1983; McWilliams, 1985). We
distinguish this regime from geostrophic turbulence (also with Fr � 1) by neglecting rotational
influences, i.e., assuming Ro� 1. Consider a non-dimensionalization of the governing equations
by the following advective scales for the stratified turbulence:

x ∼ H, uh ∼ V, t ∼ H/V

φ ∼ V 2, b ∼ V 2/H, w ∼ V 3/N2H2 . (4)

The resulting non-dimensional Boussinesq equations are

Dhuh
Dt

+ Fr2w
∂uh
∂z

= −∇hφ+ ν∇2uh

Fr2
Dw

Dt
= −∂φ

∂z
+ b

Dhb

Dt
+ Fr2w

∂b

∂z
+ w = κ∇2b

∇h · uh + Fr2
∂w

∂z
= 0 . (5)

(Here we have retained the diffusive terms, even though we have not made their non-dimensionalization
scaling explicit; a more familiar non-dimensional form would have Re−1 in place of ν.)
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The limiting form for these as Fr → 0 is a form of 2D dynamics for uh = ẑ × ∇hψ
and φ, where the flow has only a parametric dependence on z; diagnostic relations for b and w
from the second and third equations in (5)1 ; and a diagnostic relation for the additional O(Fr2),
horizontally divergent component of the horizontal flow, uh = Fr2∇hχ, from the fourth equation
in (5). Here we are using a Helmholtz decomposition of the 3D non-divergent velocity field,

u = −∂yψ + ∂xχ , v = ∂xψ + ∂yχ , w = −
∫ z

[∂2xχ+ ∂2yχ] dz . (6)

Thus, when χ � ψ, the flow is primarily horizontal (as in the example in Turbulent Flows), and
it can be called rotational or vortical for its vertical vorticity. In contrast, when χ � ψ, the
horizontal flow is divergent, and the degree of velocity anisotropy may not be so pronounced.

To leading order in Fr, the dynamics of stratified turbulence is equivalent to the dynamics
of 2D turbulence, with an independent evolution of uh at each vertical level. This is sometimes
called layerwise 2D turbulence. Because of sensitive dependence, however, we expect these in-
dependent evolutions to diverge, and this should act to decrease the vertical correlation scale and
increase vertical shear, with the ultimate effect of somehow coupling the evolutions at different
levels and bringing in some higher-order corrections in (5). One set of approximate equations with
such behavior results from carrying the asymptotic analysis through O(Fr2): the set is called the
non-rotating Balance Equations, where the horizontal momentum equation in (5) is replaced by
approximate forms of its curl and divergence equations (i.e., the vertical vorticity equation and
gradient-wind balance); the vertical momentum balance is hydrostatic; and the last two equations
in (5) are kept in their entity. The Balance Equations contain vortex-stretching terms that couple
the vertical vorticity evolution at different levels, although they have not yet been solved for strati-
fied turbulence and so we cannot yet be sure that they are accurate here, although they are known to
be quite accurate for the advective evolution of rotating, stably stratified flows where Ro = O(1).
The Balance Equations are also a first-order PDE system. Balance Equations suitability remains
an open question for non-rotating flows for at least three reasons: (1) they are not uniformly valid
at O(Fr2) because they drop the vertical acceleration term in (5) that is formally of this order;
(2) there are flow-dependent solvability conditions for their time integrability (McWilliams et al.,
1998) that are more likely to be problematic without rotation than with it; and (3) recent solu-
tions at small Fr and large Re indicate that there may be a partial turbulent Boussinesq solution
that exhibits small-scale overturning in a way that is inconsistent with Ri being everywhere large
(Sec. 5 below). In summary, the Balance Equations are commonly very accurate on larger, nearly
geostrophic scales (e.g., synoptic and meosscale), but probably is most useful as an interpretive
framework for some non-rotating, stratified phenomena (e.g., the pancake vortices in Sec. 3) rather
than a uniformly valid approximation for all the non-wave behaviors.

Métais and Herring (1989) computationally solved the Boussinesq equations for Fr(0) � 1
and approximately balanced initial conditions with ψ � χ. In the subsequent evolution, Fr(t)

1The third equation contains a time-derivative in it, so it appears to be undetermined as a diagnostic relation for
w. However, this appearance is illusory, since the time derivative for b cannot advance independently of the time
derivative of ψ. Thus, the reduced system of (5) with Fr → 0 is a first order PDE system in time. It is often a subtle
matter to correctly identify the temporal order of a PDE system. As another example of the subtlety of this type of
assessment, consider that the full Boussinesq system (5) and its hydrostatic approximation, the Primitive Equations.
In spite of the occurrence of four time derivatives in the former (i.e., for u, v, w, b) and only three time derivatives for
the latter (since Dw/Dt has been dropped), both systems are really third-order in time.
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Figure 1: Rotational kinetic energy (dashed line), divergent kinetic energy (solid line), and fluctu-
ation potential energy (dotted line) in freely evolving stratified turbulence. (Left) Isotropic initial
conditions for velocity; (Right) Rotational velocity initial conditions. (Métais and Herring, 1989)

remains small and Fr4(∇hχ)2 � (∇hψ)2 continues to hold (Fig. 1, right panel); whereas, with
more general initial conditions the ratio between ψ and χ remainsO(1) (Fig. 1, left panel). There-
fore, we can conclude that the scaling assumptions behind the preceding asymptotic analysis are
uniformly valid in time, at least in these solutions and by this global velocity variance measure,
hence there is a plausible basis for believing that the dynamics of the Balance Equations may also
be accurate. However, the non-rotating Balance Equations develop singularities in certain regions
of transition between local vorticity dominance and local strain dominance (McWilliams et al.,
1998). Therefore, it must be true that there are some locations where balanced dynamics break
down, perhaps to a more locally isotropic cascade to dissipation or to a local generation of internal
wave energy (n.b., the internal wave analysis immediately below with χ � ψ). Nevertheless,
since a global measure of anisotropy is well preserved under evolution (Fig. 1), it must also be
true that these breakdown events are modest in frequency and intensity. Given this seemingly
contradictory evidence, as well as that from laboratory experiments (Sec. 3), the theoretical under-
standing of the advective dynamics of stratified turbulence has been viewed as mysterious in many
important aspects.

Notice in Fig. 1 that both types of freely evolving turbulence are significantly dissipative. This
indicates that a forward energy cascade is occurring — unlike in 2D turbulence — and it suggests
an important role for 3D effects on the small scales, either advective or viscous.

We also note that there is another consistent non-dimensionalization for Fr � 1 that leads to
linear internal gravity waves as the leading-order dynamics when Re� 1:

x ∼ H, u ∼ V, t ∼ 1/N

φ ∼ V NH, b ∼ V N , (7)
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whence
∂u

∂t
+∇hφ− ẑb = −Fr (u · ∇)u + ν∇2u

∂b

∂t
+ w = −Fr (u · ∇)b+ κ∇2b

∇h · uh +
∂w

∂z
= 0 . (8)

Notice that we do not distinguish between the magnitudes of the horizontal and vertical velocity
in this scaling choice. Here the nonlinear terms are of O(Fr) in (8). Yet on an advective time
scale — which is 1/Fr times the wave time scale in (7) — the nonlinear effects become important,
and a weakly nonlinear wave turbulence can induce its own type of cascade to dissipation. Some-
times this dissipation is concentrated in local wave-breaking events that certainly are not weakly
nonlinear. In wave breaking events, several outcomes are possible: new gravity waves and/or new
stratified turbulence may be generated, and/or a 3D Kolmogorov cascade may be initiated.

Thus, the regime of Ri � 1 is one where there can be either stratified turbulence or internal
gravity waves, or both simultaneously, and the present expectation is that their mutual interactions
usually are weak both because their nonlinear coupling terms are estimated to be small and because
gravity waves can radiate away from a region, leaving behind a balanced state (i.e., a stratified
adjustment process, analogous to geostrophic adjustment when f is significant). In this chapter we
will pay more attention to the regime of stratified turbulence.

3 Collapse of Isotropic Turbulence in Stratification
There is a classical problem in stratified turbulence that has been the focus of substantial labo-
ratory experimentation: the evolution of initially isotropic 3D turbulence to its “final” state in a
stably stratified fluid. This behavior is referred to as the “collapse” of “active” turbulence to its
“fossil” state2, although there is an obvious dynamical-regime chauvinism in these terminologies.
Consider a situation where a wire mesh is dragged rapidly through a region in a stratified fluid in a
way that locally excites isotropic 3D motions; an alternative means of their generation is by flying
an airplane or submarine and examining the resulting wake; yet another is to have a local breaking
event for a large-amplitude wave in a stably stratified location. In all cases the sequence is qualita-
tively as follows: an energetic spatially localized 3D turbulence is generated in an otherwise stably
stratified fluid; the 3D turbulence starts a Kolmogorov cascade to dissipation and begins to weaken
while also causing a vertical buoyancy flux, w′b′ < 0, by mixing across the mean vertical buoyancy
gradient; the environmental stratification begins to suppress vertical velocities by gravitational in-
hibition, and the buoyancy flux abates; the now anisotropic turbulence either radiates away from
the region as internal gravity waves or evolves further in place by developing “pancake” horizontal
vortices of finite vertical extent.

I will describe this problem in more detail based on a presentation by Tony Maxworthy (1998)
at a workshop on oceanic turbulence. Prof. Maxworthy is an experimentalist who has worked on
the collapse problem for many years.

2The term fossil implied the end of advective dynamics with its associated forward energy cascade and dissipation,
leaving behind residual density and tracer fluctuations that would slowly diffuse away. We now know that this is a
false view since horizontal motions remain strong and ε remains large (Fig. 1).
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Figure 2: Time line of the evolution of collapsing 3D turbulence in a stratified fluid. (Maxworthy,
1998)
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Figure 3: The length scales in collapsing stratified turbulence: Ozmidov scale, LO, integral scale,
LT , and Kolmogorov scale, LK = η. (Stillinger et al., 1983; Maxworthy, 1998)
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We define a non-dimensional time,

T∗ = Nt/2π, (9)

that we recognize from (4) and (7) as the appropriate non-dimensionalization for gravity waves.
Figure 2 provides a summary of the evolutionary sequence. At early times, 0 ≤ T∗ ≤ 0.5, the
3D turbulence is modified by the ambient stratification, and the vertical buoyancy flux, wb, is
suppressed, after having initially arisen by 3D stirring in the presence of a mean vertical buoyancy
gradient. At intermediate times, 0.5 ≤ T∗ ≤ 3.0, internal waves are generated and propagate away
from the turbulent region, and the horizontal layers form that are evident in flow visualizations.
These horizontal layers contain anisotropic, advective dynamics, and they expand horizontally to
form intrusions into the non-turbulent regions. The vertical scale of these layers when they emerge
is approximately the Ozmidov scale, LO, defined by

LO =
√
ε/N3, (10)

and with time they grow in thickness to a scale of ≈ 7LO (sometimes called the Pearson-Linden
scale). The Ozmidov scale is the marginal scale where 3D overturning motions of a given inten-
sity, hence cascade and dissipation rate, can occur in the presence of a gravitationally inhibiting
stratification: for L < LO (as is initially true for all the 3D turbulent scales), overturning is not
strongly inhibited, and for L > LO, it is. Figure 3 shows the evolution of the various length scales.
As LO(t) decreases (because the turbulent energy is decaying and ε(t) decreases), the turbulent
energy peak scale (e.g., the lag-covariance integral scale, LT (t)) grows until LT becomes larger
than LO. This is a demonstration that there is some degree of inverse energy cascade even in
3D homogeneous turbulence: given energy initially in a narrow wavenumber range, the spectrum
breadth will increase to both smaller and larger wavenumbers; the majority of the energy cascades
in the forward direction where it is removed by dissipation; this leaves the surviving energy at
larger scales on average; hence, LT increases. These trends continue further until LO equals the
growing Kolmogorov (dissipation) scale,

η(t) =
[
ν3
/
ε
]1/4

(11)

at T∗ ≈ 0.5, and the vertical buoyancy flux, w′b′, has decreased to approximately zero (Fig. 4). At
late times, T∗ ≥ 5, the waves have left the turbulent region, and the remaining turbulence becomes
organized into anisotropic coherent vortices, with w � u, v and large |ζ(z)|, and a vertical scale
like that of the earlier layers. In this stage, the primary contribution to the dissipation rate ε is
through the vertical shear of horizontal velocity,

ε ≈ ν

(
∂uh
∂z

)2

(12)

(Fig. 5), that is largest at the top and bottom edges of the coherent vortices. There is no indication
that ε → 0 as Re → ∞ in stratified turbulence. Therefore, this cascade and dissipation route is
totally unlike that in 2D turbulence, where ε is entirely due to horizontal velocity shear, ∇huh,
and ε is vanishingly small as Re → ∞. Somehow, though, this vertical kinetic energy cascade

8



Figure 4: The vertical heat flux in collapsing stratified turbulence for several different values of
Pr. (Maxworthy, 1998)
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Figure 5: Dissipation in collapsing stratified turbulence over long times. Note that the vertical
shear variance accounts for almost all of ε. The symbol εz denotes the contribution for dissipation
rate from the horizontal shear variance. (Maxworthy, 1998)
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coexists with the essentially 2D advective dynamics implicated in the asymptotic scaling analysis
in (4)-(5).

This suggests an even simpler approximate model for stratified turbulence with Fr � 1 than
the Balance Equations discussed following (5); viz.,

Dhuh
Dt

= −∇hφ+ νv∂
2
zuh

[
+ νh∇2

huh
]

∇h · uh = 0 . (13)

This is equivalent to viscous 2D layerwise dynamics except for the addition of a dominant vertical
diffusion term (a similar proposal was made and discussed by Majda & Grote, 1997). As far as I
know the 3D system (13) has never been solved, so it remains an open question whether vertical
diffusion suffices to control the growth of variance at small horizontal scales that develop during
a forward enstrophy cascade (n.b., this is indicated by the brackets around the νh term in (13),
raising the possibility that it may be unnecessary in the presence of νv). Nevertheless, since Fig.
1 shows the evolutionary consistency of the assumption that Fr � 1, it remains an open question
whether the vertical coupling between different layers occurs only viscously, as in (13), or also
through the conservative, vortex-stretching dynamics implicit in the Balance Equations. Even if
the latter is the most important mechanism for layer coupling at largeRe, it may be that (13) is still
a useful representation of this effect if we view νv as an eddy viscosity with a larger than molecular
magnitude.

Some visualizations of the layers and vortices are shown in Figs. 6-8, and some analyses of
the horizontal velocity and both vertical and horizontal vorticity fields during the vortex phase
are shown in Fig. 9. The latter clearly show the strong shear, ∂uh/∂z, and the associated large
horizontal vorticity. The topology of vortex lines is shown in Fig. 10. Computational solutions
for stratified turbulence also show that these pancake vortices are the dominant coherent structure
for this regime (Métais and Herring, 1989). Pancake vortices are somewhat reminiscent of the
axisymmetric vortices of 2D turbulence in plan view, but they are spatially much more closely
packed in both the vertical and horizontal directions in stratified turbulence.

4 Stratified Shear Layers
In a uniform shear layer, equilibrium turbulence will be established (Shear Turbulence, Sec. 1).
In a uniformly stratified fluid, initial turbulence will have a transient life cycle and eventually
decay toward a stratified rest state, as described in the preceding section. A variant on the latter
scenario is a transient life cycle for a stratified shear layer with local vertical shear and buoyancy
profiles (Shear Turbulence, Sec. 5). It begins as a Kelvin-Helmholtz instability to transverse roll
cells, which themselves develop secondary instabilities to spanwise fluctuations. The turbulence
intensifies and has vertical eddy mixing of buoyancy and shear that cause the layer to expend
vertically and its Richardson number, Ri = N2/S2, to grow. After the latter exceeds modestly
a critical value somewhat larger than 0.25, the truculent energy production shuts off, as does the
vertical eddy flux, and the turbulence decays away. A sequence of numerical studies is reported in
Smyth and Moum (2000). In particular they analyze the history of several vertical length scales:

• the integral scale, outer scale, or layer thickness (here designated by `θ instead of LT as in
the preceding figures).
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Figure 6: Shadowgraphs of grid-generated turbulence in a stratified fluid, showing the development
of density layers when Nt� 1. (Lin and Pao, 1979)
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Figure 7: Shadowgraph and dye visualization of the wake of a self-propelled slender body in a
stratified fluid, viewed from the side. (Lin and Pao, 1979)
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Figure 8: Evolution of pancake vortices in the wake of a towed slender body in a stratified fluid,
viewed from the top. (Lin and Pao, 1979)

Figure 9: Spatial patterns: horizontal velocity and streamfunction in a horizontal plane (left two
panels), horizontal velocity in a vertical plane (upper right), and the orthogonal component of
horizontal vorticity in a vertical plane (lower right) in stably stratified turbulence for Nt � 1.
Note the layers of high vertical shear. (Fincham et al., 1996)
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Figure 10: Sketches of the pancake vortex shape and vortex line geometry in stably stratified
turbulence for Nt� 1. (Maxworthy, 1998)
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• the Thorpe scale (here designated by LT ), which indicates the scale of vertical overturning
motions (a.k.a. mixing length) as the minimal vertical parcel displacements such that an adi-
abatic rearrangement of an instantaneous density profile renders it marginally gravitationally
stable (see Fig. 11, left panel).

• the Ozmidov scale LO = (ε/N3)1/2, and its shear counterpart, the Corrsin scale LC =
(ε/S3)1/2, where N and S are the horizontally averaged buoyancy and shear frequencies.

• the Kolomogorov scale, η = LK = (ν3/ε)1/4.

In a typical stratified shear layer cycle (Fig. 11), we see that `θ grows monotonically but on
slowly at very late time after the event is mostly over; LT (and a closely related LT3) and LO
and LC all have a peak in the middle of the cycle when the turbulent mixing and cascade are
strongest; LT , LT3 are larger than LO and LC except at very late time, indicating that the cascades
are significantly buoyancy influenced in the large eddies; and LK shows a minimum in the middle
and grows toward `θ at very late times as the turbulence decays away.

Figure 11: (Left) Illustration of the diagnosed Thorpe scale LT = dT (right sub-panel) for an
instantaneous a vertical profile of temperature T (left sub-panel), with the dashed line representing
the rearranged profile. (Right) History of different vertical length scales defined in the text for a
stratified shear layer with an instability-mixing-cascade life cycle. (Smyth and Moum, 2000)

5 Equilibrium Stratified Turbulence
Since stratified turbulence, like 3D homogeneous turbulence, is highly dissipative, it must be sus-
tained by some sort of forcing on larger scales. In nature it is not rare for it to occur intermittently,
suggesting that its forcing events may be sporadic. In contrast to the freely decaying and collaps-
ing regimes in Secs. 2-3, now consider an equilibrium regime maintained by random, rotational
forcing on scales much larger than LO.

For small Fr and intermediate values of Re, the equilibrium behavior is consistent with the
decaying behavior: Ri is small everywhere; ψ is � χ; pancake vortices are the dominant flow
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structure; and ε occurs mainly through the vertical shear variance. What happens asRe is increased
further? Does the equilibrium energy level increase as balanced advective dynamics diminishes the
efficiency of the forward energy cascade?

Figure 12: A local overturning event in a simulation of equilibrium stratified turbulence with
random rotational forcing at large scales and Reλ = 1000. Plotted are instantaneous vertical
velocity (greyscale) and (0, v, w) velocity (vectors) in a (y, z) plane; both are normalized by the
r.m.s. velocity V indicated by the reference arrow in the upper left. L is the horizontal extent of
the domain. (McWilliams, 2004)

In computational simulations Laval et al. (2003) show that there appears to be a boundary in
(Fr,Re) space that distinguishes whether or not 2D and balanced breakdowns occur. When it does
it primarily takes the form of local overturning motions in vertically thin layers, where the local Ri
becomes small and the local buoyancy gradient may even become negative; the local flow patterns
(Fig. 12) are quite similar to free shear layer and Kelvin-Helmholtz instabilities. This boundary is
such that for any Fr � 1, breakdown events never occur for Re below some threshold value Rec,
but they do occur, at least infrequently, for larger Re > Rec (Figs. 13-14). By the requirement
that LO � η as N increases for fixed ε, hence that ν decreases, it seems plausible that Rec should
increase as Fr decreases; e.g., Rec ∝ Fr−2 was suggested Riley and deBruynKops, 2003. This
is not yet a fully explored behavior, in part because much of the laboratory work on stratified flow
and all the previous computational work have been done with rather small values of Re.

In summary, forFr � 1 there are stratified turbulent solutions to (5) that evolve self-consistently
in time (i.e., a Fr based on the outer scales of the turbulence remains small) on a characteristic
advective evolution time of H/V , with relatively small w compared to uh and small χ compared
to ψ almost everywhere. Its leading order dynamical approximation is 2D flows in independent
layers, but there are important dynamical corrections involving terms formally of O(Fr2), many
or most of which are probably consistent with the approximate dynamics contained in the Bal-
ance Equations. But at sufficiently high Re (i.e., larger than some critical value, Rec ∼ 5 × 104;
Fig. 14), there also arise some local regions withRi small or even negative, where overturning mo-
tions occur and the stratified turbulence cascade transfers energy into “unbalanced motions”, more
like internal gravity waves and/or Kolmogorov’s isotropic cascade. Recently Lindborg (2006)
has demonstrated a forward energy cascade inertial range, E(k) ∝ ε2/3k−5/3, in simulations of
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Figure 13: The PDF for local-gradient Ri values in equilibrium stratified turbulence with Reλ =
1000. (An unpublished extension of Laval et al., 2003)

Figure 14: Experimental path in Reλ(t) (black line) for randomly forced stratified turbulence with
fixed, small Fr value (≈ 0.08) and a step-wise decreasing viscosity ν(t) every ∆τ = 100. τ
is a non-dimensional time normalized by the eddy turnover time. Between steps in ν the flow
approximately comes into equilibrium with its forcing. Also shown are time series for the volume
fraction of the domain with local Ri < 0.25 (filled gray area) and Ri < 0 (filled black area). There
is no occurrence of Ri < 0.25 for τ ≤ 300 and Reλ ≤ 500, but small Ri values increase with
increasing Reλ values > 500. (Laval et al., 2003; McWilliams, 2004)

18



randomly-forced equilibrium stratified turbulence with Re > Rec (Fig. 15)3. This is manifested in
vertically layered structures with a local vertical scale, H ∼ V/N , indicating a breakdown of the
asymptotic scaling assumption of Fr � 1 uniformly in space and time. His solutions show that
the flow remains anisotropic even at the largest Re values achieved, although it seems plausible
that isotropy will the the eventual outcome on small enough scales, consistent with the validity of
the H1 hypothesis (3D Homogeneous Turbulence).

Figure 15: Normalized horizontal kinetic energy (solid line) and potential energy (dashed line) in a
simulation of equilibrium, randomly forced, stratified turbulence. Note the well developed inertial
range with E ∝ k−5/3 (dotted line). (Lindborg, 2006)

To better characterize this high Re regime with forward energy cascade, it is useful to define
a horizontal Froude number, Fh = V/fL that characterizes the spectrum peak flow in Fig. 15.
This can be distinguished from the vertical Froude number used previously in these notes, i.e.,
Fv = Fr = V/NH . The qausi-equilibrium, high-Re regime is characterized by the following
parameter relations:

Fh � 1 , Fv ∼ 1 , η � H � L , LO � η , Reb =
ε

νN2
� 1 . (14)

The last quantity is called the buoyancy Reynolds number, and its largeness is simply are reorgani-
zation of the LO � η relation. Figure 16 shows that Reb is the most useful parameter to identify
this regime with an energy inertial range, and Fig. 17 illustrates the flow in this regime (n.b., this
is a more fully developed turbulence pattern than the onset behavior shown in Fig. 12 for Reb not
as large).

3A companion study (Lindborg, 2005) shows that this behavior persists even in the presence of rotation until the
Rossby number Ro drops below a critical O(1) value, where a transition is made to the inverse energy cascade of
geostrophic turbulence.
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In contrast and in terms of the same parameters, the “Lilly” regime of stratified turbulence
with quasi-2D turbulence in independent vertical layers and/or “balanced” vortical motions, which
applies to the laboratory experiments in Sec. 3 and earlier numerical simulations with smaller Re
values, is characterized by

Fh � 1 , Fv � 1 , H . η � L , LO . η , Reb . 1 . (15)

Therefore, while the k−5/3 mesoscale wind spectrum near the tropopause could be interpreted
as the result of either an inverse or forward energy cascade in stratified turbulence, it now seems
most likely that it is a forward range, fed in part by breakdown of geostrophic balance on larger
scales (Geostrophic Turbulence). I.e., it is now not very plausible that an inverse-cascading in-
ertial range, analogous to 2D turbulence, is realizable in stratified turbulence in the ocean or
atmosphere. Alternatively, the atmospheric mesoscale spectrum could be interpreted as mainly
an inertia-gravity weak-wave turbulence, as some recent measurement analyses indicate, and this
has long been the more comment view of currents in the oceanic interior on intermediate scales
∼ 0.05− 10 km.

6 Cox-Osborne Model
Geophysical measurements of turbulent velocity and buoyancy fluctuations on very small scales
(often called ”microstructure”), just larger than η, provide estimates of the local kinetic energy and
buoyancy variance dissipation rates,

ε = ν(∇u)2 and χ = 2κ(∇b)2 , (16)

with the average made over the microscale fluctuations (i.e., on a scale larger than η). (Note that
in this context χ is the buoyancy variance dissipation rate, not the divergent horizontal velocity
potential in (6).) We consider approximate, local equilibrium forms for the TKE and b2 balance
equations, neglecting all tendency and transport terms and considering only the turbulent pro-
duction by the Reynolds stress work associated with the mean vertical shear and the analogous
turbulent buoyancy variance generation as the sources balancing the sinks of the dissipation rates
(Osborne and Cox, 1972):

u′hw
′ · ∂uh

∂z
= + b′w′ − ε

b′w′N2 = − 1

2
χ . (17)

In these equations, we can insert the eddy-viscosity and eddy-diffusivity definitions in place of the
turbulent fluxes,

νe = −u′hw′
/∂uh
∂z

and κe = −b′w′
/
N2 . (18)

This yields a pair of coupled equations for the eddy diffusivities in terms of the measured mean-
field gradients and dissipation rates:

νe

(
∂uh
∂z

)2

=
χ

2N2
+ ε

κeN
4 =

1

2
χ . (19)
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Figure 16: The slopes of the horizontal wavenumber spectrum of the horizontal kinetic energy
velocity in simulations of freely decaying stratified turbulence for times after the time of maximum
enstrophy. They are plotted either as a function of Reb (a,b) or as a function of the horizontal
Froude number Fh = V/NL. The value of N is twice as large in (a,c) as in (b,d). High, Medium,
and Low cases refer to the initial Reynolds numbers, Re = V L/ν � 1. This shows that, for
large Reb and small Frh (i.e., the (14) regime), the k−5/3h inertial range slope is achieved, but Reb
is a more successful control paratmeter than Fh in organizing these multiple cases. (Bartello and
Tobias, 2013)
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Figure 17: Snapshot of the component of the horizontal vorticity perpendicular to the page for the
larger N case at the highest Reynolds number at a time when Reb ≈ 6.5 for the simulations in
Fig. 16. Notice the vertical layers and local overturns. (Bartello and Tobias, 2013)

Thus, in a stably stratified fluid with positive eddy transfer coefficients, turbulence generation is
entirely by shear production, and it is balanced by the sum of the kinetic energy and buoyancy-
variance dissipation rates. For Fr < 1, ε is typically larger than χ/N2. A common assumption,
with considerable empirical support, is that the flux Richardson number,

Rif ≡ b′w′
/
u′hw

′ · ∂uh
∂z

= κeN
2
/
νe

(
∂uh
∂z

)2

[ ∼ 1
/
PreFr

2 ]

= χ/2N2
/

(χ/2N2 + ε) , (20)

has been determined empirically to have a typical value of about 0.15, hence

χ

2
≈ ΓεN2 and κe ≈ Γε/N2 (21)

for Γ = Rif/(1 − Rif ) ≈ 0.2, the so-called mixing efficiency (Toole, 1998). The eddy Prandtl
number in (20) is defined analogously to the molecular one, Pre = νe/κe.

Another common assumption is that the flow is statistically isotropic near the Kolmogorov
scale (i.e., the H1 hypothesis); with this further assumption, then we can estimate ε and χ by the
following formulas4:

ε =
15

4
ν

(
∂u′h
∂z

)2

and χ = 6κ

(
∂T ′

∂z

)2

. (22)

The end result is a procedure for estimating dissipation rates and eddy diffusivities from fine-
scale vertical profiles of b (or often just T ) and uh. It rests on assumptions of local production-
dissipation and isotropy that seem solid for shear turbulence with Fr = O(1) and are still some-
what uncertain for Fr � 1.

4The prefactor for ε depends upon the distinction between longitudinal and transverse shear variances, with the
former half as large as the latter (Batchelor, 1953). The general expression in (16) is comprised of 6 transverse
shear variance components and 3 longitudinal ones, implying that ε proportionality factor for a single transverse shear
variance component is 6 + 3/2 = 15/2 (and half this for the two components in (22)).

22



7 Oceanic Microstructure and Diapycnal Mixing
The approach in Sec. 6 is often referred to as microstructure estimates of the turbulent transport
rates. It was proposed by Osborn and Cox (1972) in the oceanic context, although there are earlier
precedents in engineering-turbulence second-moment modeling. It has been used extensively to
survey geophysical turbulence, particularly in the upper ocean. An example of this approach is
shown in Figs. 18-19 for the upper equatorial ocean. This is a region containing some strong
vertical shears associated with the Equatorial Undercurrent. (Another place small Ri can be found
is near the Jet Stream, where clear-air turbulence occurs.) The eddy coefficients inferred from (19)
are plotted against Ri. They are much larger for stratified shear turbulence, with 0 ≤ Ri ≤ 0.25
(note that tan−1(0.25) = 0.5), than for more strongly stably stratified turbulence, withRi > 0.25.
Even in the latter case, however, the eddy diffusivities are larger than their molecular counterparts
by more than an order of magnitude. Notice also that νe � κe in the stratified regime, whereas
νe ≈ κe for small Ri; i.e., the eddy Prandtl number Pre is large for stratified turbulence and O(1)
for shear turbulence. Even within the stratified turbulence regime, the eddy diffusivities appear to
decrease as Ri increases, albeit only slowly.

Figure 18: Average vertical profiles from a 4.5 day oceanic time series at the Equator. Pressure is
in MPa (≈ 100 m). (Peters et al., 1988)

Thus, the vertical turbulent fluxes in stably stratified interior regions of the ocean and atmo-
sphere are usually rather small; nevertheless, they can be significant if no other transport process
is more efficient. The oceanic pycnocline and the atmospheric stratosphere are two places where
this is often so.

Figures 20-21 are taken from a zonal-vertical section across the Gulf Stream (Fig. 20a) where
it passes through the Florida Strait. The stratification (n.b., Fig. 20b, for the potential density,
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Figure 19: Eddy diffusion coefficients for momentum, heat, and density as functions of “mean”
Ri from the 4.5 day oceanic time series on the equator. For comparison a parameterization by
Pacanowski and Philander (1981) is plotted. (Peters et al., 1988)
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σθ = ρθ − 103 kg m−3) is small in the surface boundary layer of less than 50 m (i.e., ≈ 0.5 MPa,
in pressure units) thickness, large in the pycnocline reaching down to about 300 m, and again rather
small in the deeper water. Because of the strong mean current, Fr (based on density and velocity
gradients over ∆z = 10 m) in Fig. 20c is not extremely large anywhere. Nevertheless in Fig.
20d, κb from (21) is much smaller in the vertical interior than it is in the top and bottom boundary
layers, especially so in the pycnocline. This is also seen in Fig. 21a for profiles averaged over
many samples. Very near the bottom (Fig. 21b), the density and current profiles are well mixed
over the bottom boundary layer of about 40 m thickness, but the depth interval, with ε much larger
than in the interior, spans not only the bottom boundary layer but also the 50 m thick stratified
shear layer above it.

The most common present interpretation of mixing in the oceanic interior is that internal waves
are generated by flow over bottom topography, propagate upwards, and supply mixing energy to
a layer of stratified turbulence above the boundary layer, presumably through local “breaking”
events (Gregg, 1989). However, the formula (21) for κe is equally applicable to flows with a flux
of energy ε from larger scales by a forward energy cascade (e.g., stratified turbulence or even
geostrophic turbulence if the geostrophic balance constraint breaks down). This predicted form
for κe has recently been confirmed in stratified-turbulence simulations (Brethower and Lindborg,
2008). Thus, as with the open issue about the mix of internal waves and vortical motions in
atmospheric and oceanic flows (Sec. 2), so too is the mix of sources for ε and diapycnal mixing
not yet well known.

Figure 22 shows a compendium of κe(z) profiles from various locations. Figure 22a shows
what is believed to be the more widespread situation, with the smallest values in the pycnocline
and somewhat larger values below, and Fig. 22b shows examples of “hot spots” where the turbulent
mixing is unusually high due to either strong local mean shears or topographic features presumed
to energize the internal wave field causing local breaking. Overall, the statistics and regime ge-
ographies of shear and stratified turbulence in the interior of the atmosphere and ocean are still
only partly known.

The Thorpe scale (Sec. 4) is often analyzed in microstructure measurements because it too is
calculable directly from individual profiles of buoyancy.

Continuing with abyssal oceanic mixing in “hot spots”, a very recent observational example is
van Haren et al. (2014). This ones comes from the poleward flow of Antarctic Bottom Water in
the Tropical Atlantic, where the rough topography of the mid-Atlantic ridge forces the flow across
a sill about 50 m high into a narrow valley about 7 km wide. The background stratification and
velocity profiles on top and just past the sill are shown in Fig. 23: there is a strong horizontal
flow and vertical shear in a stably stratified layer whose Ri value is near the marginal value for
Kelvin-Helmholtz instability.

As thus anticipated, Kelvin-Helmholtz “billows” do arise (Fig. 24). They have a period of more
than an hour, and their occurrence is modulated by the phase of the tidal current, which brings the
local Ri value down to around Rucr and induces large-amplitude billows in θ. There is also a
tidal oscillation in the strength of the energy dissipation ε and the corresponding diapycnal eddy
diffusivity κρ that peaks with large values of > 10−6 m2 s−3 and > 10−2 m2 s−1, respectively.
The latter is larger than any of the values shown in Figs. 20- 22, except for the Strait of Gibraltar,
where the same mechanism of Kelvin-Helmholtz instability is known to occur (Fig. 25).

Thus, in this particular location a clear mechanism for highly elevated diapycnal mixing has
been identified. Strictly speaking it is not a pure case of stratified turbulence because it occurs on
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Figure 20: Measurements of velocity (upper left), potential density (upper right), averaged Froude
number computed with 10 m vertical differences (lower left), and eddy diffusivity for density, Kρ

(lower right), across the Florida Strait. The vertical coordinate is pressure, with 1 MPa ≈ 100 m
depth. (Gregg et al., 1999)
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Figure 21: Microstructure profiles in the Florida Strait: through the core of the Gulf Stream (left)
and near the bottom boundary layer (right). (Gregg et al., 1999)
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Figure 22: Estimates of diapycnal κρ: (Top) regions not known to be influenced by strong topog-
raphy or mesoscale currents, and (Bottom) regions suspected of being mixing hot spots including
fronts, strong mesoscale eddies, islands, seamounts, straits, and canyons. (Gregg, 1998)
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Figure 23: Background vertical profiles of (a) currents and temperature, (b) gradient Ri from
“raw”, ∆z = 16 m and “smoothed, ∆z = 200 m vertical intervals, and (c) potential density
anomaly with respect to a reference pressure of 4500 dB (= m) depth. The vertical line in (b)
indicates a critical value of Ricr = 0.25. (van Haren et al., 2014)
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Figure 24: Four-day sample of moored observations: (a) depth-time series of potential temperature
θ, (b) time series of vertically averaged (∆z = 200 m) kinetic energy dissipation rate ε (red) and
eddy diffusivity κz = κρ (black), (c) zonal velocity from upper (blue) and lower (green) current
meter, (d) same for meridional velocity, (e) log[N ] and log[∂zv] computed with ∆z = 200 m, and
(f) Ri from quantities in (e). (van Haren et al., 2014)
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Figure 25: Kelvin-Helmholtz billows in the Strait of Gibraltar. The larger billows are about 25
m high around 125 m depth (p = 1.25 MPa). The background flow is eastward above and west-
ward below with stable stratification, typical of the evaporation-driven exchange flow between the
Atlantic and Mediterranean. (Thorpe, 2007)

the margin of stratification dominance, i.e., its Fr value sometimes is not small. For most of the
oceanic and atmospheric interiors, however, the typical Fr values are small, and on smaller scales
of 0.5-5 km or so, the dynamics are a mixture of internal gravity waves and stratified turbulence.
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