
Geostrophic Turbulence

1 Introduction
Geostrophic turbulence provides the theoretical framework for understanding the nonlinear fluid
dynamics of planetary circulations, as a complement, e.g., to various flavors of large-scale wave
dynamics and forced mean circulations such as the Hadley Cell or oceanic gyres. Because of dif-
ferent large-scale dynamical influences, many different simplified models for different phenomena
have been devised.

In the ocean and atmosphere the majority of large-scale, extra-tropical motions (i.e., mesoscale,
synoptic scale, and planetary scale) are strongly influenced by rotation and stable stratification,
with small values for Rossby, Ro = V/fL, and Froude, Fr = V/NH , numbers. This implies
geostrophic and hydrostatic momentum balances at leading order, viz.,

fvg = φx, fug = −φy, b = φz , (1)

where the subscript g denotes the geostrophic horizontal velocity. The leading-order asymptotic
theory for the dynamics of this regime as Ro, Fr → 0 is called quasigeostrophy (QG).

Much of the existing dynamical theory about the general circulation and its principal eddy
variability (e.g., turbulence) comes from QG theory, complemented of course by global General
Circulations Models (GCMs) for weather, currents, material distributions and climate that them-
selves solve more fundamental fluid equations (usually the hydrostatic Primitive Equations). There
is a healthy scientific tension between more complete theory in the simpler QG model and more
realistic and complete simulations in the GCMs. The derivation of QG theory as an asymptotic
expansion is a basic part of geophysical fluid dynamics (e.g., explained in McWilliams (2006) and
other textbooks).

The governing evolutionary equation for QG is

Dq

Dtg
= n.c.t. , (2)

where q is the QG potential vorticity; D/Dtg is the geostrophic advection operator with purely
horizontal advection,

D

Dtg
=

∂

∂t
+ ug · ∇h

=
∂

∂t
+ J(ψ, ) ; (3)

ψ is the rotational streamfunction for the horizontal geostrophic velocity (equal to f−1φ in QG);
∇h is the horizontal gradient operator; J is the horizontal Jacobian operator; and n.c.t. denotes any
non-conservative terms associated with forcing and dissipation. The QG model is completed by
specifying the relation between q and ψ. This relation is a linear elliptic spatial operator that takes
different forms in different regimes (listed below). The QG theoretical landscape, in particular for
geostrophic turbulence behaviors, is a complicated one because scientists have found many differ-
ent types of highly simplified models to be useful, and then worked extensively to compare among



these simplified models, applying Occam’s razor to identify the most fundamental explanation as
the simplest model in which an interesting result is found.

Barotropic (equivalent to 2D flow, whether uniformly rotating or not):

q = ζ = ∇2
hψ . (4)

This is the simplest model for the advective dynamics of geostrophic turbulence, with inverse
energy cascade, forward enstrophy cascade and dissipation, coherent vortices, etc.
Planetary barotropic (with Coriolis frequency f(y) varying with latitude, β = df/dy 6= 0; here
fo = 2Ωe sin[θ] and β = 2Ωea

−1
e cos[θ], where Ωe is Earth’s rotation rate, ae is Earth’s radius,

θ is the latitude, y = aθ, and a Earth’s radius; in the asymptotic expansion, it is assumed that
βL/fo ∼ Ro):

q = f(y) + ζ → βy +∇2
hψ. (5)

In the final relation, for tidiness, we have subtracted the constant f0 since it contributes nothing
to (2) where q enters only with derivatives. This is the simplest model for examining the relation
between advective cascades and Rossby waves.

Barotropic topographic (in a layer of mean depth H and variable bottom elevation B(x, y); in the
asymptotic expansion, it is assumed that Bo/H ∼ Ro):

q =
fo
H
B(x, y) +∇2

hψ . (6)

This is a different simple model for QG waves (here topographic waves, analogous to Rossby
waves, based on the spatial gradient of the first term in q), turbulence, and non-uniform mean
flows guided by topographic contours.

Shallow water or reduced gravity or equivalent barotropic: (or a layer with a deformable top or
bottom “free-surface” interface, hence an associated radius of deformation, Rd =

√
∆bH/fo =

1/γ; in the asymptotic expansion, it is assumed that L ∼ Rd or, equivalently, that Fr =

V/
√

∆bH = V/foRd ∼ Ro:
q = ∇2

hψ − γ2ψ . (7)

This is a simplest model for the combined effects of rotation and stratification (i.e., gravitational
force on the deformed free surface).

All of these “single-layer” QG models can be combined by additively including the different q
terms.

3D QG: for a rotating, stratified fluid with Fr ∼ Ro, or, equivalently, Burger number, B =
(NoH/foL)2 ∼ 1:

q = ∇2
hψ +

∂

∂z

(
f 2
o

N2(z)

∂ψ

∂z

)
+ βy . (8)

This model can be formulated with flat, isothermal vertical boundaries with a ∂zψ = 0 boundary
condition, in which case it is often called interior QG). Or it can be generalized with the kinematic
boundary condition of no normal flow and a QG approximation of the buoyancy equation to include
bottom topography at the mean level of the bottom,

w = − f

N2

D

Dtg
∂zψ = J(ψ,B) at z = −H , (9)
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and/or the top-surface temperature condition at its mean level,

w = − f

N2

D

Dtg
∂zψ = 0 at z = 0 . (10)

When q = 0 in the interior and the bottom is flat, then (10) is the only prognostic equation in what
is called surface QG (see below).

The 3D QG model is the most “realistic” QG model because it includes vertical structure. It,
and the other QG models discussed above, may or may not evolve in a way that remains consistent
with is asymptotic derivation assumptions of smallRo and Fr. If it evolves to an inconsistent state,
its solution may remain mathematically well behaved because Ro and Fr are not parameters in the
QG model, but then the evolution in a more general model will depart from the QG evolution; e.g.,
gravity waves may be spontaneously emitted. This is referred to as “QG-breakdown” or, more
generally, as “limits of momentum-balanced evolution”, and it will be discussed at the end of this
chapter.

I have used an oceanic configuration here, with −H ≤ z ≤ 0, but there is an analogous
atmospheric one with 0 ≤ z ≤ H . Notice that (7) is a reduced form of (8) for a single vertical
length scale, H , with Rd, 1/γ ∼ NH/fo, but (7) clearly lacks the fully 3D dynamics with
multiple, interacting vertical scales. This is the most complete QG model.

Surface QG (SQG:) The simplification of 3D QG with q = 0 in the interior using (8), the sur-
face condition (10), and a semi-infinite domain with H → ∞. This yields a different kind of
“single-layer” QG model, which has a 2D evolutionary equation for the surface buoyancy field,
b = f−1∂zψ, advected by the surface geostrophic velocity, as in (10). Then the 3D ψ field is calcu-
lated from the 3D q−ψ relation (8) for zero q. SQG is most interesting because it has more active
small-scale behavior (i.e., with shallower wavenumber spectra than the enstrophy inertial-range
E ∼ k−3h of 2D turbulence) than do any of the other QG models, although it like the other QG
models has a net inverse cascade of total, volume integrated energy, as explained below. A related
interesting behavior in SQG is its tendency to generate surface buoyancy filaments somewhat like
the surface fronts commonly found in both the atmosphere and ocean (Held et al., 1985). In some
ways the emergence boundary fronts and filaments in SQG anticipates, albeit weakly, the break-
down of geostrophic turbulence (Sec. 9), while still staying within the geostrophic approximation.

An important property of all these geostrophic regimes, with their linear functional dependen-
cies on ψ, is parity symmetry: the equations are unchanged by the transformation,

(ψ, y, B) −→ (−ψ, − y, −B) .

This means that cyclonic and anticyclonic eddies evolve in essentially equivalent ways. Vio-
lation of parity symmetry in measurements and simulations is often the simplest way to detect
ageostrophic behavior.

Another important regime for geostrophic turbulence is its interaction with mean flow, which
is relevant to the general circulations of the atmosphere and ocean; the equations for this problem
can be obtained from any of the preceding models by substituting

ψ = ψ + ψ′, q = q + q′, . . . . (11)
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This allows for turbulent fluctuations to arise from shear instabilities of the mean circulation.
Within QG dynamics the only instability types are barotropic (∇hψ 6= 0) and baroclinic (∂zψ 6= 0)
or both.

The advective dynamics of these regimes is referred to, individually, as barotropic turbulence,
β turbulence, topographic turbulence, shallow-water (or γ) turbulence, 3D geostrophic, and SQG
turbulence and, collectively, as geostrophic turbulence. They have in common a single depen-
dent variable (e.g., ψ); a first-order PDE in time (which implies that QG has no inertia-gravity
waves); a spatially second-order, elliptic linear differential q[ψ] relation; and advection only by the
non-divergent, horizontal, geostrophic velocity. They also have two quadratic inviscid invariants,
energy and (potential) enstrophy. The relevant forms of energy are

E =

∫ ∫
dxh

1

2
(∇hψ)2 ,

=

∫ ∫
dxh

1

2

[
(∇hψ)2 + γ2ψ2

]
, and

=

∫ ∫ ∫
dx

1

2

[
(∇hψ)2 +

f 2
o

N2(z)

(
∂ψ

∂z

)2
]
, (12)

for (4)-(6), (7), and (8), respectively. For SQG the energy is the same as for 3D QG, although often
attention is focused on just the surface component of the energy,

E0 =

∫ ∫
dxh

1

2

(
(∇hψ)2 +

f 2
o

N2(z)

(
∂ψ

∂z

)2
)∣∣∣

z=0
, (13)

Notice the presence of both a kinetic and an available potential energy in many of these models.
The relevant form of enstrophy is the domain integral of q2 in all cases, although for β and to-
pographic turbulence there is an alternative form with the environmental contribution (i.e., βy or
foB(x, y)/H) subtracted from q before it is squared. Because of the simple form in (2), the do-
main integral of any functional of q is also an inviscid invariant of geostrophic turbulence. As with
2D flow, the existence of two independent, quadratic conservative invariants implies that there are
inverse-energy and forward-enstrophy inertial-range turbulent cascades. The non-diffusive invari-
ants for a horizontally advected passive tracer field, c, are identical to those for q in the geostrophic
models; so we expect a forward tracer cascade to dissipation analogous to the enstrophy cascade
in 2D and geostrophic turbulence. In the SQG model there is an inertial range with a spectrum
E0(kh) ∝ k

−5/3
h , which has the interesting, non-intuitive behavior of simultaneous forward cas-

cade of surface available potential energy and inverse cascade of surface kinetic energy (Capet et
al., 2008a; Sec. 8).

The analogies between 2D and geostrophic turbulence are quite strong, including the cascade
behaviors just mentioned. Geophysical examples of large-scale energy spectra, consistent with the
k−3 enstrophy inertial range, were shown in the chapter, 2D Homogeneous Turbulence; we will
see below that this inertial-range spectral form is also valid for geostrophic turbulence. Again by
analogy with 2D turbulence, we expect coherent vortices to develop in geostrophic turbulence.
However, both the β and topographic models — as well as all of the models when ∇hq 6= 0 —
contain QG wave solutions (e.g., Rossby waves) that can compete with, and sometimes disrupt, the
advective behavior in geostrophic turbulence.
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2 Rotating, Uniform-Density Turbulence
Within the geostrophic approximation, uniform background rotation plus uniform density are a
cause of 2D dynamics, hence 2D turbulence. This is a consequence of the Taylor-Proudman the-
orem, whereby the only hydrostatic, geostrophic horizontal flows are barotropic, i.e., ∂zuh = 0.
However, in a 3D, uniform density fluid with strong rotation, there can be additional phenomena
that arise either in addition to or en route to 2D dynamics:

Inertial waves and 3D adjustment: A 3D initial condition will undergo a geostrophic adjust-
ment process to a barotropic state, partly through emission of ageostrophic inertial waves (David-
son et al., 2006) and partly through a more advective and dissipative evolution (Smith and Waleffe,
1999).

Centrifugal instability: A flow that is centrifugally unstable (e.g., because f+ζ changes sign in
the domain) will undergo a 3D ageostrophic instability before adjusting to a barotropic state that is
centrifugally stable (Kloosterziel and Carnevale, 2008). This can lead to an asymmetric barotropic
state with stronger cyclones than anticyclones.

Vertical boundary layers and forcing: If there are vertical boundaries, there will be Ekman
boundary layers. With small Ro usually their effect will be simply to provide a near-boundary
vortex stretching through Ekman pumping that has the effect of damping the barotropic flow; e.g.,

∂tζ + . . . = −Rζ , (14)

with damping time R−1 (McWilliams, 2006). This effect is commonly included in single-layer
QG turbulence. If there is strong forcing at the boundary, then the Ekman layer dynamics can be
sufficiently nonlinear that its vortex stretching generates stronger barotropic cyclones than anticy-
clones, possibly in combination with the selection mechanism of centrifugal instability (McEwan,
1976); however, this behavior lies outside strictly geostrophic dynamics.

3 Free Surface and Finite Rd

The QG model, (2), (3), and (7), can be rewritten as

∂

∂t
[∇2

hψ − γ2ψ] + J(ψ, ∇2ψ) = n.c.t. , (15)

since the geostrophic advection of the second term in (7) is trivial (i.e., J(ψ, ψ) = 0). For
L � 1/γ, the equation is again the same as for 2D flow. An initial state on this scale L will
undergo an inverse energy cascade, coherent vortices will emerge, and L will grow. When it
reaches L ≈ 1/γ, the far-field velocity associated with local concentrations of q begin to have
a much smaller reach, since the Helmholtz operator in (7) has an exponentially decaying Greens
function, i.e., with V (r) ∼ e−γr for large r instead of the algebraically decaying solution, with
V ∼ 1/r, for the Poisson operator in (4). This diminishes the distant interactions among the

5



vortices and provides a degree of cascade arrest for the flow evolution; here, however, the dynamics
of the arrest is horizontally isotropic, unlike with β (Sec. 4).

If the flow has L� 1/γ, then the approximate form of (15) is

∂ψ

∂t
− γ−2J(ψ, ∇2ψ) ≈ n.c.t. , (16)

which implies a much slower rate of evolution than in 2D turbulence. In 2D flow the advective
operator causes an evolutionary tendency,

∇2ψt = −J(ψ, ∇2ψ)

⇒ ψt ∼ ψ2/L2 ∼ V 2 ∼ E , (17)

whereas a similar estimate for (16), using (12), is

ψt = γ−2J(ψ, ∇2ψ)

⇒ ψt ∼ ψ2/γ2L4 ∼ (γL)−2E , (18)

which is very much slower when γL � 1. Note also that the potential vorticity relation (7)
becomes

q ≈ − γ2ψ (19)

in this regime, which implies that the leading-order expressions for both energy and enstrophy
are no longer independent, hence that their turbulent cascades no longer need to be in opposite
directions in wavenumber space.

An illustration of the free evolution of γ turbulence is in Fig. 1, for the regime L � 1/γ
(Larichev and McWilliams, 1991). The coherent vortices are approximately axisymmetric, but
they are no longer spatially sparse (hence their kurtosis is not as large as in 2D flow). A typical
separation distance is 1/γ (i.e., a far-field velocity decay scale), which is much smaller than a
typical vortex size, L. The inverse cascade continues, albeit at the slower (partially arrested)
rate discussed above. With time the coherent vortices become fewer and larger, through merger
interactions, and even slightly sparser. Filamentation is much less prevalent here compared to 2D
turbulence — even during vortex mergers — in association with the fact that (16) is different from
the classical scalar advection equation,

∂c

∂t
+ J(ψ, c) ≈ n.c.t., (20)

which applies in 2D turbulence to c = q = ζ .
The horizontal streamfunction pattern of the coherent structures in γ turbulence for L � 1/γ

(Fig. 1) resembles closely that of the pancake vortices in 3D stratified turbulence. In both instances
it is the dominant influence of stable stratification that is controlling this structure. The mechanism
for how this works is clearer for γ turbulence, where the Helmholtz operator in (7) provides the
connection between the advectively preserved potential vorticity field and the advecting velocity
field; in stratified turbulence, the Ertel potential vorticity is a nonlinear functional of ψ, which
makes the analysis more difficult.

In summary, we learn from γ turbulence that the geostrophic turbulent evolution will be slower
on scales larger than Rd and that the spatial isolation of the coherent vortices will be less pro-
nounced, compared to an equivalent 2D turbulence evolution.
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Figure 1: q ≈ − γ2ψ fields at two times during the free evolution in shallow-water turbulence with
large Re from random initial conditions with γ � 1 (Larichev and McWilliams, 1991).
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There are interesting asymmetries that arise between coherent cyclones and anticyclones in ro-
tating shallow-water models that have finite Ro values, in particular the dominance of anticyclones
(Polvani et al., 1994; Graves et al., 2006).

4 β and Zonal Jets
The QG planetary model, (2)-(5), can be rewritten as

∂∇2ψ

∂t
+ J(ψ, ∇2ψ) + β

∂ψ

∂x
= n.c.t. (21)

Thus, the only addition to 2D fluid dynamics is the final l.h.s. term. It permits non-trivial linear
inviscid solutions, called Rossby waves. For an unbounded domain, plane traveling waves have
the normal-mode dispersion relation,

σ = − βkx

(kx)2 + (ky)2
, (22)

where (kx, ky) is the horizontal wavenumber and σ is the frequency. 2D turbulence is horizontally
isotropic and homogeneous in its symmetries. The presence of β breaks the isotropy symmetry,
because it contributes only an x derivative in (21); this is also evident in the anisotropic Rossby
propagation implied by (22).

For a given amount of energy, E ∼ 1
2
V 2, the Rossby number, Ro = V/foL, will become

smaller than the equivalent measure of the evolutionary rate for Rossby waves (i.e., the frequency),
βL/fo, if L becomes sufficiently large, i.e., L > Lβ , where

Lβ =
√
V/β . (23)

Alternatively stated, Lβ is the length scale for which the magnitudes of the 2nd and 3rd l.h.s. terms
in (21) are the same. Since the inverse energy cascade in 2D turbulence (i.e., in the approximation
to (21) when L � Lβ) acts to increase L while preserving V , we can therefore expect that small-
scale initial conditions or forcing will evolve towards a larger-scale state where the β term becomes
important (Rhines, 1975).

The effect of the waves is to cause dispersive propagation, so that the nonlinear interactions
of the advective operator are “de-correlated” and thus made ineffective for turbulent cascading.
This interferes in particular with the inverse energy cascade, causing a cascade arrestat k ≈ L−1β ,
which also implies an arrest of the forward enstrophy cascade and the spectrum broadening in
k (cf., the argument presented in the 2D Homogeneous Turbulence). (The term cascade arrest is
used loosely to imply a decrease in the transfer rate of variance between scales, relative to the
default expectation that a significant amount of transfer occurs during each typical eddy turn-
over time.) Dispersion also interferes with the coherent vortex dynamics, since wave dispersion
destroys any spatial patterns in the flow. (Interestingly, a strong vortex, with |ζ| � βL, is not
destroyed by dispersion in (21), since a soliton-like balance between dispersive spreading and
nonlinear steepening arises; however, a weak vortex cannot resist the dispersive spreading.) We
can express this wave-advection competition in terms of the characteristic evolutionary rates, σ
and L/V . The latter is anisotropic from (22), with σ → 0 as k → kyŷ. Therefore, the cascade
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arrest is directionally dependent, as indicated in Fig. 2: the inverse cascade can proceed farther
towards k = 0 in ky than in kx, so the solution becomes increasingly anisotropic on large-scales,
with u � v since û = −ikyψ̂(kx, ky) has more energy at ky < L−1β than v̂ = ikxψ̂(kx, ky) has
at kx < L−1β .

Thus, the outcome of a β cascade arrest is the development of primarily zonal flows, which
alternate in direction on a y scale ≈ Lβ (Fig. 2). Notice that (u = u(y), v = 0) is an inviscid
stationary state in (21), since it is a particular example of J(ψ, q) = 0. This behavior is illustrated
in Figs. 3-5 for solutions of β turbulence on a sphere, which are in an equilibrium balance between
random forcing and dissipation. Solutions are shown with different planetary rotation rates, and
the outcome is a set of increasingly strong and narrow zonal jets as the rotation rate becomes larger
(Nozawa and Yoden, 1997). This anisotropic cascade arrest and evolution towards zonal jets has
been suggested as the explanation for Jupiter’s jets in its stably stratified superficial layer (i.e., its
“stratosphere”), with interior deep convection as the excitation source for the turbulence. It also is
considered relevant to Earth’s zonal jets, the atmospheric westerlies, and the Antarctic Circumpolar
Current (ACC), by acting to accentuate the horizontal anisotropy and limit the meridional width to
L ∼ Lβ; however, there does not seem to be quite enough room on Earth — or too much kinetic
energy or too slow a planetary rotation rate for Lβ to be small enough — to be in the regime of
multiple jets, except possibly marginally so in the ACC.

There is a large literature on barotropic and shallow-water flows on a rotating sphere, primarily
motivated by relevance to the visible flows on the gas giant planets. Williams (1978) was the first
to show the possibility of the spontaneous development of alternating zonal flows. A particular
question in this subject is whether the equatorial flow should be westward or eastward (i.e., super-
rotation with flow faster than the planet’s rotation). On gas giants equatorial super-rotation is the
dominant observed behavior. The present understanding from this class of models is that super-
rotation can be a random outcome of initial conditions, but it is assisted by thermal damping (Scott
and Polvani, 2008).

The competition between coherent vortices and zonal jets is illustrated in Fig. 6 for numerical
solutions of β turbulence in a periodic square (McWilliams, 1984). The initial conditions are
random with a spectrum peak at k0 > kβ . The early evolution is as in 2D turbulence, with coherent
vortices emerging and leading to increasing spatial intermittency, as indicated here by the vorticity
kurtosis. When k0 � kβ , the vortices become well defined on a sufficiently small scale such that
the β effect on them is weak; in this case, they emit weak Rossby-wave radiation wakes as they
propagate and mutually interact (e.g., merge), and the kurtosis ceases to grow after having reached
a large value. On a very, very long time scale, much longer than plotted here, we can expect the
inverse cascade to continue until the solution eventually turns into zonal jets with arrested cascades.
In contrast, when k0 is only modestly larger than kβ , the developing vortices (and initially growing
kurtosis) are substantially influenced by β and experience sufficient dispersion that the kurtosis
collapses shortly thereafter and the cascade arrests and jet configuration is achieved much more
quickly.

Another behavior in β-turbulence is generation of mean flows due to spatial inhomogeneity
in the forcing. When Rossby waves are emitted from a localized forcing zone in a zonally un-
bounded or periodic domain, then an eastward mean flow develops there, while westward mean
flows develop in the far-field where the Rossby waves are damped (Haidvogel and Rhines, 1983).
This effect occurs even when the flows are strongly turbulent. This process is invoked to explain
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Figure 2: Sketch of the wavenumber-space regimes in β-turbulence.
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Figure 3: Instantaneous realization of the random vorticity forcing field for barotropic flow on a
rotating sphere. (Nozawa and Yoden, 1997)

Figure 4: Instantaneous streamfunction field for barotropic flow on a rotating sphere with different
values of a non-dimensional planetary rotation rate, Ω/ΩJ , that indicates the relative importance
of β. (Nozawa and Yoden, 1997)
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Figure 5: Instantaneous relative vorticity field for the same cases as in Fig. 4. Notice the disap-
pearance of coherent vortices with increasing Ω//ΩJ . (Nozawa and Yoden, 1997)

Figure 6: Evolution of the kurtosis (a measure of coherent vortex dominance) in freely evolving
β-turbulence for kβ =

√
5 and two different values of the initial vorticity spectrum peak, ko.

(McWilliams, 1984)
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the sharp peak in the atmospheric westerly wind jet or equatorial super-rotation (eastward mean
flow). With sustained small-scale random forcing and a large β influence, 3D geostrophic flows
on a sphere evolve until most of the energy is in the barotropic mode (see 6 below), and then in-
verse cascade transfers the kinetic energy to very large scales with strong anisotropy favoring zonal
flows, albeit slowly because of inhibition of advective effects once the flow is strongly anisotropic
due to β; i.e., such flows exhibit only a partial cascade arrest until the large-scale energy sink (e.g.,
bottom drag) establishes an equilibrium balance. The latter stages of this evolutionary sequence
is often called zonostrophic turbulence (Galperin et al., 2008). The predicted large-scale inertial
range has an energy spectrum,

E(n) ∼ β2n−5 , (24)

where n is the total wavenumber index in a spherical geometry. This is much steeper than the
than the n−5/3 ∼ k−5/3 inverse energy cascade spectrum predicted for 2D and 3D geostrophic
turbulence without β. Fig. 7 illustrates the evolutionary pathway described above and some com-
putational solutions that somewhat support the prediction in (24). This regime is considered more
relevant to large, rapidly rotating planets, such as Jupiter, than to Earth.

Figure 7: (Left) Schematic representation of physical processes leading from geostrophic to zonos-
trophic turbulence. (Right) The kinetic energy spectra for the equilibrium regime of zonostrophic
turbulence. The black and gray lines show the zonal-velocity and residual spectra, respectively. n
is the total spherical wavenumber index. nR ∝ L−1β and nβ ∝ (β3/ε)1/5. The inverse cascade is
limited here by the combination of β-arrest and bottom drag. (Galperin et al., 2008)

In summary, we learn from β turbulence that planetary-scale flows are likely to have an impor-
tant Rossby wave component in their otherwise nonlinear dynamics, and often there will be a peak
in the energy spectrum near L = Lβ and the emergence of quasi-stationary zonal jets, possibly
followed by a slow further inverse cascade to L� Lβ if there is room on the rotating planet.

5 Topographic Turbulence
The QG model, (2), (3), and (6), can be rewritten as

∂∇2ψ

∂t
+ J(ψ, ∇2ψ) +

fo
H
J(ψ, B) = n.c.t. (25)
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This equation is equivalent to that of β turbulence for the particular topography B(y) = Hβy/fo
(i.e., a uniform bottom slope upwards to the north in the northern hemisphere), but it has a richer
dynamics for a more generalB(x, y). The largest scales of the topography, therefore, will influence
the turbulence analogously to the β influence, leading to a cascade arrest, (topographic) Rossby
waves, horizontal anisotropy, and along-slope jet flows.

The inviscid stationary states of (25) correspond, as usual, to J(ψ, q) = 0, or to

ζ +
fo
H
B = G[ψ] (26)

here, for any functional G. For any smooth B and an initially small-scale flow field, (25) will
imply approximately the same behavior as in 2D turbulence, including an inverse energy cascade
to larger scale. If the scale becomes large enough, so that ζ is negligible in (26), then the inviscid
stationary states satisfy

B ≈ G[ψ] , (27)

which is flow along topographic contours. These states thus represent possible arrested states
for the turbulent evolution, should it somehow achieve them. The evidence from computational
solutions is that it often does; see Fig. 8.

A heuristic theory for this (Bretherton and Haidvogel, 1976) is based on the observation that
turbulent cascades act to diminish the enstrophy through dissipation at small scales while preserv-
ing the energy, in flows that have both quantities as inviscid invariants; i.e., the energy, here

E =

∫ ∫
dxh

1

2
(∇hψ)2 , (28)

is a rugged invariant (i.e., preserved for Re� 1), while the enstrophy,

Z =

∫ ∫
dxh

1

2
(ζ +

fo
H
B)2 , (29)

is not. In 2D turbulence, the only way to diminish Z is by diminishing |ζ|, but here it can also
occur by developing a correlation

ζ ≈ −fo
H
B , (30)

which, insofar as ψ ∼ −ζ/L2, also resembles the relations (26) and (27). Thus, enstrophy
dissipation and inverse cascade can combine to push the solution towards an arrested state.

The hypothesis that the flow achieves a state of minimum enstrophy for a given (initial) energy
leads to a well posed problem in the calculus of variations. Its answer is the relation (26) for G a
linear functional, G[x] = ax + b for a, b constants. This yields a linear elliptic boundary-value
problem for ψ given B, whose solution has particular versions of the properties (27) and (30). (In
the case of 2D turbulence, this state is a pair of opposite-sign vortices on the largest available scale
of the domain, which is at least qualitatively similar to the late-time end-state discussed in that
chapter.) One arrives at the same answer by making an alternative hypothesis of maximizing the
“information entropy”, S =

∫ ∫
dxh |q| log |q|, and thus associating this theory with equilibrium

statistical mechanics (but the question of why S should govern the evolution is subtle, and for me
ultimately unsatisfying). Computational solutions exhibit a qualitative similarity to this prediction
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Figure 8: Freely evolving topographic turbulence: (a) is the topographic height, B(x, y). (b) is the
initial ψ(x, y). (c) is the late-time ψ. (d) is the late-time potential vorticity q. Notice the strong
correspondence between (a) and (d). (Bretherton and Haidvogel, 1976)
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in their late-time configuration; however, the correspondence is not exact: flows satisfying (26)
often occur with a G different than a linear functional and with different “branches” of G in different
spatial regions. If the flow satisfies (26), then there is no further nonlinear tendency to evolve to
a state with lesser Z or greater S. A particular version of this end-state is for cyclonic flow (i.e.,
with vorticity of the same sign as f ) around the rim of an ocean basin with steep continental
slopes or vice versa an anticyclonic flow around a mountain range; in this context, the outcome of
topographic turbulence is referred to as the Neptune effect (Holloway, 1992).

In summary, we learn from topographic turbulence that strong pattern correlations are likely
to develop between the streamfunction and the topography, in association with reduced cascade,
mixing, and dissipation rates.

6 3D Geostrophic Turbulence and Coherent Vortices
If both f and N are spatially uniform (i.e., in an approximation in which L and H , respectively,
are small compared to the scales of variation of these environmental influences), we can transform
to a “stretched” vertical coordinate, z′ = Nz/f , and re-write the QG equations, ((2), ((3), and
((8), in the following form:

∂q

∂t
+ J(ψ, q) = n.c.t. , where

q =

[
∇2
h +

∂2

∂z′2

]
ψ = ∇′2ψ . (31)

(Note that R′d = H in this stretched coordinate system.) Thus, the q[ψ] relation is fully isotropic
and homogeneous in 3D, although the advective operator remains isotropic and homogeneous only
in 2D. As a result we can write the inviscid quadratic invariants as

E =

∫ ∫ ∫
dx′

1

2
(∇′ψ)2, Z =

∫ ∫ ∫
dx′

1

2
(∇′2ψ)2 , (32)

which are 3D-symmetric relations. In E the term ∝ ψ2
z′ is the potential energy, and in q, hence Z,

the term ∝ ψz′z′ is the vortex stretching component that combines with the relative vorticity,∇2
hψ,

in the Lagrangian parcel invariant q. Thus, except for the presence of ∇′, rather than ∇h, ((31)-
((32) are isomorphic to the equations of homogeneous 2D turbulence, away from all boundaries.

This led Charney (1971) to conjecture that there exist 3D stretched-isotropic inverse and for-
ward cascades of E and Z in geostrophic turbulence, with inertial range forms analogous to those
in 2D but for the generalization of kh (2D) → k′ (3D). Note that the isotropy here refers to the
spatial scale content of q and ψ, not to the velocity field, which remains anisotropic, with

w = − f

N2

D

Dtg

∂ψ

∂z′
(33)

smaller by O(Ro) than
uh = ẑ×∇hψ . (34)

This conjecture is supported by the occurrence of k−3h shapes for the uh and T wavenumber
spectra in the synoptic range in the atmospheric troposphere and k−5h shape for geopotential height
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in the mesoscale range in the upper ocean (see the figures in 2D Homogeneous Turbulence). This
conjecture also implies an energy equipartition such that the potential energy in ((32) is half the
kinetic energy, both for the total energy and as a function of wavenumber throughout the inertial
ranges. The Charney conjecture clearly must fail at the larger scales, where the finite depths of
the ocean or troposphere and lateral non-uniformities in the domains break the isotropy and ho-
mogeneity symmetries, where the spatial variations in f(y) and N(z) are important, and where
anisotropic, inhomogeneous planetary-scale mean circulations occur, but it is a plausible and im-
portant idealization for the advective dynamics on the smaller scales of geostrophic currents and
winds. In particular, the Charney conjecture does not apply to the barotropic mode, which may
be viewed as occurring on an infinite vertical scale (or, more practically, on the vertical scale of
the domain); the barotropic mode often has substantial energy in the ocean and atmosphere, and it
does not satisfy the 3D stretched-isotropy symmetry since there is no physically meaningful com-
ponent of the flow with the form (ψ(z′, t), q(z′, t)) that is distinct from the mean stratification.
Nevertheless, from random initial conditions or forcing on the indicated small scales, a regime
of homogeneous geostrophic turbulence may ensue until such time as the inverse energy cascade
brings these larger-scale influences into play.

A numerical study of this regime is made analogous to earlier studies of decaying 2D turbu-
lence), with isotropic, homogeneous, random, narrow-band initial conditions in a triply periodic
cubic domain in x′ (McWilliams et al., 1994). The evolution shows approximate conservation of
E, dissipation of Z after several eddy turn-over times, and growth of intermittency in the potential
vorticity field due to the emergence of coherent vortices (Fig. 9).

Figure 9: Time series of the energyE, potential enstrophy V (= Z), and potential-vorticity kurtosis
K in freely evolving 3D geostrophic turbulence. All quantities are normalized by their initial
values. These show the cascade tendencies of energy conservation, enstrophy dissipation, and
intermittency growth. (McWilliams et al., 1994)
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We define the potential enstrophy spectrum as a function of the 3D stretched-isotropic wavenum-
ber κ = (k2x + k2y + k2z′)

1/2 as

S(κ) =

∫ ∫ ∫
|k|=κ

|q̂(k)|2 dk , (35)

where the caret denotes Fourier transform. The enstrophy spectrum shape at a time close to the
peak enstrophy dissipation rate is approximately the forward cascade shape κ−1, although it later
steepens after the coherent vortices come to dominate the evolution (Fig. 10).

Figure 10: Isotropic wavenumber spectra of potential vorticity S(κ) in freely evolving 3D
geostrophic turbulence at non-dimensional times of t1 = 2, t2 = 5, and t3 = 10 . The inter-
val from the spectrum peak to κ ≈ 1000 is the inertial range (with the comparison line ∝ κ−1),
and the dissipation range is for κ > 100. (McWilliams et al., 1994)

We can test the Charney stretched-isotropy hypothesis by forming the measure,

A(κ) =
3Tz′

Tx + Ty + Tz′
, (36)

where the components are quadratic wavenumber weights of the potential enstrophy spectrum:

Ti(κ) =

∫ ∫ ∫
|k|=κ

(
ki
κ

)2

|q̂(k)|2 dk (37)

for i = x, y, z′. If the flow were stretched-isotropic, then A would equal one for all wavenum-
bers; alternatively, A(κ) > 1 (or < 1) implies that the associated structures at wavenumber κ
have smaller (or larger) vertical size compared to its horizontal size. In the freely decaying QG
turbulence problem, the Charney hypothesis is approximately confirmed by A being not too far
from (Fig. 11) unity. However, there are clear departures of different types in the dissipation range
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Figure 11: Spectrum anisotropy measureA(κ) at the same times as in Fig. 10. A value ofA(κ) 6= 1
indicates an anisotropic potential vorticity distribution at wavenumber κ, and A < 1 indicates
“short, fat” structures relative to H/L = f/N . (McWilliams et al., 1994)

(with A > 1), in the enstrophy cascade range (with A > 1 due to coherent vortices that have an
aspect ratio H ′/L ≈ 0.8 on average), and in the energy containing range (with A < 1 because the
barotropic component is appreciable).

The coherent vortices are 3D monopoles in q, with an aspect ratio slightly less than 1, with an
associated axisymmetric azimuthal velocity field (Fig. 12). They move by chaotic mutual advec-
tion in a usually conservative way, but have intermittent close approaches with strong, dissipative
interactions. The most important of these are merger (as in 2D) and alignment (where nearby but
vertically displaced, like-sign potential vorticity distributions evolve with only modest dissipation
toward having their q extrema on a common vertical axis). These interactions lead to a vortex pop-
ulation with fewer, larger, sparser vortices. At late time, after all possible merger and alignment
interactions have occurred, a non-turbulent end-state is reached, consisting of two, opposite-sign,
fragmented columns of the surviving elemental vortices. In this end-state the barotropic energy
fraction is quite large, although the enstrophy fraction is much smaller.

An important question in 3D geostrophic turbulence is the role of bottom drag as an energy
sink. For flows with an inverse energy cascade in a domain with finite depth, the energy transfer
has to become primarily into the barotropic mode — often called barotropization — once the
energy spectrum peak scale is as large as the largest baroclinic deformation radius (Salmon, 1982).
There is a current debate about how far and fast barotropization proceeds; the solution featured
in this section has an inhibition for barotropic energy transfer due to the coherent 3D vortices,
although still the barotropic energy fraction increases with time. Barotropic flows will have a
significant bottom velocity, hence be susceptible to bottom drag. Arbic and Flierl (2004) show that
the drag coefficient has an important influence on the quasi-equilibrium eddy spectrum. Bottom

19



Figure 12: Visualization of the potential vorticity field in 3D QG turbulence at successive times.
Elemental coherent structures are 3D monopoles in q, and at late time they aggregate in columns
consistent with increasingly barotropic flow. (McWilliams et al., 1994)
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drag is also potentially important in an equilibrium zonal jet (Sec. 7), and by some estimates it may
be an important competitor with submesoscale breakdown of geostrophic balance in the oceanic
energy balance (Sen et al., 2008; see Sec. 9).

In summary, we learn from 3D geostrophic turbulence that many of the distinctive evolution-
ary behaviors found in the unphysical model of 2D turbulence — and, by extension, in the 2D
generalizations of β, γ, and topographic turbulence- – also have relevance in the real 3D world.

7 A Baroclinic Zonal Jet
Geophysical turbulence of all types contributes to the maintenance of the general circulation in
the ocean and atmosphere, since the external forcings (i.e., the sources) occur on the planetary
scale; the actual mixing and dissipation (i.e., the sinks) occur on the molecular kinetic scale, as
represented in fluid dynamics through viscosity and diffusion; and the turbulent cascades that
connect these large and small scales must pass through all the regimes we have discussed in these
lectures. Here I will focus only on the geostrophic turbulence contribution at mesoscales and larger.
Moreover, for simplicity, I will consider only a highly idealized — but perhaps most fundamental
and famous — GFD problem of a forced zonal jet that is x-symmetric and t-stationary and wider
in y than its largest baroclinic deformation radius, L > Rd. This is qualitatively similar to the
mid-latitude atmospheric westerlies (forced by meridional heating differences) and the oceanic
Antarctic Circumpolar Current (ACC) (forced by an eastward surface wind stress). We will make
the QG, β-plane, and small-amplitude topography approximations. To further focus on the roles
played by geostrophic turbulence, we assume that the fluid is quasi-adiabatic (i.e., with no material
mixing or advection across the stably stratified isopycnal surfaces), so that the external forcing
influences of heating and stress are merely imposed without explicitly including the small-scale
turbulence (e.g., in the PBL) generally associated with their occurrence.

Because this problem is given a detailed treatment in Sec. 5.3 in McWilliams (2006) — which
is substantially based on McWilliams and Chow (1981) and a similar study by Wolff et al.(1991),
and consistent with a more modern study by Roullet et al. (2011) — here I will only summarize the
primary phenomena and interpretations without showing many figures. The purpose is to demon-
strate the conceptual framework and language for how turbulence shapes the general circulation.

To be specific we will focus on the wind-driven version of this problem with an eastward
surface stressW (

s (x))(y) > 0 in a mid-latitude band in the southern hemisphere ocean with f(y) <

0 (i.e., an idealized ACC). To localize the jet we assume that τ (s(x)) is zero outside of a central
meridional region. The fluid is stably stratified with background buoyancy frequency N(z), and
we assume the temperature evolution is adiabatic.

After an initial spin up from a stratified resting state, the mean zonal flow u(y, z) generates
geostrophic turbulence from a primarily baroclinic instability. In equilibrium the mean jet is sur-
face intensified at the latitude of the maximum wind stress, and the associated geostrophic, hydro-
static temperature T (y, z) is colder on the polar side.

.u = − 1

f
∂yφ ∂zφ = αgT . (38)

α is the thermal expansion coefficient. We define a mean geostrophic streamfunction by ψ = φ/f .
A sketch of this mean jet configuration is in Fig. 13. The mean circulation is (u, v, w), where
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only the zonal component is in geostrophic balance since ∂xφ = 0 by the zonal symmetry (or
periodicity). The mean-flow components in the meridional plane are thus ageostrophic velocities,
weaker by O(Ro).

Figure 13: Sketch of the mean zonal flow u(y, z) and temperature structure T (y, z) +N2(z)/(αg)

in an idealized equilibrium zonal jet. The surface wind stress W (x)
s (y) and bottom topographic

variation B′(x, y) are also indicated.

Now consider the fully developed, statistical equilibrium state. The flow field is illustrated in
Fig. 14. A central dynamical balance is for the mean zonal momentum:

∂tu = 0 = − ∂zτ (x) − ∂yR
(x) + n.c.t. (39)

The most important part of this balance for a wide jet with weak interior diffusion (i.e., the non-
conservative term n.c.t.) is associated with the flux of zonal momentum τ (x) downwards from the
surface where the eastward stress is applied down to the bottom where a balancing westward drag
force occurs.

τ (x) = −W (x)
s , z = 0

= −D(x) , −H < z < 0

= −
[
D

(x)
b + εbub

]
, z = −H . (40)

(The sign conventions here are historical, consistent with Ws being the stress of the wind on the
ocean and τ being the upward momentum flux.) D(x) = − fv′η′ is the isopycnal-surface or in-
terfacial form stress associated with the geostrophic eddies (with η = −αgT/N2 the interfacial
height displacement); D(x)

b = − fv′bB′ is the topographic form stress associated with a bottom ele-
vation anomaly B′(x, y) and bottom velocity v′b. εb [m s−1] is a bottom drag coefficient associated
with a bottom Ekman layer. It doesn’t take very much amplitude in the topography for Db to be
the dominant bottom stress (Treguier and McWilliams, 1990), although εb remains an important
parameter for energy dissipation (where bottom form stress does not contribute). The remaining
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Figure 14: Snapshot of the potential vorticity q(x, y) near the top surface in a statistical equilibrium
turbulent regime for a baroclinic zonal jet (in a northern hemisphere domain with ∂yb > 0 and
∂yq > 0). The geostrophic eddies arise primarily by baroclinic instability of the mean jet u(y, z),
and eddy fluxes equilibrate it against the mean forcing. (Roullet et al., 2011)
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term in (39) is the horizontal eddy Reynolds stress divergence with R(x) = u′v′. In a full-depth
and cross-jet integral the balance is

∂

∂t

∫ 0

−H

∫ ∞
−∞

u dz dy = 0 =

∫ ∞
−∞

[
W (x)
s −D

(x)
b − εbub

]
dy , (41)

ignoring n.c.t. and noting that R(x) → 0 as y → ±∞ due to far-field dissipation of fluctuations
or meridional boundaries. This shows that the surface and bottom stresses balance each other in
an integral sense, while the interior eddy momentum fluxes D(x) and R(x) respectively act only to
redistribute mean zonal momentum vertically and horizontally.

Figure 15 sketches the shapes of D(x) and R(x). The form stress mirrors the surface stress, and
the Reynolds stress is essentially counter-gradient by acting to accelerate the jet core and decelerate
its edges. The cause of this behavior in R(x) is meridional Rossby wave radiation away from the
jet center where the eddies are most strongly generated (see the remark at the end of Sec. 4 and
Chap. 5.4, McWilliams, 2006, for a full analysis). When the meridional scale of the wind stress
is much larger than Lβ > Rd, multiple jets can occur, with a meridional scale near Lβ (Panetta,
1993; Treguier and Panetta, 1994); the reasons for this are similar to the dynamics of β turbulence
discussed above.

Figure 15: Sketch of the principal terms in the mean zonal momentum balance (39) for an idealized
equilibrium zonal jet.

Now consider the ageostrophic secondary circulation in the meridional plane. The kinematic
relation expressing the movement of the interfaces as material surfaces is

w =
Dη

Dt
. (42)
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The mean of this relation is
w = ∂yv′η′ = − 1

f
∂yD

(x) . (43)

Given the shape of D(x) this implies a downward flow on the equatorial side of the jet and upward
flow on the polar side. By the mean continuity balance in the interior,

∂yv + ∂zwz = 0, or (44)

v =
1

f
∂zD

(x) . (45)

We combine (43) and (45) with the approximation that the surface PBL lies entirely within the
upper layer of the model configuration, i.e.,

w = wekman = − 1

f
∂yW

(x)
s at z = 0 , (46)

and there is a surface, equatorward mean Ekman-layer transport,

v = vekman = − 1

f
W (x)
s > 0 at z = 0 . (47)

Thus we obtain the clockwise mean meridional circulation seen in Fig. 16. This mean meridional
overturning circulation is called the Deacon Cell in the ACC and the Ferrel Cell in the atmospheric
Westerlies (sinking motion on the equatorial side, rising on the poleward, i.e., a “thermally indirect”
circulation, which is different from the diabatic “thermally direct” tropical atmospheric Hadley
circulation driven by equatorial convection). By our present analysis we can see that it is “eddy
driven” in the sense that it is dynamically balanced by the interior geostrophic eddy fluxD. In a less
adiabatic model, other micro-scale turbulent mixing effects, or in the case of Earth’s atmosphere
interior diabatic heating and cooling, enter these relations and interfere with the simple adiabatic
balance of u + u∗ = 0.

A mean heat balance, at leading order, has the form,

∂tT = 0 = − ∂yv′T ′ −
N2

αg
w , (48)

where the eddy heat flux is related to the eddy form stress by

v′T ′ =
N2

αgf
D(x) . (49)

Thus, positive form stress is associated with poleward heat flux. The down-gradient eddy heat flux
here (i.e., opposite in sign to ∂yT > 0) is a signature of eddy generation by baroclinic instability. In
(49) the eddy heat flux divergence is balanced by vertical advection of the background stratification
by the meridional overturning circulation.

What I have just presented is a picture that was first drawn in the 1950s and 1960s to describe
the maintenance of the jet stream (e.g., Lorenz, 1967), even though for many years afterward it
was still a serious challenge to realize computational solutions with this behavior. The equilibrium
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Figure 16: Sketch of the Eulerian mean meridional overturning circulation (v, w) (thick arrows)
and the opposing eddy-induced overturning circulation (thin arrows) for an idealized equilibrium
turbulent zonal jet.

geostrophic-turbulent jet is such an important GFD problem that it has developed several associated
interpretations that I will briefly mention here.

Eulerian Mean Circulation: (u, v, w)

Eliassen-Palm (EP) flux: F = (0,−R,D). Notice that the mean, interior, zonal momentum
balance (39) can be written as

−∇ · F = n.c.t. . (50)

The dynamical meaning of F is that it is the eddy forcing of the zonal mean flow (Andrews et al.,
1987).

Eddy Potential Vorticity Flux: with the 3D QG definition of q,

q = f0 + βy + ∂xv − ∂yu− f∂zη , (51)

we can write
v′q′ = ∂zD

(x) − ∂yR(x) = ∇ · F . (52)

This is yet another way to characterize the eddy terms in the mean zonal momentum equation.

Residual Mean Circulation: (u, ṽ, w̃), where

ṽ = v − 1

f
∂zD

(x), w̃ = w +
1

f
∂yD

(x) . (53)

The final r.h.s. terms are the non-divergent eddy-induced transport velocity, u∗, that appears in the
eddy tracer transport parameterization of Gent and McWilliams (1990), and (ṽ, w̃) is the relevant
total advection velocity in a transformed Eulerian mean model (both below).
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Non-acceleration, Non-interaction, and Eliassen-Palm theorems: In equilibrium and with n.c.t. =
0, there is no driving of the zonal mean flow by the turbulent eddies.

Eddy Advection and Isopycnal Mixing: The eddy-induced velocity is non-divergent, which im-
plies that it can be expressed in terms of a vector streamfunction,

u∗ = ∇×Ψ∗ . (54)

For a jet with zonal symmetry, Ψ∗ = x̂Ψ∗(x), and v∗ = ∂zΨ
∗(x), w∗ = − ∂yΨ∗(x). The fundamental

definition of Ψ∗ is in terms of the so-called skew component of the eddy buoyancy flux (rather than
the component in the direction of the mean buoyancy gradient∇b); i.e.,

Ψ∗ = − u′b′ ×∇b
|∇b|2

(55)

(Ferrari et al., 2008). With this definition and (54),

∇ · u′b′ = u∗ · ∇b ; (56)

i.e., the eddy flux divergence has the form an addition advection of mean buoyancy by the eddy-
induced velocity u∗. (The other component of the eddy flux, parallel to ∇b, leads to an eddy-
diffusion type of term in the mean buoyancy balance equation which by definition is oriented
along the mean isopycnal surfaces.) For a jet with zonal symmetry, b = αgT , and mean vertical
stratification dominant in |∇b|,

Ψ∗(x) = − v
′b′

N2
=

1

f
D(x) . (57)

Hence,

v∗ = − 1

f
∂zD

(x) , w∗ =
1

f
∂yD

(x) . (58)

Thus, the eddy-induced velocity is equal and opposite to the Eulerian mean meridional overturning
circulation (v, w), and the residual circulation (ṽ, w̃) is zero in an adiabatic flow (Fig. 16). So the
apparent material advection by the Deacon or Ferrel Cells is illusory since it is canceled by the
eddy-induced advection. If the fluid is truly adiabatic, then this cancellation is necessary to avoid
mean Lagrangian trajectories crossing mean isopycnal surfaces. Of course, if there are diabatic
processes (as near the oceanic surface or in the troposphere), this cancellation will be partially
incomplete.

Eddy Parameterization: The preceding relations are a diagnostic characterization for the eddy
buoyancy flux, under the presumption that measurements or turbulent solutions are available for
analysis. However, in models that do not resolve their eddies, either not at all or only partially,
then the missing eddy fluxes must be parameterized. Within a framework proposed by Gent and
McWilliams (1990), the parameterized evolution equation for the large-scale tracer field, c, is

Dc

Dt
= −u∗ · ∇c+R[c] , (59)

where R is an isopycnally-oriented diffusion operator that mixes tracers along isopycnal surfaces
but not across them (and thus has no effect on b itself). Note that we could alternatively write the
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advection operators in (59) using only ũ as if it were the total Lagrangian mean velocity (cf., the
role of Stokes drift in the wave-averaged Langmuir PBL model). An eddy-diffusion hypothesis
in (55) — i.e., down-gradient eddy mass flux within isopycnal layers — leads after some rather
complex manipulations to the parameterization formula,

Ψ∗ = −κGM
ẑ×∇b
∂zb

, (60)

or for the mean symmetric QG jet,

Ψ∗(x) = κGM
∂yb

∂zb
= αgκGM

∂yT

N2
. (61)

κGM > 0 is an eddy diffusivity. The parameterization principle is down-gradient eddy diffu-
sion of mean horizontal buoyancy gradient (or, more precisely in a generalization beyond QG,
down-gradient mixing of mean isopycnal layer thickness, which leads to an integral loss of mean
available potential energy through an implied eddy generation by baroclinic instability). This pa-
rameterization has been found to give more realistic solutions in oceanic GCMs, compared to its
historical alternative of horizontal eddy diffusion of tracers, and at present it is used in almost all
OGCM calculations in which the mesoscale eddies are not resolved (i.e., the horizontal grid scale
is O(100) km or larger). Most calculations of the ocean circulation for climate studies use such a
coarse resolution, simply as a necessity of computational economics.

Transformed Eulerian Mean Equations (Andrews et al., 1987; Plumb and Ferrari, 2005): Since u∗

acts as an extra advection velocity for material tracers and tends to cancel u advection in nearly
adiabatic equilibrium, there is a theoretically attractive compactness to writing an eddy-averaged
model in terms of the residual mean velocity (u, ṽ, w̃).

In summary, we learn from geostrophic turbulence how “geostrophic eddies” play essential
roles in maintaining the planetary-scale circulations through their horizontal Reynolds stress, isopy-
cnal form stress, topographic form stress, and lateral buoyancy flux.

8 Surface Quasigeostrophic (SQG) Turbulence
A strongly simplified GFD model assumes the QG approximation with a few twists: the interior
stratification is uniform (i.e., constant N ), f is constant (β = 0), the QG potential vorticity (8) is
zero, but there is a non-trivial surface temperature, (αg/f)T = θ(x, y, t) = ∂zψ(x, y, 0, t). The
surface buoyancy equation is

D

Dtg
θ = n.c.t. at z = 0 (62)

since there w = 0. ψ(x, y, z, t) is determined throughout the volume by inverting a homogeneous
3D Poisson equation (since q = 0), (

∇2
h +

f 2

N2
∂zz

)
ψ = 0 , (63)

with an inhomogeneous Neumann boundary condition,

∂zψ = θ at z = 0 . (64)

28



This system has two non-trivial quadratic conservative invariants (when n.c.t. = 0). One is the
familiar volume integrated energy, E in (12), and the other is surface temperature variance (here
rescaled as a QG surface available potential energy density As),

As =
f 2

2N2

∫ ∫
dx dy θ2 , (65)

which is just a rescaled version of the surface temperature spectrum, Eθs. The usual second
quadratic invariant for QG, the potential enstrophy, is trivial for the SQG model since q = 0.

From (62)-(63) and the QG momentum equation at z = 0 after subtracting out geostrophic
balance,

∂tugs = − (ugs · ∇h)ugs − f ẑ× uas + n.c.t. (66)

(where the subscript s refers to the upper surface and the subscripts g and a to geostrophic and
ageostrophic velocity components, respectively), we Fourier transform in horizontal wavenum-
ber and derive the evolution equations for surface kinetic energy and density variance spectra in
wavenumber space:

∂tEugs = Πu + Πa + n.c.t.

∂tEθs = Πθ + n.c.t. . (67)

Apart from the n.c.t., the right-side terms are the wavenumber spectrum transfer functions as-
sociated, respectively, with geostrophic momentum advection, ageostrophic Coriolis force, and
geostrophic temperature advection, all derived from the surface momentum and temperature equa-
tions above. Πa, in particular, represents a pressure work associated with the ageostrophic hori-
zontal divergence (i.e., ∂zw) and the surface pressure.

Blumen (1978) worked out the inertial cascade ranges for SQG, which differ from the Charney
(1971) ranges because of the different quadratic invariants. Again, there are two such ranges:
a forward cascade range for Eθs with its horizontal wavenumber spectrum ∝ k−5/3 (which is
equivalent to the shape of the surface kinetic energy spectrum, Eugs(k)), and an inverse energy
cascade range for the depth-integrated total geostrophic energy, accompanied by a Eugs ∼ Eθs
whose spectrum is a flatter shape ∝ k−1.

This model has attracted a lot of interest among meteorologists and oceanographers for several
reasons:

• A two-boundary form of the SQG model with equal and opposite mean temperature gradients
θ(y) is the configuration of one of the original baroclinic instability studies (Eady, 1949).

• The forward energy cascade inEθs is a conspicuous exception to the usual QG inverse energy
cascades (or vanishing forward energy flux in the enstrophy cascade ranges). However,
Hoyer and Sadourney (1982) show that Eugs still has a mostly inverse cascade behavior,
Πu (though not an exact inertial range) in SQG even in the forward Eθs inertial range, and
Capet et al. (2008a) show that the forward Eθs cascade is accompanied by a conversion into
surface kinetic energy,

Eugs =
1

2

∫ ∫
dx dy u2

g(x, y, 0) , (68)

that has the same k−5/3 energy spectrum shape and is undergoing an inverse energy cascade
that is opposite to the forwardEθs cascade. Thus, the SQG model does have a partial forward
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Figure 17: (a) Snapshot of surface density θ in a freely decaying solution for SQG in a horizontally
periodic domain with N = 1024 grid points in each direction. (b) Isotropic surface horizontal
kinetic energy spectrum Eugs(k) for three values of N = 256, 512, 1024, with comparison power
laws with exponents of − 3 and − 5

3
. (Capet et al., 2008a)

Figure 18: (a) Spectrum transfer functions Π in a freely decaying solution for SQG in a horizontally
periodic domain with N = 1024 grid points in each direction: for surface temperature variance
(Πθ, solid line), surface kinetic energy due to horizontal geostrophic advection (Πu, dashed line)
and to horizontal ageostrophic advection (Πa, dot-dashed line). (b) Πu and Πρ for three values of
N = 256, 512, 1024. (Capet et al., 2008a)

30



cascade that transfers θ variance toward small scales, but this accomplishes little if any en-
ergy dissipation at large Re and does not change the overall inverse-energy cascade behavior
of QG dynamics. Freely decaying solutions at large Re that exhibit the approximate forward
cascade in Eθs(k) are shown in Figs. 17-18: in spite of the ≈ k−5/3 spectrum shape and the
mostly forward energy cascade shown in Πθ > 0 and active small-scale flow features at the
surface, there is an inverse energy cascade in Πu < 0 with little net total energy transfer to
small-scales and thus with little energy dissipation; i.e., surface kinetic energy is supplied by
Πa > 0 across the whole range of k values, coming from potential energy conversion, and
turns the energy around to an inverse cascade to larger scales.

• Another interesting behavior in SQG, related to the preceding one, is that front-like structures
develop in θ, so this is a simplest model of surface frontogenesis relevant to atmospheric and
oceanic surface fronts. There is even a suggestion, but not a proof, that SQG might form
infinite gradients in θ at a finite time (Majda and Tabak, 1996), potentially analogous to
the known behavior in a non-QG, “balanced” model called semigeostrophy used for surface
fronts (Hoskins and Bretherton, 1972). Nevertheless, the frontogenetic tendency in SQG is
rather weak compared what happens in more general hydrostatic or Boussinesq dynamics
because of the neglect of ageostrophic temperature advection in (62) (Sec. 9).

Many papers have been written on SQG dynamics (n.b., Held et al., 1995; Lapeyre and Klein,
2006), especially in recent years in an oceanic context motivated by submesoscale surface fronts
and filaments (but see Sec. 9).

9 Submesoscale Transition and Loss of Balance
As a final brief topic in this section and the next one, consider the dilemmas that geostrophic
turbulence theory presents to the general circulation and to smaller-scale turbulence regimes that
presume a supply of energy from larger scales to support their forward energy cascades that connect
with energy dissipation (e.g., stratified turbulence). The important energy sources are on very
large scale, mainly the time-averaged planetary-scale heating (atmosphere) and surface wind stress
(ocean). The mean circulations respond to these forcings but must have compensating energy sinks
for climate equilibrium to occur. The principal mean-circulation sink is through geostrophic eddy
instabilities. This moves the question to energy sinks for geostrophic turbulence, which are well
represented by QG dynamics. But by the results in the rest of this QG chapter, we see that energy is
either inverse-cascaded, away from dissipation on small scales, or else it is partly retained on large
and intermediate scales if there is forward enstrophy cascade and coherent structures. Recall from
the 3D and 2D Homogeneous Turbulence chapters the inertial range scaling estimates. In the case
of a QG forward enstrophy cascade inertial range, the energy spectrum varies as E(k) ∼ V 2

L/L,
with k = 1/L. E ∼ k−3 implies VL ∼ L. Thus, the energy cascade rate, V 3

L/L ∼ L2; i.e.,
it is vanishing small as L decreases. Furthermore, a scale-local Rossby number in this spectral
range is RoL = VL/fL ∼ L0, so the Rossby number is constant with scale. If an outer-scale Ro
value is small, as is usual for large-scale flows, then by QG dynamics it will remain small down to
arbitrary small scales, meaning that the QG assumption of small Ro is self-consistently sustained
throughout its forward enstrophy cascade, and there does not need to be any transition to a different
type of turbulent dynamics at any scale.
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However, even if QG theory has turbulent solutions that are self-consistent at arbitrarily small
scales doesn’t mean that they are physically valid. Consider several possibilities:

• The shallower k−5/3h energy spectrum in SQG solutions implies that a scale-local Rossby
number is in fact increasing with kh. This means that that SQG is not self-consistent at small
scales, hence that its lack of a net forward energy cascade is unlikely to be correct, hence that
energy will forward cascade into non-geostrophic types of turbulence, at least near vertical
boundaries.

• Within the asymptotic derivation of QG theory, the vertical velocity can be calculated diag-
nostically from the geostrophic streamfunction using adiabatic buoyancy balance:

w = − f

N2

D

Dtg
∂zψ . (69)

This relation can be used to estimate the 3D wavenumber spectrum of w in terms of the
3D wavenumber spectrum of ψ. In particular, in a Charney stretched-isotropic forward-
enstrophy cascade range with total energy spectrum ∼ k−3, the w spectrum is less steep
than the ug spectrum, especially for small vertical scales. This implies that the neglect of
ageostrophic velocities in QG theory becomes invalid at small vertical scales (suggested
by the extra ∂z operator in (69)), hence that the absence of forward energy cascade can
no longer be justified. This argument applies to interior QG flows even with isothermal
boundary conditions (unlike SQG).

• The QG model has barotropic and baroclinic instability modes that are the source of geostrophic
turbulence. There is no reason why these need to be the only types of instability at finite val-
ues of Ro and Fr that occur in nature. If an ageostrophic instability of geostrophic flow
occurs, its evolution need not be constrained to have only inverse energy cascade.

As a question of general turbulence theory, how is enough dissipation achieved for the general
circulation? One possible answer is dissipation in planetary boundary layers (PBL), although the
large interior regions of the ocean and atmosphere are not adjacent to the PBL. Another possible
answer is an induced dissipation by small-scale motions that might act like an eddy viscosity for the
geostrophic eddies (e.g., spontaneous emission of inertia-gravity waves), but thus far this process
has not been shown to be a very effective route to dissipation for the general circulation, even
though such motions do have effective forward energy cascades to dissipate their own energy (see
Stably Stratified Turbulence). In atmospheric and oceanic GCMs with usually rather coarse grid
resolution, there is significant interior dissipation due to their parameterizations of subgrid-scale
eddy diffusion, but it has long remained unclear just what process this is supposed to represent.

Recently several computational examples have been produced of mesoscale flows that sponta-
neously break their geostrophic, hydrostatic momentum balances on their smaller resolved scales
(sometimes referred to as the submesoscale regime). This can occur through frontogenesis and
secondary instabilities of geostrophic currents, and when it happens it is accompanied by forward
energy cascades that feed into smaller scale stratified and shear cascades en route to micro-scale
dissipation. If further testing proves that this is generic behavior — i.e., that mesoscale flows spon-
taneously generate a forward energy cascade — then a direct dissipation route is established from
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the mean planetary forcing of the general circulation and its primarily geostrophic instabilities and
turbulence down to the microscale regimes of stratified and shear turbulence and further down to
3D isotropic cascade and dissipation (Fig. 19). If so, then this would be the turbulent view of the
overall system dynamics of Earth’s ocean and atmosphere, simplistic of course but nevertheless a
coherent conceptual framework.

Figure 19: Sketch of the flow of dynamical control and energy from the global forcing of the gen-
eral circulation through the balanced mesoscale and partially-balanced submesoscale ranges and
further through the stratified and shear ranges down to the isotropic microscale where dissipation
occurs. (McWilliams, 2010)

Now we examine a small sample of the computational evidence in support of this view of spon-
taneous submesoscale transition. An idealized turbulence problem has random forcing at relatively
large scales (Figs. 20-21). In a rotating, stratified fluid with small Ro and Fr, then develops a for-
ward enstrophy cascade, generally similar to the Charney cascade except for effects of the finite
vertical domain size that make the largest scales more like 2D turbulence than 3D. In a succession
of cases with higher Ro, the steep shape of the energy spectrum in the enstrophy range develops
a shallower “shoulder”. The shallower shape is close to k−5/3h , as one would expect for a forward
energy cascade range simply on dimensional arguments (a la Kolmogorov). When the horizontal
velocity is decomposed into geostrophic and ageostrophic components (e.g., the Helmholtz de-
composition in Stratified Turbulence), it shows a dominance of the geostrophic velocity on larger
scales (where the spectrum is steep) and ageostrophic velocity on smaller scales (where it is shal-
low). This is consistent with the argument at the start of this section about how the enstrophy range
in geostrophic turbulence develops its own dynamical inconsistency.

More physically realistic posings of the submesoscale transition problem have turbulence gen-
erated by instability of the mean circulation. In Capet et al. (2008b) an oceanic eastern boundary
region is forced by a mean equatorward wind stress in a configuration that mimics the California
Current System. This develops a baroclinically unstable alongshore flow and mesoscale eddies
and, at high enough resolution and Re values, a spontaneous outbreak of submesoscale currents.
In this regime the submesoscale flow is strongest near the surface, and it arises primarily through
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Figure 20: The horizontal energy spectrum at various Rossby numbers Ro in a randomly forced
flow using the Boussinesq equations. Notice the progressive shallowing of the spectrum at high
wavenumbers with increasing Ro. The forcing is at a large-scale in kh and intermediate-scale in
kz. Ro is defined as r.m.s. vertical vorticity divided by f . (Bartello, 2010)

Figure 21: The total energy spectrum of the simulation in Fig. 20 with the highest Ro value, along
with its decomposition into contributions from geostrophic and ageostrophic modes. Left: the
usual log-log plot; Right: a linear-log plot compensated by k5/3. Ageostrophic modes are dominant
at high k where the forward enstrophy cascade of QG has changed into a forward energy cascade
with approximately Kolmogorov-like inertial range scaling in spite of significant anisotropy due to
rotation and stable stratification. (Bartello, 2010)
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frontogenesis of surface buoyancy gradients acted on by the high horizontal strain rate between
mesoscale eddies. A snapshot of the vertical vorticity is in Fig. 22, where the submesoscale
fronts are evident in the wiggly lines of high cyclonic vorticity. A similarly posed problem for
the Peruvian Current system also shows spontaneous submesoscale currents (Fig. 23). In this
flow configuration, they more have the structure of cold filaments than fronts, and the filamentary
flows are themselves unstable and generate spiral vortices. A third example is Eady’s flow (i.e.,
a mean flow with u = Sz ˆbfx), whose baroclinic instability generates first mesoscale eddies then
submesoscale fronts and finally frontal instabilities through their horizontal shear (Molemaker et
al., 2010).

The energy spectra in these flows with submesoscale regime transitions seem to have E(k) ∼
k−2h or k−5/3h , hence a scale-local Rossby number RoL that increases as L decreases, ultimately ar-
riving at a high degree of dynamical inconsistency with the QG approximation. The latter spectrum
shape is the same as what arises in the purely stratified problem on scales larger than V/N (Lind-
borg, 2006, discussed in Stratified Turbulence). This suggests that there may be a rather seamless
transition in the forward energy cascade from the rotationally influenced submesoscale into the
non-rotational stratified regime, although as yet there is no simple theory for this type of behavior.
Because frontogenesis and filamentogenesis seems to be important processes in the examples to
date, some additional interest has developed in SQG turbulence since it shows some aspects of this
behavior; however, as discussed in the preceding section, SQG by itself is incapable of completing
the route to dissipation and is only a partial model for submesoscale dynamics. This subject is an
exciting, new scientific frontier in geophysical turbulence in the regime with Ro, Fr = O(1).
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Figure 22: Snapshot of surface vertical vorticity ζz normalized by f in an idealized Eastern Bound-
ary Current with equatorward wind stress. Intense submesoscale activity — fronts, frontal insta-
bilities, and coherent vortices — occurs near the boundary and surrounding the mesoscale eddy
centers. (Capet et al., 2008b)

36



Figure 23: Snapshot of a subdomain from a regional simulation of the upwelling circulation off
Peru showing a submesoscale surface cyclonic spiral vortex with frontal and filamentary arms
seen in ζz/f (top) and w (bottom) in a near-surface horizontal plane. Notice the mixture of two-
signed frontal and one-signed filamentary lines in the secondary circulation outside the vortex core.
(McWilliams, 2010, with thanks to Francois Colas)

10 Submesoscale Emergence in Oceanic General Circulation
For the most part GCMs are configured on the global scale with whatever spatial resolution is fea-
sible. This does a good job of encompassing the geostrophic dynamics of synoptic and mesoscale
eddies, along with many other processes, but it may not adequately represent the submesoscale
transition discussed in Sec. 9. An alternative approach is to used embedded high-resolution grids
in subdomains of coarser-resolution large-domain models, e.g., a zoom in on the Gulf Stream
region within the Atlantic Ocean. Such a case is shown in Fig. 24, where it is clear that there
is a great deal of submesoscale activity in the strongest currents as well as the more quiescent
mesoscale background flows.

In this context a horizontal wavenumber spectrum and rotational-divergent decomposition of
the horizontal surface velocity (Figs. 25-26) shows that there is a flattening of the spectrum slope
at smaller scales (as in Fig. 20), mainly due the strengthening of the divergent (ageostrophic)
component. Recall the Helmholtz decomposition for a horizontal velocity vector,

uh = ur + ud = ẑ×∇hψ +∇hχ . (70)

As kh increases — here beyond an inverse wavelength of λ ≈ 30 km — the divergent component
is no longer safely small compared to the rotational component, QG dynamics are not an adequate
dynamical model, and a forward energy cascade can arise. In particular, this is further support for
the proposition that QG dynamics — like small Fr stratified turbulence at high kh — contains the
seeds of its own inconsistency, hence invalidity, when there is a wavenumber spectrum shallower
than k−3h with an increasing local Ro value with increasing kh.
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Figure 24: Snapshot of vertical vorticity ζz at the surface in a nested-grid simulation of the Gulf
Stream in the offshore region downstream from its separation from the western boundary. The
plotted domain is about 1000 km X 800 km. The principle phenomena are the following: a mean-
dering eastward jet through the central latitudes with positive (red ) vorticity on its north side and
negative (blue) on its south side; big (mesoscale) Ring vortices that have pinched off from large
meanders, cyclonic in the south and anticyclonic in the north; and abundant submesoscale activity
arising from frontogenesis and instabilities of the larger currents that have quite different structures
in different flow and stratification sectors of the flow. This is from a simulation using the Regional
Oceanic Modeling System here at UCLA. (Gula et al., 2014)
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Figure 25: Horizontal kinetic energy spectra Ekin(kh) at the surface averaged over many different
snapshots in the post-separation sector of the Gulf Stream and over the horizontal wavenumber
direction (i.e., azimuthally). The different curves are for different model grid resolutions, viz., dx =
6, 1.5, 0.5, and 0.15 km, and the abscissa is wavelength λ = 2π/kh. The dashed lines indicate the
model’s dissipation range due to the subgrid-scale diffusion employed. The thin reference line has
a shape of k−2h . As the resolution increases, the spectrum fills out toward smaller scales with a shape
inconsistent with the enstrophy cascade range in homogeneous geostrophic turbulence, reflecting
the emergence of submesoscale surface-layer currents with partly ageostrophic dynamics.

Figure 26: (Top) Horizontal kinetic energy spectra at the surface averaged over many different
snapshots in the post-separation sector of the Gulf Stream from a simulation with dx = 0.5 km..
The blue curve is for the rotational component ur, and the red curve is for the divergent component
vd in a Helmholtz decomposition. With decreasing λ the divergent energy fraction approaches the
rotational one, especially in the ∼ k−2h submesoscale range before the onset of the dissipation
range. (Bottom) The same results plotted as the velocity component ratio, Vd/Vr = (Ed/Er)

1/2,
for grid resolutions of dx = 1.5, 0.5, and 0.15 km. Quasigeostrophic theory would predict this
ratio to be small and O(Ro), even uniformly so with kh in an enstrophy cascade range. Here the
ratio is increasing with kh indicating decreasing consistency with QG theory.
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