
Convective Turbulence

1 Rayleigh-Taylor Convection
Convection is a gravitational instability that occurs when denser fluid overlies lighter fluid, and the
associated vertical acceleration overcomes the molecular diffusion of buoyancy and induces mo-
tion. An initial value representation of this is known as Rayleigh-Taylor convection. The simplest
configuration of this problem consists of a two-layer system such that

ρ =

{
ρ0 + δρ H/2 < z < H

ρ0 − δρ 0 < z < H/2
where δρ > 0, (1)

and the gravitational acceleration g = −gẑ. While this a configuration can satisfy hydrostatic
balance, infinitesimal perturbations on the interface separating the two fluids at z = H/2 will grow
exponentially, leading to overturning. The energy available for overturning can be estimated by
considering the fluid energetics. The average potential energy (per unit volume) of the system
described by (1) is
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Therefore, a simple overturning of the fluid to reverse the sign of the density jump from positive
upward to negative reduces the potential energy of the system by the amount

∆P =
gHδρ

2
. (3)

In principal ∆P can be used to do work, most simply by transformation into kinetic energy; in
simplest terms the transformation might induce a vertical free-fall velocitywf whose kinetic energy
ρ0w

2
f/2 is equal to ∆P . In practice, however, the fluid cannot overturn without some mixing

induced by the motion (through a turbulent cascade if Re is large enough). Mixing increases the
entropy of the system and bounds the amount of work that ∆P can do. Paradoxically, the more the
diffusivity of the fluid is reduced, the more turbulent the fluid becomes, and the more effectively it
mixes.

Bounds on the energy that can be extracted from the unstable configuration of the flow can be
determined by considering the entropy, s. From the first and second laws, for a single-component
fluid,

Tds = dh− αdp (4)

where h = cpT is the enthalpy and α is the specific volume. Neglecting changes in the pressure
from that of the isothermal reference state, this implies that

s = s0 + cp ln(T/T0) . (5)

s0 denotes the reference state entropy, corresponding to the reference state temperature T0. The
average entropy per unit volume of the system is

S =
1

H

∫ H

0

ρsdz =
1

H

∫ H

0

ρ (s0 + cp ln(T/T0)) dz . (6)



For (1), in the limit of small temperature/density, so that the Boussinesq approximation is valid
(i.e., δρ/ρ0 = −δT/T0 with both small quantities)),

S = S0 −
3ρ0cp

2

(
δT

T0

)2

≤ S0 . (7)

The system entropy depends only on the temperature differences, not on their sign, and maximizes
for a well mixed fluid, i.e., one in which δT = 0. Thus the system is stable only when well mixed
in T (or unstratified) since this corresponds to a state of maximum entropy. From (2) the release
of potential energy that would occur in a transition to a well mixed state is ∆P/2; this bounds
the amount of work the overturning can do. In the limit of high Reynolds (and Peclet) numbers
we might expect the development of a wide range of scales with an energy spectral density E(k)
peaking near the overturning length scale H/2 and bounded such that∫

E(k) dk ≤ ∆P

2
. (8)

Figure 1: Temperature visualization in a simulation of temporally developing Rayleigh-Taylor
instability. (From http://www.llnl.gov/casc/asciturb/simulations.shtml)

The problem of Rayleigh-Taylor instability is a generic paradigm for convection. It provides
an interesting test problem for numerical simulation, where we can ask how the energy spectrum
develops and decays as a function of resolution and numerical technique. An example of visual-
izations from such computation are shown in Fig. 1-2.

The Rayleigh-Taylor problem is also a useful paradigm for continuously stratified fluids, whereby
the negative entropy gradient, ds/dz < 0 measures the potential for convective overturning. For
dry air s = ln θ where θ is the potential temperature. For saturated air with constant specific humid-
ity, s = cp ln θe where θe is the equivalent potential temperature. Moist, but unsaturated systems
with decreasing θe but increasing θ are said to be potentially unstable as they become gravitation-
ally unstable (i.e., convective) only when parcels are brought to saturation, for instance through the
expansionary cooling that can happen when a moist layer is lifted through the atmosphere.
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Figure 2: Temperature visualizations in a simulation of temporally developing Rayleigh-Taylor
instability (left) without and (right) with rotation. Yellow (blue) represents hot (cold), light (heavy)
fluid. (Boffetta et al., 2016)
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Figure 3: Basic configuration for the Rayleigh-Benard convective instability problem.
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2 Rayleigh-Benard Convection
Another basic paradigm of convection is Rayleigh-Benard convection 1. This type of convection is
the type a Boussinesq fluid would experience in layer heated from below and cooled from above
in a vertically bounded domain; this experimental situation is illustrated schematically in Fig. 3.
If Rayleigh-Taylor is the initial value paradigm for convective turbulence — the transient adjust-
ment of a convectively unstable fluid — then Rayleigh-Benard convection is the boundary value
paradigm — the structure of the turbulence for a continually destabilized fluid with top and bottom
boundary layers. In Rayleigh Benard convection we are interested in the structure of a turbulent
layer forced by a constant buoyancy flux, for instance in a fluid mediating the heat transfer between
an upper cold and a lower hot reservoir.

Many questions can be asked regarding the structure of the flow regime that arises in such a
situation, but perhaps the first and foremost is under what conditions will the flow become unsta-
ble? This question fits within the general sequence of transition regimes discussed in Turbulent
Flows. Unlike in the Rayleigh-Taylor discussion, molecular effects are explicitly accounted for
in the Rayleigh-Bérnard problem, and the first instability for a mean state of motionless, conduc-
tive buoyancy flux occurs at a finite value of Ra in (9). The diffusive transport of heat tends to
counter the gravitationally destabilizing influence of the heating until the heating rate becomes
strong enough (i.e., Ra large enough) for a linear instability to occur (Appendix).

Whereas ∆P describes how strongly forced the convective overturning is in the Rayleigh-
Taylor problem; the Rayleigh number,

Ra =
BH3

νκ
, (9)

measures how strongly the convection is being driven in the Rayleigh-Benard problem. Ra can
also be thought of as a non-dimensional measure of the importance of nonlinearity in the trans-
port of buoyancy within the fluid, somewhat analogous to the Reynolds number; more precisely,
Ra ∼ Re2 when the velocity magnitude in Re is determined from free-fall acceleration of a grav-
itationally unstable buoyancy profile (see the Turbulent Flows notes). H is the convective layer
depth, and B > 0 is a characteristic unstable buoyancy difference; e.g., B = −αg∆T if the
source of the buoyancy difference is a negative temperature difference ∆T < 0 (where α is the
coefficient of thermal expansion). When Ra is small enough, the buoyancy transport is conductive
with no fluid motion required. For Ra ≈ 103, convection arises. At the first bifurcation from a
state of rest, the spatial pattern of convective motions is parallel roll cells, a 2D pattern, but there
are further bifurcations to more complex patterns (e.g., , hexagonal cells, as in Fig. 4). At large
enough Ra, the pattern of convection loses its global order (i.e., spatial periodicity), and fully de-
veloped convection ensues. The coherent structures of this latter regime are called buoyant plumes,
and typically they have no large-scale order among themselves.

Here we will restrict our consideration to the simply configured Rayleigh-Benard problem that
is nearly homogeneous, but not entirely so because of the vertical boundaries. This problem has a
well defined equilibrium state for steady boundary conditions, and it is easily realized both in the
laboratory and in simulations. Consider a layer of depth H between two solid plates, with either

1Rayleigh developed his theory as an attempt to explain the observations of Benard. It is ironic that some of these
observations later were shown to be due more to variations in the surface tension with temperature than to thermal
instability.
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Figure 4: Convection cells in spermaceti at a modestly supercritical Ra value. This a reproduction
of one of Benard’s original photographs via Chandrasekhar (1961).
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Figure 5: Vertical profiles of mean temperature in Rayleigh-Benard convection. (Left) Non-
rotating convection, for several different values of λ = Ra/Rac (Turner, 1973). (Right) Rotating
convection for several different values of Ra with fixed Ro =

√
Ra/PrTa = 0.75 (Julien et al.,

1996). Note that for large Ra non-rotating convection attains a weakly stable interior profile while
rotating convection remains persistently unstable.

uniform but unequal values of b on the plates (i.e., b(H/2) − b(−H/2) ≡ −B) or uniform and
equal positive buoyancy fluxes through the plates, B > 0. In the resulting convective phenomena,
this difference of buoyancy boundary conditions is not very important.2 As Ra increases — as
the fluid state moves through conduction, globally ordered cellular patterns, and locally ordered
plumes — the mean buoyancy profile b(z), changes from the vertically uniform gradient of the
conductive state to a non-uniform state where most of the gradient occurs in buoyancy boundary
layers near z = ±H/2, and the interior gradient gets increasingly small and may even reverse in
sign (i.e., become locally gravitationally stable) for some values of the Prandtl number Pr = ν/κ
(Fig. 5, left panel, for air, with Pr = 7). The usual explanation for the weak or stable interior
gradient found at at large Ra is that a plume, which is formed within one boundary layer, is very
effective in retaining its anomalously buoyant core material while crossing the interior region,
surrendering it up to more general mixing only after reaching the opposite boundary layer. As
we will see, there is some mixing en route between a plume and its environment, often called
entrainment, but many plumes retain their integrity entirely across the convecting layer, especially
in the presence of internal heating (e.g., from cumulus condensation). In rotating convection,

2There is a long history of alternatively posing the Rayleigh-Benard problem either in terms of the buoyancy
difference B or in terms of the buoyancy flux B. In the two situations, there are analogous non-dimensional Ra and
Ro numbers and the free-fall velocity (defined elsewhere in the chapter); viz.,

Ra =
BH3

νκ
or Ra =

B2/3H8/3

νκ
,

Ro =
B1/2

fH1/2
or Ro =

B1/3

fH2/3
,

wf = (BH)1/2 or wf = (BH)1/3 .
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however, plume entrainment is much more efficient since the plumes are also cyclonic vortices,
and the interior mean buoyancy gradient equilibrates at a finite negative value (Sec. 4).

At the boundary, where the velocity vanishes due to the kinematic condition of no normal flow
and the viscous condition of no tangential slip, the buoyancy flux must be entirely conductive, in
particular in the vertical direction,

−κ∂b
∂z

= B (10)

at z = ±H/2. As Ra increases, either because κ decreases or |B| increases, then
∣∣∣∂zb(±H/2)

∣∣∣
must also increase. Since the vertical buoyancy flux must be equal to B at all z throughout the
layer in equilibrium,

B = w′b′ − κ∂b
∂z

= const. . (11)

The turbulent flux must dominate in the interior where ∂zb is small, whether negative or even
positive. Thus, if we attempt an eddy-diffusion interpretation in the interior,

κe(z) = −B
/∂b
∂z

(z) , (12)

the value of κe will be very large and maybe even negative. If the value is large, then clearly
κe(z) is spatially quite non-uniform (cf., fully developed turbulence in Couette shear flow). If κe
is negative, this has very disconcerting implications (i.e., unmixing behavior for fluctuations), and
therefore it should be rejected as a meaningful diagnostic language for interpreting the effects of
the turbulence. The fallacy, of course, arises from making a local interpretation of an essentially
non-local process, the passage of coherent, fluid-retaining plumes across the interior of the domain.
We would have had to make a similar rejection for the free shear layer or shear boundary layer if
the resulting Ke(z) were not so simple in its structure and everywhere positive, but evidently the
associated turbulent momentum transport by hairpin vortices in shear is leakier than is the plume
buoyancy flux in convection.

We define the Nusselt number, Nu as the ratio of the mean buoyancy flux to its value in the
conducting state,

Nu =
|B|H
κB

≥ 1 . (13)

Obviously, we expect Nu to be an increasing function of Ra, as the turbulent component of the
transport becomes ever more dominant. What is of particular interest is the possibility of self-
similar, or scaling, behavior, defined as a power-law dependence in the Nusselt number,Nu ∝ Raγ

for some γ > 0. This can be interpreted as an essential similarity of the turbulent dynamics
throughout such a scaling regime, with only quantitative changes in the statistics with increasing
Ra or Re. Interestingly it turns out that there seem to be at least two such scaling regimes for fully
developed Rayleigh-Benard convection.

Figure 6 showsNu(Ra) through the transition regime with modestRa values, where particular
bifurcations are evident as changes in the slope of this function. In the fully developed regime
(Fig. 7), however, we see two regimes of power-law dependence (i.e., scaling behavior), which
have come to be called soft and hard turbulence, respectively (Siggia, 1994). In the lower-Ra,
soft-turbulence regime, the dependence is

Nu ∼ Ra1/3 . (14)
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Figure 6: The Nu−Ra correlation at intermediate Ra values, displayed here as the mean vertical
heat flux, H = NuRa vs. Ra. Note the occurrence of the so-called III and IV transitions at 35
Rac and 105 Rac, respectively. (From Turner, 1973)

Figure 7: The Nu−Ra correlation at large Ra values. The vertical line at Ra = 4× 107 indicates
the transition from soft to hard turbulence. (Castaing et al., 1989)
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A theoretical interpretation for this (Malkus, 1954) is that the buoyancy flux is controlled entirely
by the boundary layer processes, not the interior, so that B must be independent of the size of the
domain, H , hence Nu in (13) must vary linearly with H; the exponent 1/3 satisfies this condition.
Equivalently, one can say that a local Rayleigh number, Rab = Bδ3b/νκ = Ra (δb/H)3 based
on the boundary-layer thickness δb, is pegged at a marginally critical value Racr = O(103). This
implies a scaling dependence of

δb
H
∼ Ra− 1/3 . (15)

This can also be expressed as saying the buoyancy flux is comparable to the diffusive part across
the buoyancy boundary layer,

B ∼ κ
B

δb
⇒ δb

H
∼ Nu−1 , (16)

using the Nu definition (13).
In the higher-Ra, hard-turbulence regime, however, the measured Nu dependence is approxi-

mately
Nu ∼ Ra2/7 , (17)

and δb varies as Ra− 2/7. Several theoretical interpretations have been offered for (17). The one
that seems to me most consistent with its occurrence, also in rotating convection (Sec. 4), is by
Shraiman and Siggia (1990). It is based essentially on two assumptions. The first assumption
is that the overall energetic balance for the flow, with mean kinetic energy dissipation equal to
potential energy generation from the buoyancy flux,

ε = B , (18)

has the primary kinetic energy dissipation occur at a rate set by the wall stress due to the large
eddies of the convection, but the dissipation itself is distributed throughout the entire convective
layer, i.e.,

ε ∼ H−1u3∗ . (19)

(The meaning of∼ here is essentially that of dimensional analysis, and all proportionality constants
are ignored in such scaling relations, in practice being written as if their value were unity.) With
the definitions of Ra and Nu in (9) and (13) above, this energy balance and dissipation scaling
imply

RaNu ∼ H3

νκ2
u3∗

∼ Re3∗Pr
2, (20)

where
Re∗ ≡

u∗H

ν
. (21)

The second assumption is that the momentum boundary-layer depth, δu, is larger than the buoyancy
boundary-layer depth, δb, as Ra → ∞. In this case, the horizontal velocity will have its viscous
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sub-layer form, u ∼ u2∗z/ν, and the local buoyancy balance will be

u ∂xb ≈ κ∂zzb

u2∗z

νκ
∂xb ≈ ∂zzb . (22)

This has a similarity solution form

b ∼ BF
[

z

(xνκ/u2∗)
1/3

]
, (23)

for some non-dimensional profile functional F where F → 0 when its argument gets large, indi-
cating that the magnitude of buoyancy change B across the boundary layer is of the same size as
the drop across the domain as a whole (n.b., Fig. 5). Thus, large-eddy flows with unit aspect ratio
(i.e., x ∼ H) will have a buoyancy boundary layer thickness,

δb ∼
(
Hνκ

u2∗

)1/3

⇒ δb
H
∼ Re−2/3∗ Pr−1/3 , (24)

which results from a dominant balance in the buoyancy equation as indicated just above. Combin-
ing (16), (20), and (24), we obtain the scaling dependencies,

Nu ∼ Pr−1/7Ra2/7, Re∗ ∼ Pr−5/7Ra3/7 , (25)

which are consistent with the measurements in the hard-turbulence regime (Fig. 7), though not
equivalent to the simple free-fall argument above that gives Re ∼ Ra1/2.

We can estimate the momentum boundary layer thickness δu with a horizontal momentum
balance analogous to the buoyancy balance above, u∂xu ≈ ν∂zzu, applied in a bulk sense over
the layer as a whole, u2∗/H ∼ νu∗/δ

2
u ⇒ δu ∼

√
Hν/u∗. This means that

δu ∼
H√
Re∗

� δb ∼
H

Nu
(26)

for Ra� 1, assuring the self-consistency of the second assumption leading up to(24) (by a factor
of Ra1/14, which is a large number only for very large Ra). Note also how important the roles
of kinetic energy dissipation and the shear boundary layer with the boundary stress u∗ are in this
scaling theory.

Another way to distinguish these two regimes is in terms of their single-point PDFs for b′(z =
0) (Fig. 8). Note that soft turbulence has an approximate Gaussian distribution, indicating only
slight intermittency. In contrast, hard turbulence has an approximate exponential distribution, in-
dicating significant intermittency, as in the regimes of 2D and 3D homogeneous turbulence and
shear turbulence, among others. Away from the center of the domain, the PDFs for b′ become
skewed due to unequal influences of the unequally distant boundaries; nevertheless, the transition
from soft to hard turbulence is still evident in the shape of the asymmetric PDFs.

There is another scaling argument due to Kraichnan (1962) based on the hypothesis that ul-
timately, at high enough Ra, both the momentum and buoyancy boundary layers in (26) will be
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Figure 8: Histograms of the temperature distribution in the center of the domain. (a) Soft turbu-
lence regime, Ra = 8.4 × 106. (b) Hard turbulence regime, Ra = 1.5 × 108. (Castaing et al.,
1989)

fully turbulent with buoyancy advection and conduction of comparable importance; in particular,
in the buoyancy boundary layer with an advective length scale of δb,

u∗ ∼
κ

δb
⇒ δb

H
∼ Re−1∗ Pr

−1 (27)

(thus violating the assumption above of a viscous sub-layer structure for the velocity within the
thermal boundary layer that led to (24)). With the Nu relation (16) relating the total buoyancy
flux to the buoyancy diffusion across the boundary layer, energy balance (20)-(21) relating the
velocity scale and Reynolds number to Nu, and (27) relating δb to the velocity scale, we obtain the
following scaling relations for the Nusselt and Reynolds numbers as functions of Ra:

Nu ∼ Pr1/2Ra1/2 , Re∗ ∼ Pr−1/2Ra1/2 . (28)

A very simple, alternative derivation of the first relation is to ask which exponents, γ and χ, render
the power-law relation, Nu ∼ PrγRaχ a statement that B is indedendent of ν and κ; this yields a
unique answer, γ = χ = 1

2
.

This is conceived of as the “ultimate” turbulent regime because purely diffusive and viscous
controls of the boundary layers have been exceeded. Howard (1963) showed that Nu has an
upper bound ∼ Ra1/2 as Ra → ∞, consistent with (28). As yet no unambiguous experimental
or computational evidence has been found for this relation even though experiments have now
reached very large Ra values (but see the final paragraphs of this section). But, e.g., given the
self-consistency of the regime (17) demonstrated by (26), this is not necessarily distressing, since
it does not require that the ultimate transition occur at any particular value of Ra.

Following the experimental demonstration of hard turbulence with theNu[Ra] relation in (17),
several computational studies showed similar behavior (e.g., Figs. 16-17 below), although they
could not achieve such large Ra values as the experiments in liquid helium (Figs. 7-8). The
matter appeared settled, at least pending further experiments or computations at higher Ra values
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Figure 9: The Nu−Ra correlation at large Ra values. (Left) Log- log plot. (Right) Compensated
plots with alternative scaling exponents. (Niemela et al., 2000)

Figure 10: The Nu−Ra correlation at large Ra values, here plotted as a best-fit scaling exponent
over local Ra ranges, γeff = dlog[Nu− 1]/dlog[Ra]. (Xu et al., 2000)
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Figure 11: The Nu − Ra correlation at large Ra values. The plot on the left is for a domain with
horizontal/vertical domain aspect ratio 1/2, and the one on the right is for aspect ratios 3 and 4.
(Niemela and Sreenivasan, 2006)

Figure 12: The Nu−Ra correlation at large Ra values. (Cheng et al., 2015)
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(i.e., higher than Ra ≈ 1013). However, quite recently this complacency has been upset by new
experimental results. One comes from further experiments in gaseous and liquid helium (Niemela
et al., 2000) that span an even larger range of Ra than before (Fig. 9): it shows a good Nu[Ra]
power-law relation for Ra values up to≈ 1017, but the best-fit power-law exponent is 0.309, which
is smaller than 1/3 = 0.333 yet larger than 2/7 = 0.286. A principal reason for the disagreement with
Fig. 8 is attributed to corrections to the constitutive properties of helium, and these authors even
re-process the earlier experiments to show their approximate consistency with the new estimate
for the exponent. This is rather unsettling since it is uncertain whether even now the constitutive
properties of cryogenic fluids are well enough known to allow reliable interpretation of the results.
As yet no theoretical argument has been adduced for the new exponent. The second upsetting new
results come from experiments in acetone (Xu et al., 2000), which do not have the constitutive
uncertainties of liquid helium. Here the attempt to fit a power-law exponent (Fig. 10) fails to
show consistent scaling behavior; instead, there is a range of Ra where the exponent is decreasing
— from the value 0.333 in (14) towards a value very close to 0.286 in (17) — but at larger Ra
the exponent begins to increase again — approaching a value close to the 0.309 fit in Niemela et
al. (2000), or possibly even increasing toward Kraichnan’s (1962) value of 0.5 at large enough Ra.

At the risk of belaboring this topic, two “final” (or at least more recent) entries into this quest
for a “universal” scaling behavior show consider Nu[Ra] relation for laboratory data and power-
law fits in Figs. 11-12. They generally support the evidence that there is a soft-turbulence regime at
medium-highRa withNu ∼ Ra1/3, a hard-turbulence regime at higherRa withNu ∼ Ra2/7, and
a reversion back toward the 1/3 power-law exponent at even higher Ra. Because the 2/7 regime is
rationalized by the importance of a “large-scale” circulation with horizontal flow near the boundary
to obtain (25), it is possible that the reversion to a 1/3 regime is associated with the experimental
practice of using tall, skinny devices that might suppress the large-scale flow. Finally, efforts to
further increaseRa in laboratory devices risk contamination by introducing non-Boussinesq effects
into the fluid dynamics.

For now we must consider the matter unresolved, both with respect to the interpretation of
the various experiments and the validity of the conception that Nu[Ra] should exhibit a universal
scaling behavior in the regime of hard turbulence, never mind whether its exponent, if it exists,
might be predicted by a simple phenomenological theory like those presented above. What is not
disputed, though, is that there is a regime transition between soft and hard turbulence in buoy-
ant convection that occurs well past the disappearance of any apparent periodicities in the flow
structure, i.e., a “bifurcation” within the putative fully developed regime. A recent review of the
evidence about the large-Ra regime is Ahlers et al. (2009).

Rayleigh-Benard (RB) convection is a rare type of flow that can, in principle, be done un-
der highly controlled laboratory conditions in fully developed turbulence at large Re. Another
is Taylor-Couette (TC) shear flow between two concentric, rotating cylinders. Both flows have
clearly distinguished interior and boundary layer regions. Eckhardt et al. (2007) argues that these
two flows should have a very close correspondence in their turbulent behaviors, where Ra has its
counterpart in the Taylor number, Ta ∼ L4(∆Ω)2/ν2, where L is related to radial distance and
∆Ω is the differential angular velocity between the cylinders (i.e., similar to Ek−2 with the Ekman
number, ν/fL2, seen previously in the rotating shear boundary layer). The κ and Pr thermal pa-
rameters in RB have corresponding TC parameters related to ν and the cylinder gap size. Chavanne
et al. (1997) reports a further high-Ra transition in the Nu[Ra] relation in RB that is interpreted
as an indication of the ultimate regime predicted by Kraichnan (1962); however, the interpretation
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is subtle and others have not yet been able to reproduce it. Quite recently, van Gils et al. (2011)
reports a similar high-Ta scaling dependence in TC for the torque due to the stress on the surfaces
of the cylinders.

In my judgment the ultimate behavior of turbulence asRe→∞ is still undetermined, although
obviously it is an extremely important question in basic physics. The usual Ra and/or Re values
of geophysical planetary boundary layers are higher than in these laboratory experiments, so the
presumption should be that they are in the ultimate regime, whatever it is in its asymptotic scaling
dependencies. The more usual geophysical view is that the surface buoyancy flux B and/or stress τ
are strongly constrained by the larger-scale environment, hence the values of Nu and/or its stress
counterpart can be calculated from the known values of ν and κ and the mean vertical profiles,
i.e., the scaling behaviors with Ra and/or Ta (or Ek) are not the primary issue, and the turbulent
transport will be what it has to be to accommodate the environmental flux and associated Ra
and/or Ta values. A deeper view, however, is that the environment and turbulence co-determine
each other.

3 Plumes and Thermals

Figure 13: Sketches of a plume, a thermal, and a starting plume following Turner (1973).

An important convective paradigm in the atmosphere is the plumes or the thermals; they are
the conceptual building blocks for many models of clouds. Turner (1973) distinguishes between
plumes, thermals, and starting thermals as illustrated in Fig. 13. Plumes, or buoyant jets, have a
continual — or at least long-lasting — supply of buoyancy at their source (or base), while thermals
represent an impulse or bubble of buoyancy which travels through and mixes with the ambient
fluid3. Because the head, or leading interface, of any plume has the characteristics of a thermal,
it proves convenient to introduce the idea of a starting plume when the region of interest is not

3Popular usage is not always consistent with Turner’s definitions. For example, dust devils over hot surfaces in
deserts are commonly called thermals.
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Figure 14: Shadowgraphs of plumes rising from a heated surface. The upper panel has smaller Ra
than the lower one. (Source unknown.)
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well separated from the head of the plume. Plumes, thermals, and starting plumes are all driven by
density contrasts with the ambient flow, as measured by their density deficit or buoyancy. Plumes
driven by a source of momentum and buoyancy are sometimes called forced plumes. In some sense
a gravity current can be thought of as a wall-bounded plume. Our focus here is on plumes.

We can visualize the plumes of convection from experiments. The buoyancy patterns in non-
rotating plumes, above a heated plate in a laboratory experiment (Fig. 14), resemble mushrooms
in cross-sections. Fluid in the upper part of the core of a rising, positive buoyancy anomaly curls
over to the sides. This indicates a vortex ring structure in the horizontal (i.e., azimuthal) vorticity
and the engulfment of ambient fluid as the entrainment mechanism. Neighboring plumes seem to
be at most weakly interacting (i.e., in the absence of rotation; Sec. 4). A photograph of a single
starting plume is in Fig. 15, where the capping vortex ring is clearly visible.

Plumes are sometimes called buoyant jets, because like jets, which are driven by a constant
momentum flux at a point, plumes are driven by a constant buoyancy flux at their source. In the
Boussinesq limit this driving flux of buoyancy b can be measured by

B0 = 2π

∫ ∞
0

wbrdr where b =

(
− g ρ

′

ρ0

)
, (29)

where r measures the distance from the axis of the plume or thermal. Note that in some time
interval δt,

B0ρ0δt
g

= − 2π

∫ ∞
0

δzρ′rdr (30)

measures the mass deficit associated with a rising plume. Sinking plumes would correspond to a
mass surplus. By definition this deficit (or surplus) is maintained constant in time at the source
of a plume, and by mass conservation must be constant with height for plumes rising through an
unstratified environment. Because g is fixed, this identifies B0, z (the distance from the source),
and r (the distance from the plume axis) as fundamental parameters of the system. In the limit
when other parameters, such as the plume Reynolds number

Re =
z2/3B1/3

0

ν
, (31)

and the ratio of the distance from the plume to any dimension characterizing its source, are very
large, then similarity suggests that solutions of the following form may be relevant:

w = B1/3
0 z−1/3 f1

(r
z

)
(32)

b = B2/3
0 z−5/3 f2

(r
z

)
. (33)

Note that these expressions are singular at the source, but near the source they are not expected to
be hold because the similarity assumptions are not valid there. To the extent solutions far from the
source obey these similarity forms, they, in effect, define a virtual source or origin for the plume.
Experiments confirm this general similarity behavior, with shape functions

f1 ≈ 4.7 exp(−96r2/z2) (34)
f2 ≈ 11 exp(−71r2/z2) . (35)
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Figure 15: Shadowgraph of an axisymmetric starting plume above a heating source. (From Van
Dyke, 1988)
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The tendency of the plume to broaden with distance from its source is a statement of its ten-
dency to become turbulent and entrain ambient fluid. As a laminar plume accelerates upward, a
free shear layer will develop at its boundary with the ambient fluid. This shear layer will be subject
to the same types of shear flow instabilities experienced by mixing layers and as a result will “roll
up” under the influence of coherent structures or large eddies. As in the free shear layer, these
eddies initiate the transition to a fully developed turbulent flow, in this case a turbulent plume.
The canonical example of such a process is that of a tendril of smoke emanating from a cigarette.
Initially laminar, it develops fluctuations at its boundary some distance above the source. These
fluctuations increase in amplitude, and the envelope of smoke becomes turbulent as it spreads into
and entrains ambient air. The entrainment process causing the plume to spread is often thought to
have two stages: first an engulfment stage, where the large eddies fold in ambient fluid, and then
a mixing stage, where the engulfed air is mixed with the turbulent flow through the action of the
small eddies. Entrainment is analogous to the process of growth in the thickness of a turbulent
shear layer. Entrainment is a common characteristic of turbulence as a particular manifestation of
eddy mixing.

For the case of the turbulent plume the entrainment rate is measured by the rate at which the
mean plume spreads, which requires some basis for defining the the width of the plume. In much
the same way as the velocity deficit can be used to define the depth of a boundary layer, an effective
plume width, a, and velocity w can be defined on the basis of the mass and momentum fluxes of
the actual plume,

w =

∫∞
0
w2(r)rdr∫∞

0
w(r)rdr

and a =

(
2

w

∫ ∞
0

w(r)rdr

)1/2

. (36)

Hence a measures the breadth and velocity a “top-hat” plume with the same mass and momentum
fluxes as an actual plume. A top-hat plume refers to the idealization,

w(z) =

{
w(z) 0 ≤ r < a

0 otherwise.
(37)

Substituting for w(r) from (32) and (34) yields

w = 2.35

(
B0
z

)1/3

and a =
z

7
. (38)

That is, the plume diameter, 2a, is comparable to the plume height, H ∼ z, indicating that there is
approximate horizontal-vertical isotropy in plumes and, more generally, in convection. We note by
these definitions for a Gaussian plume profile that the amplitude prefactor completely determines
the plume strength while the prefactor in the exponent determines its width.

The mass flux of a plume M = ρ0w(πa2) is a fundamental quantity, which is often used to
quantify the entrainment. Indeed, for a top-hat plume

z

M

dM

dz
=

5

3
. (39)

This can be integrated to give a solution for all z > z0,

M = M0

(
z

z0

)5/3

. (40)
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Thus, lateral mixing and entrainment cause an increasing upward mass transport with height, which
in turn has to be mass-balanced by descending return flows around the plume periphery.

The fractional entrainment rates, and expressions of the form (39) are often used as a foundation
for the study of clouds, as well as for their parameterization in atmospheric models.

4 Rotating Convection
Convection can also be influenced by Earth’s rotation. A measure4 of when this occurs is a con-
vective Rossby number, defined by

Ro =
B1/2

H1/2f
or
|B|1/3

H2/3f
. (41)

We can make an estimate of Ro for oceanic sub-polar deep convection using the following values:
f = 10−4 s−1, B = αg∆T , α = 0.5 × 10−4 K−1, g = 10 m s−2, ∆T = 0.05 K, and
H = 2500 m. The result is Ro = 1. A larger buoyancy difference or flux, or a shallower
convective depth, will have a larger Ro, hence a weaker rotational influence. For the atmosphere,
the typical values of α = 1/T ≈ 3 × 10−3 K−1 and ∆T ≈ 5 K are large enough so that
even with H = 104 m (i.e., the full tropospheric depth), Ro � 1 and the rotational influence is
small (i.e., with respect to Earth’s rotation rate f , whereas a rotating storm, like a thunderhead or
hurricane may provide a local rotation rate that does influence its internal convection). Another
way to express the influence of rotation is through a horizontal length scale, Lrot — somewhat
analogous to the baroclinic deformation radius for a stably stratified fluid, Rd = NH/f —
defined by the relations Ro = 1 and Lrot = H; viz.,

Lrot =
B

f 2
or
|B|1/2

f 3/2
⇒ Ro =

(
Lrot
H

)1/2

or

(
Lrot
H

)2/3

. (42)

If a convective plume is emitted from a buoyantly forced boundary with L < Lrot, it will tend to
grow in size through entrainment of the ambient fluid it passes through, unless it grows as large as
Lrot, after which it will cease to entrain nor will it grow any further laterally.

Numerical solutions for the rotating Rayleigh-Benard problem are shown in Figs. 15-18. The
mean buoyancy profile (Fig. 5, right panel) remains gravitationally unstable in the interior even as
Ra → ∞, and the buoyancy boundary layer becomes increasingly thin. This behavior is unlike
that in non-rotating convection where the mean buoyancy gradient becomes very small or even

4A different but equivalent measure is based on the Taylor number,

Ta =

(
fH2

ν

)2

,

which is approximately the same as the inverse of the Ekman number, often used for the Ekman boundary layer. In
combination with Ra, Ta is related to the Rossby number (41) by

Ro =

(
Ra

Pr Ta

)1/2

.
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Figure 16: The Nu − Ra correlation at large Ra values for moderately-rotating convection with
Ro = 0.75. The different symbols are for different boundary stress conditions. The solid and
dashed lines correspond to scaling exponents of 2/7 and 1/3, respectively. (Julien et al., 1996)
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Figure 17: PDFs for vertical vorticity ζz in rotating convection for different boundary stress condi-
tions. Dashed and dotted lines correspond to exponential and Gaussian distributions, respectively.
(Julien et al., 1996)
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slightly positive in the interior (cf., Fig. 5, left panel). It is an indication that rotating plumes do
not retain their core fluid as well during the transit from one boundary layer region to the other: they
are leakier, which is also consistent with their having less efficient entrainment. Nevertheless, the
transitions to hard turbulence at largeRa also occur in rotating convection, as indicated by both the
Nu(Ra) law in (17) (Fig. 16) and the exponential form of the b′ PDF (Fig. 17). It is of particular
interest that alternative solutions with a free-slip (i.e., no stress) velocity boundary condition do not
exhibit the hard-turbulenceNu(Ra) dependence, but rather have the soft-turbulence form (14); this
gives support to the scaling theory in Sec. 2 based on the important roles played by u∗ 6= 0. Notice,
however, that the range of Ra in Fig. 16 is very small compared to those in the experiments (Figs.
8 and 9-10), so we cannot use the apparent computational confirmation of the scaling relation as
sufficient evidence to resolve the experimental controversies.

We can visualize the plumes of rotating convection from numerical simulations. In contrast
to non-rotating plumes (Sec. 3), rotating plumes show vortex columns of cyclonic vertical vor-
ticity; this vorticity arises from the environmental rotation being concentrated and intensified by
the vortex stretching during the boundary-layer convergence and plume emission process (Figs.
18-19). Thus, we can expect there to be important line vortex interactions, as in 2D homogeneous
turbulence, among the plumes of rotating convection. This is consistent with the occasional loss
of core material from the plumes, hence the incomplete buoyancy transport across the domain,
hence a statically unstable b(z) profile as in Fig. 5, right panel. Note that the degree to which the
flow pattern is dominated by plumes, as opposed to domain-filling convection cells, increases with
increasing Ra values. A detailed analysis of the structure and statistical properties of plumes in
rotating convection is in Julien et al. (1999).

A different regime occurs in the limit of very strong rotation, Ro → 0. The results of an
early laboratory study by Rossby (1969) stood apart from the lines of research described above,
and recently King et al., (2009) reconciled these two regimes. When the Ekman-layer momentum
boundary layer thickness, δEk ∼ (ν/f)1/2 = HEk−1/2 (Shear Turbulence), becomes thinner than
the buoyancy boundary layer thickness in the hard-turbulence regime, δb ∼ HRa−2/7, then the
scaling behavior changes to a much steeper law, empirically fit as

Nu ∼ Ra6/5 (43)

(Fig. 20), which as yet does not have a theoretical rationalization. The evidence for this is shown in
theNu−Ra diagram in Fig. 20. Decreasing Rossby number generally stabilizes the convection, in
particular by increasing the critical Racr(Ro) value for convection onset. Furthermore, an increase
in Ra ∼ B by increasing B also causes an increase in Ro ∼ B1/2. Therefore, for strongly rotating
flows with Ro � 1 and increacsing B, there only a narrow experimental window for increasing
Ra above Racr before reaching the limit of the rotating regime where Ro ≥ 1.

Rewriting the strongly-rotating regime condition in terms of Ro using (41), we obtain

δEk . δb

⇒ Ro . Pr−1/2Ra−1/14 . (44)

The small exponent for Ra implies that the requisite Ro values do not need to be too small even
when Ra is quite large. Evidently, the moderately-rotating results in Fig. 16 have not yet crossed
into the strongly-rotating regime in Fig. 20, even though they do have a small-enough Ro value to
show significant departures from non-rotating convection in other attributes. (In retrospect we, the

23



Figure 18: Side- and top-view snapshots of T and ζz in a computational simulation of rotating
Rayleigh-Benard convection with Ro = 0.75 at several different Ra values. Note the transition
from convection cells to plumes as Ra increases, and note the cyclonic swirl (i.e., ζz/f > 0) in the
plumes. (Julien et al., 1996)
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Figure 19: Side- and top-view snapshots of T and ζz in a computational simulation of rotating
Rayleigh-Benard convection with Ro = 0.75 at a rather large value of Ra = 1.1× 108. (Julien et
al., 1996)
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Figure 20: Nusselt number, Nu, versus Rayleigh number, Ra, for (a) laboratory experiments and
(b) numerical simulations. Non-rotating convection in laboratory experiments yields Nu ∝ Ra2/7

(solid black lines). Dashed lines represent the rotationally-controlled scaling law Nu ∝ Ra6/5.
(King et al., 2009)

authors of the former study, can feel some chagrin that we did not pursue cases with even smaller
Ro values.)

Recently, Julien et al. (2015) produced an asymptotic theory as Ro → 0 that yields, as the
leading-order “reduced” dynamics in the interior, a rather exotic vertically non-hydrostatic and
horizontally geostrophic momentum balance. As a function ofRa it exhibits the regime transitions
illustrated in Fig. 21. It is a singular perturbation theory, with the boundary layer structure as indi-
cated in Fig. 22. The theory seems well confirmed by computational solutions and computational
experiments (Plumley et al., 2016). For stress-free top and bottom boundaries, its heat flux scaling
is

Nu ∼ RaRoPr−1/2 ; (45)

i.e., it is much steeply increasing in Ra than non-rotating convection, but it is also steeply de-
creasing as Ro decreases. Its Ra dependence is less steep than in (43) obtained in experiments for
no-slip boundary conditions.

Finally, a very interesting phenomenon has recently been discovered for rapidly rotating con-
vection at high Ra and small Ro, viz., the emergence of large scale, barotropic vortices aligned
with gravity (Figs. 23-24). Thus far, the evidence for them comes from numerical simulations,
with laboratory experiments now being planned. From initial convective onset of small-scale, 3D
motions at early time, the flow exhibits a progressive inverse energy cascade until, at late time, the
spectrum peak is near the domain scale and develops into large-scale vortices. There is an approxi-
mate equipartition between barotropic and baroclinic kinetic energies, with more barotropic energy
at the larger scales and primarily in the coherent vortical flows. Interestingly, the horizontal kinetic
energy spectrum has a ∼ k−3 shape at large scales and a ∼ k−5/3 at the more obviously convective
smaller scales, thereby qualitatively matching the atmospheric spectrum at the tropopause but in a
very different dynamical regime and thus probably for very different reasons. The large-scale vor-
tices arise in convection with either stress-free or no-slip boundary conditions, but they are more
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Figure 21: Comparisons between laboratory experiments, DNS, and NH-QGE (the asymptotic
non-hydrostatic, “quasigeostrophic” equations) of flow morphologies of rotationally constrained
Rayleigh-Benard convection. As Ra (here normalized by its critical value for the first instability
of a conducting state) increases, the flow transitions from cellular, convective Taylor columns,
plumes, and geostrophic turbulent regimes. (Julien et al., 2015)
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Figure 22: Schematic of the three distinct regions that arise in rapidly rotating Rayleigh-Benard
convection with no-slip bounding plates. The half layer [0, H/2] is illustrated with (o) outer region,
(m) middle region, and (i) inner region each characterized by distinct balances in the governing
equations. The outer region is characterized by geostrophically balanced convection. The inner
region consists of a classical, linear Ekman layer. To satisfy the perfectly conducting thermal
boundary conditions employed in the present work, a middle diffusive thermal-wind layer is nec-
essary (i.e., with hydrostatic balance, in contrast to the bulk layer that is non-hydrostatic and has
strong buoyant accelerations). (Julien et al., 2015)

dominant in the former case. This phenomenon is potentially of great relevance for rapidly rotating
planets and stars.

This asymptotic model is referred to by its creators as quasi-geostrophic and the regime il-
lustrated in Figs. 21, bottom row, and 23-24 as geostrophic turbulence. Later in the Geostrophic
Turbulence notes, we will see that this terminology arose — and are still mostly used — in the
context of Earth’s stably stratified ocean and atmosphere in reference to large-scale flows with
Ro� 1, Frv � 1, and hydrotstatic vertical momentum balance.

5 Penetrative Convection
In the ocean and atmosphere, almost all convection arises from a destabilizing buoyancy flux on
only one side of the fluid layer, usually is at the land surface or the air-sea interface. On the other
side of the destabilizing flux, the convective motions are penetrative, with their vertical extent
limited by an inversion layer of stably stratified fluid. In this situation, the convective turbulence
is usually temporally developing, and it is quite rare for it to reach an equilibrium state where
the buoyancy flux through the inversion layer is equal to the instigating destabilizing flux at the
surface. In the atmospheric troposphere the inversion usually lies above the convection, either at
the interior edge of the PBL, or at the top of a cumulus cloud field, or at the tropopause that marks
the start of the stratosphere. In the ocean, the inversion usually lies below the convection at the
interior edge of the PBL, although in shallow water, and even occasionally in deep water, it can
reach all the way to the solid bottom. In the atmosphere convection is often influenced by water
phase changes (e.g., the latent heat released by condensation, or alternatively the cooling caused by
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Figure 23: Instantaneous horizontal plots of vertically averaged vertical vorticity at successive
times in rapidly rotating Rayleigh-Benard convection. Large-scale vortices develop out of small-
scale convective turbulence. Two horizontal scales are evident at late time: a smaller scale ` ∼
E1/3L for the convective plumes, where L is the domain size and E = ν/fH2 is the Ekman
number that is small when f is large, and a larger size for the vortices with ` ∼ L. Although not
obvious here, the cyclonic vortices are stronger than the anticyclonic ones. (Rubio et al., 2014)
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Figure 24: Rapidly rotating convection: (a) Kinetic energy, and (b)-(c) early and late horizontal
spectra of kinetic energy, with a decomposition of the velocity into the barotropic (2D) and baro-
clinic (3D) components, and a further decomposition of the latter into horizontal and vertical flow
components. For comparison, power laws of k−5/3H and k−3H are drawn, suggestive of a forward en-
ergy cascade for the baroclinic modes and a forward enstrophy cascade for the barotropic modes.
(Favier et al., 2014)
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Figure 25: Regime diagram for a set of numerical simulations in rotating turbulent convection.
The regime of large-scale vortices occurs for large Ra, Ra much larger than the linear-instability
critical value Rac, rapid rotation (E � 1), and Ro less than a critical value of around one, which
occurs when Ra ∼ E−2. The bare plus signs show turbulent cases without large scale vortices,
and the circled plus signs show cases with them. (Favier et al., 2014)
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evaporation or sublimation of water or ice droplets), but this is not a topic we will address in these
lectures. Later we will discuss convective Planetary Boundary Layers, a regime of penetrative
convection when the surface buoyancy flux is destabilizing.

6 Geophysical Convection
The chapter closes with the brief mention of two other types of convective turbulence found in
geophysical flows.
Horizontal Convection: The thermohaline circulation results from surface buoyancy flux differ-
ences in heat and freshwater, primarily between tropical and polar regions. This is idealized as
horizontal convective turbulence, in contrast to the vertical flux forcing in Rayleigh-Benard con-
vection. It gives rise to a global circulation pattern that contributes importantly to climate heat
balance. Paparella and Young (2002) proved an “anti-turbulence theorem” that there is an upper
bound on the dissipation rate ε for a flow forced only with a specified surface temperature dis-
tribution, and that this bound becomes vanishingly small as ν, κ → 0 (i.e., Ra → ∞), i.e., the
Kolmogorov regime does not occur. This is interpreted as an indication that the thermohaline cir-
culation, to achieve the strength observed in nature, requires extra sources of turbulent energy from
the wind- and tide-driven circulations, hence extra dissipation and mixing, to be as strong and ex-
tend as deeply as it is observed to do. However, Scotti and White (2011) argued that the criterion
leading to the anti-turbulence theorem is too restrictive and that, based on certain statistical prop-
erties of the velocity gradient tensor which are common to all known turbulent flows, horizontal
convection is in fact turbulent for all Ra. Barkan et al. (2013) demonstrates that, with rotation,
the geostrophic circulation that develops in horizontal convection becomes unstable by baroclinic
instability and supports fully developed turbulence with finite ε at large Ra. This is not to say that
wind and tide influences are unimportant for the real thermohaline circulation, but only that they
are not deductively essential.
Convection as Re → 0: In Earth’s interior the magma in the mantle is convectively forced by
the heat flux from the core to the surface and cooling of the upper mantle from radioactivity and
secular cooling. The magma is s highly viscous fluid that extends to about 30 km below the
surface, and deeper the motions occur by subsolidus convection. This poses the idealized problem
of vertical convection with large Ra and small Re, hence large Pr. Turbulence still occurs in this
limit (Breuer and Hansen, 2009).

Readings
Secs. 6.1 and 6.3 in Turner (1973) [plumes and thermals]
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Appendix: Rayleigh-Benard Stability Analysis
The starting point of the analysis is the Boussinesq equations linearized about a resting basic state
and a potential temperature θ that varies linearly with height,

θ(z) = θ0 + Γ0z , Γ0 ≡
θ1 − θ0
H

.

The basic state is denoted by overbars. In this situation the linearized Boussinesq vertical momen-
tum and buoyancy equations become

∂w′

∂t
=
−1

ρ0

∂p′

∂z
+ g

θ′

θ0
+ ν∇2w′ (46)

∂θ′

∂t
= −w′Γ0 + κh∇2θ′, (47)

where∇2 is the three dimensional operator, ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.
We can eliminate the pressure term in the equation for w′ above with the help of the continuity

equation. Taking the divergence of the three-dimensional momentum equation leads to the scalar
balance:

1

ρ0
∇2p′ =

g

θ0

∂θ′

∂z
, (48)
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which allows us to eliminate pressure from our system by substitution into the Laplacian of (46).
After these manipulations we find that(

∂

∂t
− ν∇2

)
(∇2w′) =

g

θ0
∇2
hθ
′ (49)(

∂

∂t
− κh∇2

)
θ′ = −w′Γ0, (50)

where∇2
h ≡ ∂2/∂x2 + ∂2/∂y2. Assuming separable solutions of the form

w′ = Ŵ (z) exp [i(kxx+ kyy) + ωt] (51)

θ′ = Θ̂(z) exp [i(kxx+ kyy) + ωt] , (52)

allows us to recast our system of partial differential equations into a system of ordinary differential
equations: (

d2

dz2
− k2

)(
d2

dz2
− k2 − ω

ν

)
Ŵ (z) =

g

νθ0
k2Θ̂(z) (53)(

d2

dz2
− k2 − ω

κh

)
Θ̂(z) =

Γ0

κh
Ŵ (z) (54)

where k2 = k2x + k2y. Operating on the first equation with the operator d2/dz2 − k2 − ω/κh and
substituting from the latter equation yields an ordinary differential equation entirely in terms of
Ŵ (z) : (

d2

dz2
− k2

)(
d2

dz2
− k2 − ω

ν

)(
d2

dz2
− k2 − ω

κh

)
Ŵ (z) =

gΓ0

νκhθ0
k2Ŵ (z). (55)

Note that this equation has units of inverse time and distance. It can be non-dimensionalized
with the aid of a length- and time-scale that we choose to be H and H2/ν respectively. With these
scales the non-dimensionalization yields(

d2

dz2
− k2

)(
d2

dz2
− k2 − ω

)(
d2

dz2
− k2 − ω Pr

)
Ŵ (z) = −k2Ra Ŵ (z), (56)

where all quantities should now be interpreted as being the non- dimensional with

Ra = −gΓ0H
4

νκhθ0
and Pr =

ν

κh
(57)

being non-dimensional parameters called the Rayleigh and Prandtl numbers, respectively.
Thus the problem of the instability of convective flows reduces to a problem in two parameters,

Pr and Ra. The first parameter is a property of a fluid while the second is a measure of how
hard the system is forced. Thus given a working fluid, only one parameter is free. Conceptually
this is a delightful state of affairs as any two flows of a given fluid should be similar in so far
as their Rayleigh numbers are similar. Rather than having to study how convection responds to
independent variations in the temperature difference between the plates (as measured by Γ0 versus
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Table 1: Critical Rayleigh number as a function of boundary conditions. Adapted from Table 3.1
of Emanuel (1994).

Boundary Conditions Rac kc π/kc

Free-Slip 658 2.22 1.42
No-Slip 1100 2.68 1.17
Mixed 1708 3.12 1.01

variations in the depth of the convecting fluid, or the strength of the viscosity) all that is necessary
is to study the behavior of the flow as a function of the Rayleigh number.

To select physical solutions to (56) we must first choose the appropriate boundary conditions.
Altogether we need six conditions. Four conditions are given by the requirement that

Ŵ = Θ̂ = 0 at z = 0, 1, (58)

which is the mathematical expression of the idea that our boundaries are rigid, flat, and perfectly
conducting. The remaining two boundary conditions are on the horizontal velocities. There are
two possibilities, either no-slip or free-slip. For the former the tangential velocity u′t vanishes
on the boundary. For the latter the gradient of the tangential velocity at the boundaries must
vanish. Requiring the gradient to vanish satisfies the free slip condition because it implies that the
stress at the boundary (which is given by ν∂u′t/∂z) vanishes. In this case continuity implies that
d2Ŵ/dz2 = 0 that, when coupled with (51), yields the additional requirement, d4Ŵ/dz4 = 0.

To investigate the stability of the free-slip system (which turns out to be the simplest to analyze)
we look for non-vanishing real components of ω. It is straightforward to show that solutions of the
form

Ŵ (z) =
∞∑
n=1

An sin(nπz) (59)

satisfy the boundary conditions for the free-slip boundary conditions. When substituted into (56)
for the case of purely real growth rate, (ω = ωr), the following characteristic equation results:(

n2π2 + k2
) (
n2π2 + k2 + ω

) (
n2π2 + k2 + Pr ω

)
= k2Ra , (60)

where it is left as an exercise to show that oscillatory solutions (those with ωi 6= 0) do not exist.
For the case of marginal stability (i.e., , ωr = 0), (60) yields a condition on the Rayleigh number
as a function of the convective mode:

Ra = Rac =
(n2π2 + k2)3

k2
. (61)

The behavior of the critical Rayleigh number (Rac) as a function of n and k can be investigated.
We note that ∂Ra/∂n > 0 for n > 0 and that

∂Rac
∂k

= 0 =⇒ k2 =
(nπ)2

2
. (62)
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Taken together these results imply that the most unstable mode is the n = 1 mode with k2 = k2c =
n2π2/2. The value of the associated Rayleigh number is thus Rac = 27π4/4 ≈ 658. Physically
this tells us how hard we have to force the flow before it convects. Before this limit we can imagine
that the molecular transport of heat is sufficiently efficient to accomplish the heat transfer without
macroscopic overturning.

The Rayleigh-Benard problem can be extended considerably. The marginal stability limit for
varying boundary conditions (as shown in Table 1); the effect of a mean wind; the rotational
effects; weakly non-linear transition regimes; and the pattern selection for the convection can all
be explored. Scaling laws for the fully developed regime can also be investigated, of particular
interest is the Ra→∞ limit. Apart from its analytic tractability the flow configuration also lends
itself well to laboratory experiments. For these reasons Rayleigh-Benard convection is perhaps
the most studied and most enduring paradigm for convection, although its applicability to the
atmosphere is limited.
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