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In this chapter we focus on what can be called the purest turbulence problem, as well as the
classical one. It is in fact so pure that, strictly speaking, it cannot exist in nature, although expe-
rience shows that natural turbulence often has behavior remarkably close to the pure form. This
is the case where rotational and gravitational forces are negligible (i.e., g = f = 0); b or c can be
considered to represent a generic passive tracer (or neglected altogether); all boundary influences
are ignored; there is no mean shear at least not on the (small) scales of interest; and the statistics
are spatially isotropic and homogeneous and temporally either stationary (in equilibrium) or sim-
ply decaying from a specified initial condition. In a strict sense, therefore, the domain must be
infinite in extent and the time span infinite in duration, but it is often assumed to be spatially peri-
odic on a scale large compared to the motions of interest, and the integration or sampling interval
must be large enough (e.g., compared to an eddy turnover time) to achieve satisfactory statistical
accuracy. With periodic boundary conditions the rotation symmetry (i.e., equivalence with respect
to a coordinate rotation about any axis; this is the same as the isotropy symmetry discussed below)
is only approximately valid, but presumably more so on the smaller scales than the larger, domain-
influenced ones. But a periodic domain is more readily computable than an infinite one, and in
laboratory experiments the domains are both finite and have non-periodic boundaries.

The essential governing equations are

Du

Dt
= −∇φ+ ν∇2u

∇ · u = 0 (1)

with any passive tracer equation having an advection-diffusion balance, viz.,

Dc

Dt
= κ∇2c .

These equations are equally valid in 3D or 2D, although their dynamical behaviors are quite dif-
ferent for homogeneous turbulence; so we shall discuss them separately1. There is a famous Mil-
lennium Prize offered by the Clay Mathematical Institute for the solution of any of seven classical
mathematical problems, one of which is the proof of existence and long-time smoothness, or not,
of solutions of (1) with smooth initial and boundary conditions in 3D. This proof has already
been made in 2D (Ladyzhenskaya, 1969), and the crucial distinction with 3D is the Lagrangian
conservation of vorticity in 2D (i.e., the lack of vorticity amplification through stretching).

3D homogeneous turbulence is relevant to geophysical turbulence on small scales away from
boundaries. In the presence of rotation, stable stratification, and mean velocity shear, the necessary

1There is an analogous equation in 1D, called Burgers Equation, that does embody advection and diffusion:

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
.

However, lacking incompressibility, pressure-gradient force, and vorticity, its solution behavior (sometimes called
burgulence) is rather different than in 2D and 3D fluid dynamics. At large Re values, it develops near discontinuities
in space in finite time, and thus it is more like steepening nonlinear waves (e.g., shocks) than like vortical turbulence.



conditions for this to be true are that Rossby, Froude, and shear numbers,

Ro =
V

fL
, Fr =

V

NH
, & Sh =

V

SL
,

are very large. Here f is the Coriolis frequency, N =
√
db/dz is the mean stratification frequency;

H is a vertical length scale (i.e., in the direction of the stratification); and S = dU/dy is the mean
shear. These numbers can be large either because the environmental frequencies (f, N, S) are
small or because the turbulent velocity is large and/or the turbulent length scale is small.

The approach we take here is a phenomenological one, based more on intuitive concepts and
rough estimates than on precise definitions, theories, and elaborate models. Of course, there is
a large literature on the latter topics, but they are not our focus. There is some repetition of the
material in Turbulent Flows: General Properties but with greater elaboration here.

1 Symmetries
The mathematical symmetries of the PDE system (1) with f = g = 0 include the following2

(forcing, boundary, and initial conditions permitting):

• homogeneity: x translation, x↔ x + x0 (i.e., a uniform displacement or origin shift);

• stationarity: t translation, t↔ t+ t0;

• Galilean invariance: u translation, u↔ u + u0;

• isotropy: x rotation, x↔ x eiθ0 (in complex notation);

• reflection or parity reversal: (u,x, t)↔ (−u,−x, t);

• time reversibility: (for ν = 0): (u,x, t)↔ (−u,x,−t);

• scaling: (for ν = 0) (u,x, t) ↔ (λhu, λx, λ1−ht) ∀ λ, h [this says there is no intrinsic
velocity, space, or time scale to turbulence — it’s all relative!];

• the so-called similarity principle of fluid dynamics (really just non-dimensionalization with
ν 6= 0): as a viscous extension of the scaling symmetry, either ν ↔ λ1+hν ∀ λ, h or
ν ↔ ν ∀λ and h = −1, which leaves Re unchanged;

Re =
V L

ν
↔
{
λh × λ

λ1+h
or λ0)

}
· V L
ν

.

Symmetries, both here and as generally in theoretical physics, strongly constrain the possible
physical outcomes and their interpretation.

One view of intermittency is that it occurs by having scale invariance (i.e., independence of
λ) for different values of the scaling exponent h in different (x, t) regions within the same flow
realization. This is called a multi-fractal view. In this view turbulent flows have one kind of
space-time structure locally and different kinds in other places and times.

2There are analogous symmetries for the passive scalar equation, but they are not explicitly listed here. The same
symmetries apply equally in 3D and 2D.
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Figure 1: A cartoon of the isotropic kinetic energy spectrum in equilibrium 3D homogeneous
turbulence, presuming a forcing near the outer scale Lo. Symbols are defined in the text.

2 Kolmogorov’s Phenomenological Theory
[Sometimes this is called K41 theory, after Kolmogorov (1941).] Consider a minimal description
of turbulence where we assume that it is characterized only by the following quantities: the kinetic
energy E; an “outer” spatial scale (i.e., the largest or most energetic one for which the homoge-
neous assumption is valid) Lo; any smaller scale L; the viscosity ν; and the energy dissipation rate
ε. The outer velocity scale is implicit here, Vo =

√
2E, as is the outer-scale Reynolds number,

Reo = VoLo/ν. These scales are the ingredients for dimensional reasoning. We consider a Fourier
transform of u that allows a decomposition of the total energy in wavenumber magnitude k,

E =

∫
dk E(k) , (2)

where we make the association k ∼ 1/L. Using the isotropy assumption, we only need to consider
one scalar wavenumber magnitude, k = |k|, and its associated energy density E(k) related to the
total energy spectrum by ∫ ∞

0

dk E(k) =
1

2

∫
dk |û|2(k) . (3)

We are interested in the overall evolution and transformation rates of the system, expressed in
terms of the kinetic energy spectrum:

Cascade: δE(k)/δt such that [E(k1), E(k2)] −→ [E(k1)−δE, E(k2)+δE]. For 3D turbulence
this occurs for k1 < k2, but for 2D turbulence the transfer is primarily from k2 to k1 (see 2D
Homogeneous Turbulence notes).
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Dissipation: δE/δt = −ε.

Transport: c′u′ for any fluid property c, where we can expect differences depending upon whether
c is momentum or a passive scalar (n.b., c′u′ = 0 whenever ∇c = 0, as in a wholly homogeneous
situation).

Now consider three hypotheses about the nature of the cascade and dissipation processes. These
were proposed by Frisch (1995) as a formalization of the seminal theory of Kolmogorov (1941),
which we will follow here. It is a phenomenological theory based on a physical conception of
turbulent behavior. It also is a scaling theory declaring how flow properties vary with the spatial
scale L.

H1: As Re→∞, all the possible symmetries discussed in Sec. 1 (except for the arbitrariness of
the exponent h in the scaling symmetry) — which may broken by the mechanisms producing the
turbulence (i.e., the dynamics involving f , g, ∇u, and ∇b) — are restored in a statistical sense at
small scales and away from boundaries.

H2: Under these conditions the turbulence is self-similar at small scales; i.e., it possesses a
unique scaling exponent h,

δu(λL) = λhδu(L), (4)

for velocity differences δu over a spatial increment L, where both L and λL are in the small-scale
range, < Lo.

H3: Under these conditions there exists a unique, finite value of ε.

The first hypothesis is one of universality, viz., all physical regimes of turbulence are alike at
small scales and large Re. The second hypothesis is a collapse of the general scaling symmetry by
the selection of a dominant exponent h (i.e., not multi-fractal behavior). The third hypothesis is
the one that sets the value of h by declaring that the dissipation rate, equated with the cascade rate,
is the physically most important quantity in turbulence.

An advective evolution is one where an eddy turn-over time τ is the relevant time for a sig-
nificant change in the flow to occur due to differences in relative motion VL acting through the
advection operator:

τL =
L

VL
(5)

on spatial scale L. The outer time scale,

τo =
Lo
Vo

, (6)

is the characteristic evolution time for the turbulent system dynamics as a whole.
We can determine a dissipation velocity and length, Vd and Ld, from the definition of ε,

ε = ν ∇u : ∇u ,
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and a scaling estimate is

ε ∼ ν
V 2
d

L2
d

. (7)

If we assume that ν and ε are the only relevant quantities for the dissipation process (H3), then the
other associated quantities are uniquely determined to be

Vd ∼ (νε)1/4 = (εη)1/3

Ld ∼
(
ν3

ε

)1/4

τd ∼
(ν
ε

)1/2
. (8)

These are called the dissipation scales, and Ld = η in particular is called the Kolmogorov length
scale. Note that

τd ∼
L2
d

ν
, (9)

i.e., the diffusive and advective time scales are equal at Ld; hence, the diffusive rate is dominant at
all scales smaller than Ld, which is thus referred to as the dissipation range.

The energy flux in the cascade at scale L > Ld has

δEL
δt
∼ V 2

L

τL
∼ V 3

L

L
, (10)

where EL is the energy at L (to be identified with the energy density E(k) in (2) multiplied by a
wavenumber increment, ∆k). There is an assumption of independence from L of the energy flux
extending from L→ L−o to L→ L+

d , hence its equality with ε, implies

V 3
L

L
∼ ε, (11)

at all L, or
VL ∼ (εL)1/3 & τL ∼ ε−1/3L2/3. (12)

The hypothesis of self-similarity in the cascade range (H2) implies

VλL ∼ λhVL

ε1/3(λL)1/3 ∼ λh(εL)1/3

⇒ h =
1

3
. (13)

The spatial-lag velocity covariance function is defined by

Cu(r) = u(x)u(x + r) , (14)

and the associated structure function is

Su(r) = (u(x)− u(x + r) )2 ∼ V 2
L , (15)

5



for r ∼ L. For a statistically homogeneous, isotropic situation, the two are related by

Su(r) = 2(u2 − Cu(r) ) . (16)

The energy spectrum is the Fourier transform of Cu, and it expressed as

E(k) ∼ V 2
LL

∼ ( (εL)1/3)2L = ε2/3L5/3

= Ckε
2/3k−5/3 , (17)

where Ck is the Kolmogorov constant and has a value of about 1.6 in many experimental data.
This is the famous Kolmogorov universal spectrum of turbulence (H1). One could, of course,
immediately obtain the result (17) as the only dimensionally consistent combination of ε and L
(i.e., by an assumption that these are the only relevant quantities for the cascade). The range of
scales, Lo > L > Ld, for which (12)-(17) holds, is referred to as the inertial cascade range.

The complete spectrum of 3D turbulence for all L can be depicted as shown in Fig. 1. The
spectrum peak occurs at large scales in the energy-containing range, where it is well known that
the particular shape of E(k) depends on the particular physical regime and the mechanism of
turbulence generation. At intermediate scales (i.e., in the inertial range) the spectrum shape is (17)
and is assumed to be universal (H1). At scales smaller than the dissipation scale Ld (i.e., in the
dissipation range), the spectrum falls off due to the disappearance of kinetic energy into the thermal
reservoir of molecular collisions (i.e., “heat death”), and its shape is steeper than any power law,
often taken to have a shape

E(k) ∝ kαe−ck/kd

as k → ∞, where numerical calculations indicate that α ≈ 3.3 and c ≈ 7.1 (Chen et al., 1993).
The dissipation range spectrum is also universal if the inertial range is. Note that the total energy
E is not universal; it depends on the particular dynamics of the energy-containing range and also
depends weakly on the scale separation between Lo and Ld when Re is finite.

There is considerable experimental and observational evidence in support of the Kolmogorov
spectrum shape (17), e.g., Fig. 2 from various experiments. There is also good experimental sup-
port for an approximately universal shape for the dissipation range (Fig. 3).

Another important length scale in turbulence is the Taylor microscale λ, defined as the square
root of the ratio of the variances of the velocity and the velocity gradient. We can estimate the
former as ∼ V 2

o and the latter as ∼ ε/ν from the definition of dissipation in the energy budget;
hence,

λ =

[
V 2
0

ε
ν

]1/2
=

[
νLo
Vo

]1/2
, (18)

where the continuity of cascade, ε ∼ V 3
o /Lo, is used to obtain the last relation. This scale is

intermediate between Lo and Ld since we can derive the ratios

λ

Ld
= Re1/4 and

Lo
λ

= Re1/2 . (19)

The last of these implies that an alternative Reynolds number based on λ,

Reλ =
Voλ

ν
, (20)
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Figure 2: Normalized energy spectra from nine different turbulent flows with Reλ values ranging
from 130 to 13,000, plotted in log-log coordinates. The wavenumber and energy spectrum have
been divided by ln[Reλ/Re∗] with Re∗ = 75, and the resulting curves have been shifted to give
the best possible superposition. (Gagne and Castaing, 1991; also see Grant et al., 1961)

Figure 3: Normalized longitudinal velocity spectra according to different authors. The normaliza-
tion is by dissipation scale quantities. (Gibson and Schwarz, 1963)
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satisfies the relation Reλ = Re1/2. Reλ is often used for observational estimates of the Reynolds
number since both velocity and velocity derivative estimates are easily determined from a single
time series (e.g., Fig. 5). Finally, we can estimate the scale-local Reynolds number in the inertial
range by

ReL =
VLL

ν
=

(
L

η

)4/3

, (21)

which decreases as L decreases toward η; note thatReη = Red = 1, as expected from an advection
= diffusion balance at the Kolmogorov scale.

3 Cascade Dynamics
A visualization of the velocity and vorticity fields is in Fig. 4. Because the energy spectrum is not
very steep, they emphasize the larger and smaller scale components of the flow, respectively.

Figure 4: A cross-section through a simulation of equilibrium 3D turbulence at large Re: (left)
velocity and (right) vorticity magnitudes. The vorticity “dots” can be interpreted as intersections
thought the coherent vortex tubes in Figs. 14 and 16. (Johnson, 2020)

A central question in the theory of 3D homogeneous turbulence is how is energy transferred
from large scales to small. The question is slightly ill-posed because the energy in a wavenumber
spectrum E(k) is non-locally related to the flow field u(x), just by the nature of a Fourier trans-
form. Nevertheless, this question is often posed in terms of two different local flow configurations:
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vortex stretching and strain-self amplification (Fig. 5). The vorticity field itself (Fig. 4, right) sug-
gests the importance of the former, as has been the longer view historically, but recent analyses of
simulations additionally gives support for the latter.

Figure 5: Sketches of the dynamical mechanisms for forward energy cascade in 3D homogeneous
turbulence: (left) vortex stretching and (right) strain self-amplification. (Johnson, 2020)

In the Turbulent Flows lecture, the vorticity and strain rate were defined using index notation
with a summation convention:

ζi = εijk∂juk , Sij =
1

2
(∂iuj + ∂jui) . (22)

For both of these a relevant quantity is the velocity gradient tensor, Aij = ∂iuj , where ζi =
εijk(Akj − Ajk)/2 and Sij = (Aij + Aji)/2, i.e., the anti-symmetric and symmetric parts of Aij .
The squared magnitude of Aij is called the Frobenius norm,

F =
1

2
AijAij =

1

4
ζiζi +

1

2
SijSij , (23)

with separate contributions from vorticity and strain rate. One can show that on average the two
components of F are equal, so that |S|2 is smaller than |ζ|2. A local evolution equation for F is

D

Dt
F = Pζ + Ps +O(ν) .

Pζ =
1

4
ζiSijζj

PS = −SijSjkSki , (24)

again with separate production contributions mainly associated with vorticity and entirely associ-
ated with strain. In this discussion we are not considering the viscous dissipation term O(ν).

In Fourier space, after averaging over wavenumber direction, the energy balance equation is

∂tE(k) = − ∂kΠ(k) +O(ν) . (25)

Π(k) > 0 represents the forward energy transfer rate across wavenumber k. In an equilibrium
inertial range, ∂tE = 0, and Π is independent of k (i.e., Kolmogorov’s constant cascade rate,
equal to the dissipation rate ε). One can further show that in this range Π ≈ Πζ + ΠS plus some
smaller non-local (in k) transfer terms, and that ΠS ≈ 3Πζ > 0. Furthermore, in a spectral
sense, Π(k) = |P̂|/k2 for both the ζ and S components, where P̂(k) is the wavenumber-space
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representation of P(x) (Carbone and Bragg, 2020; Johnson, 2020; see these papers for a more
complete spectral analysis). Thus, from this perspective, the inertial range cascade is mostly local
in k (i.e., nearly k1 and k2 are involved in the eneregy exchange), and it has significant contributions
from both vortex stretching and strain self-amplification processes, but the latter effect is larger.

However, a caution is that ζ determines u from the Biot-Savart law, which can be written
symbolically as

u = −∇−2 [∇× ζ ] ,

apart from an irrotational velocity component that is trivial in a triply periodic domain, and u
determines S. So there is nothing inconsistent with saying that the coherent vortices generated by
vortex stretching control the turbulent energy cascade, even though ΠS is larger than Πζ .

Notice that this section again tells a story of the relative roles of strain rate and vorticity, as
in Sec. 3 of the Turbulent Flows notes for the contour stretching cascade by a purely horizontal
flow, where ζ and S have competing effects. Here, however, in 3D homogeneous flow they have
complementary and cooperative effects in the energy.

4 Size of a Turbulent Event
How large is the dynamical system just described? The total number of degrees of freedom in
turbulence, per large-eddy event, can be estimated as the volume in its space-time phase space
with a discretization at the dissipation scales. The Kolmogorov scaling theory is used to answer
this question. From (8),

Lo
Ld

= Loε
1/4ν−3/4

=

[
ε

V 3
o /Lo

]1/4
Re3/4 (26)

and
τo
τd

=
Lo
Vo

[ ε
ν

]1/2
=

[
ε

V 3
o /Lo

]1/2
Re1/2 . (27)

Thus, the total size is (
Lo
Ld

)3

× τo
τd

=

[
ε

V 3
o /Lo

]5/4
Re11/4 . (28)

We can interpret this as an asymptotic estimate as Re → ∞ with the outer conditions held fixed
(i.e., the first right-hand-side term fixed). Continuity of cascade over the inertial range implies that
the bracketed factors here are O(1) numbers.

If we make a numerical computation of this system with the usual computational stability
constraint, ∆t < ∆x/Vo, then the size estimate increases slightly to ∼ O(Re3), assuming that
∆x < Ld. On the face of it, this is quite daunting as a predication, based on the rate of progress
in computing power (i.e., a doubling of speed every ≈ 1.5 years, a.k.a. Moore’s Law), for the rate
of scientific progress that can be made towards this asymptotic limit. If the latter doubles every
1.5 years, the Re can be doubled every 1.53 ≈ 3.4 years. Thus, a direct computational assault
on the turbulence problem will require great patience. However, most researchers in the field are
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more optimistic than this seems to suggest: one can hypothesize that asymptotic behavior usually
occurs at rather modest values of Re beyond the transition regimes around Re ∼ 103, and there
exist tricks of modeling the effects of unresolved scales of inertial-range motion, called Large-
Eddy Simulation (LES), that often seem to mimic large-Re behaviors. Nevertheless, we cannot be
certain about the truth of this optimism beyond the Re values accessible to direct computations,
and thus we must view it as merely provisional and subject to constant testing.

Analogous to the size estimate (28), we can also use (8) to estimate the range of velocity
amplitudes in turbulence,

Vd
Vo

=

[
ε

V 3
o /Lo

]1/4
Re−1/4 . (29)

This says that small-scale fluctuations weaken only slowly with increasing Re.

5 Material Transport
Now consider material transport in 3D homogeneous turbulence. A common way to measure this is
in terms of an ensemble of trajectories, {xα(t)}, with a mean position < x > (t) and a dispersion,

D(t) =
1

2
< (x(t)− < x > (t))2 > . (30)

The dispersion measures the spreading of clusters of parcels, at a rate κ(t) = dD/dt > 0, and
implicitly this is a mixing of neighboring parcels since there is spreading from all points. If the
parcels are labeled by a property concentration c, then dispersion will effect a property flux c′u′
whenever there is a mean property gradient ∇c 6= 0 (see above). This is often viewed as a mixing
process (Figs. 6-7).

To accompany the velocity phenomenology in the preceding section, we can hypothesize that
there is also an inertial range in the scalar concentration where the fluctuation amplitude CL on
scale L depends only on the scalar cascade and dissipation rate χ and the local eddy turnover time,
τL = L/VL ∼ ε−1/3L2/3; i.e., CL and its associated wavenumber spectrum Ec(k) are

CL ∼ (χτL)1/2 ⇒ Ec(k) ∼ C2
LL ∼ χτLL ∼ χε−1/3k−5/3 ; (31)

i.e., it has the same wavenumber shape as the energy spectrum E(k) in (17). This result is referred
to as the Obukhov-Corrsin theory (see Shraiman and Siggia, 2000), and it has a non-dimensional
constant factor, referred to as Cθ with an experimental value of about 0.4 (Sreenivasan, 1996),
which is analogous to Ck in (17).

We can write

x(t) =

∫ t

0

u(x(t′), t′) dt′ (32)

in a Lagrangian reference frame and further partition both x and u into mean (i.e., < · >) and fluc-
tuating components (i.e., ·′); from (30) we see that D only depends on the fluctuating components,

D(t) =
1

2

∫ t

0

dt′
∫ t

0

dt′′ < u′(t′) · u′(t′′) > . (33)
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Figure 6: Fluorescent dye in a 3D turbulent jet (Shraiman and Siggia, 2000). TheRe value is about
4000.
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Figure 7: Scalar fluctuations in time and space. (a) Temporal trace of the temperature recorded at a
fixed point in a turbulent boundary layer over a heated plate. Note the asymmetry of the derivative.
(b) Numerical simulation of passive scalar advection in two dimensions for the Kraichnan (1994)
model. The concentration scale runs from red to blue. (Shraiman and Siggia, 2000).
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In stationary turbulence, the Lagrangian time-lag covariance function depends only on the magni-
tude of the time difference s = |t′ − t′′| (also called time lag):

< u′(t′) · u′(t′′) > = σ2C(s), σ2 = < u′(0)2 > , (34)

and the expectation based on sensitive dependence and limited predictability is that C → 0 as
|s| → ∞, i.e., after an interval on the order of a large eddy (outer scale) turnover time, τo = Lo/Vo.
Thus,

D =
1

2
σ2

∫ t

0

dt′
∫ t

0

dt′′ C(|t′ − t′′|)

= σ2

∫ t

0

dp

∫ p

0

ds C(s)

→ σ2τIt as t→∞ . (35)

For the second step we made a transformation of the time integration variables from t′ and t′′ to
s = t′ − t′′ and p = t′ + t′′ and used the symmetry of C with respect to the sign of s = t′ − t′′. In
the third step for the large-time asymptotic limit,

τI =

∫ ∞
0

ds C(s)

is the integral time scale, which is well defined since C vanishes for large s. Thus, D increases
linearly at late time, just as in a random walk, and

κ =
dD

dt
→ σ2τI (36)

is the Taylor diffusivity. An alternative expression for κ is obtained by differentiating (33),

κ(t) =

∫ t

0

dt′ < u′(t− t′) · u′(t) > . (37)

From this perspective, turbulent transport looks very much like a diffusion process, where material
parcels are moved between successive large eddies as if randomly. This perspective is made explicit
in a stochastic model of particle position, X(t), viz.,

dx = u dt , du = −u dt

τI
+ σ

(
2 dt

τI

)1/2

dW , (38)

where dW is a Weiner process: a random increment with a Gaussian distribution and unit variance.
The velocity thus has two contributions, the random perturbation plus a term which represents the
memory of the previous velocity and is inversely proportional to the integral time. This term causes
the velocity autocorrelations to decay in a time interval δt as an exponential ∝ exp[− δt/τI ]. This
simple model correctly captures the early-time behavior of straight-line (a.k.a. ballistic) motion
while the velocity has not yet changed, as well as the late-time behavior in (35); however, it does
not accurately represent the intermediate-time behavior due to turbulent fluctuations within the in-
ertial range (see next paragraph). This type of model is often used in estimating material dispersion
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even in complex mean flows, where 〈u 〉 is added to the ”advection” in the first equation in (38)
(e.g., Sawford, 2001).

Note that κ has dimensional estimates of

κ = V 2τ = V L (39)

for τ = L/V , an eddy turn-over time. This is the basis for mixing-length theory (see Appendix
A in Shear Turbulence) that says that turbulent transport is like an enhanced molecular diffusion,
with diffusivity based on a characteristic turbulent velocity V and correlation time τ or length L.
If we make such an estimate for the inertial range (12), then

κL = VLL = V 2
L τL = ε1/3L4/3 , (40)

which is called Richardson’s Law (apocryphally determined by throwing parsnips off a pier). It
says that a small patch of material with scale L will spread at an accelerating rate as L grows, up
to a limiting scale Lo, where the diffusivity approaches the constant Taylor form (36), assuming
τI ∼ τo. We can alternatively view the patch spreading as a function of time,

DL ∼ V 2
L τ

2
L = L2 = ετ 3L

κL ∼ VLL = ε1/3L4/3 = ετ 2L . (41)

Both in size and elapsed time, the material spreading goes faster as the patch gets bigger, up to the
limiting scale Lo.

For a modern review of turbulent mixing, see Srinivasan (2018).

6 Predictability
Turbulent flows have sensitive dependence and limited predictability horizons. If a LES calculation
or measurements are made with a smallest resolved scale L∗ = 1/k∗, then there necessarily is
ignorance of any information on all smaller scales. With time the influence of this ignorance
will spread to larger scales, including the ones being calculated or measured, contaminating their
predictability. Metais and Lesieur (1986) suggested the following phenomenological relation to
describe the spreading of the predictability horizon, expressed as the smallest uncontaminated scale
Lp = 1/kp:

dkp
dt

= −kp
τk
, (42)

where 1/τk = ε1/3k2/3 from (12) as long as kp lies within the inertial range. Here we must solve
the equation

dkp
dt

= −ε1/3k5/3p . (43)

The solution is
k−2/3p − k−2/3∗ = cε1/3t . (44)

Assuming k−2/3∗ is small enough, and evaluating this at the finite predictability time Tp when the
contamination has spread throughout the spectrum to the outer wavenumber kp = 1/Lo,

L2/3
o = cε1/3Tp . (45)

15



Since ε ∼ V 3
o /Lo, this indicates that Tp ∼ Lo/Vo; i.e., all predictability is lost within a few large

eddy turn-over times.
This argument implicitly assumes scale locality for the important dynamics within the inertial

range, as do most of the scaling relations as a function of L in Secs. 2-5: nonlinear advective effects
at a scale L are dominated by interactions with adjacent scales only slightly larger and smaller. As
we will see in 2D Homogeneous Turbulence, this is not true for turbulent systems with a steeper
E(k), where the outer scale flow, Vo at Lo, can also be influential for all smaller L.

7 Intermittency
Turbulent flows are intermittent. Intermittency means that distinctive events are rare in some sense.
This is the opposite to their occurring nearly all the time. It also can be viewed as the opposite to
self-similar, defined as statistically equivalent on all scales and at all locations. Thus, Brownian
motion is self-similar (Fig. 8), and it is very different from a time series of velocity in turbulence
(Fig. 9) that shows bursts of high-frequency fluctuations separated by quieter intervals. There is,
as yet, no complete understanding of the nature of turbulent intermittency, although it is funda-
mentally related to the coherent structures that occur (Sec. 8). A particular statistical measure
of turbulent flows is the “single-point” distribution function of any measurable variable. One ex-
ample, for acceleration, was given in Turbulent Flows: General Properties. Another example is
shown in Fig. 10 from∼ 3D homogeneous turbulence, for both a passive scalar (weak temperature
variations) and a velocity difference, δVL over a separation length L within the inertial range. Note
that both distributions have approximately the shape of an exponential function, with a probability
of occurrence P (a) of a single-point value a like

P (a) ∝ e−c|a|/
√
〈 a2 〉 , (46)

at least in the tails of the distribution away from a = 0. This distribution can be called intermittent,
in the sense that it has much stronger tails than any Gaussian distribution, with P ∝ e−c|a|

2 . It also
seems to be almost universally found in turbulent flows, in all regimes, albeit with some variety in
the c values and even in the power of a in the exponent (a.k.a. a stretched exponential distribution),
but no satisfactory “universal” explanation has been found yet.

A different statistical measure of intermittency comes from the family of velocity-moment
structure functions for velocity differences and their functional dependence on spatial separation
distances L within the inertial range:

< |δVL|n > ∼ V n
o

[
L

Lo

]ζn
(47)

for positive integer values of n. The focus is on the family of exponents {ζn}, that can be mea-
sured experimentally (albeit with an statistical sampling uncertainty rapidly increasing with n) and
fit with various statistical models (e.g., Fig. 11). The Kolmogorov (1941) cascade theory, which
is implicitly not intermittent by hypotheses H2-H3, implies ζn = n/3, which is clearly not con-
firmed. A generalization — the β-model of Frisch et al. (1978) that assumes that only a progres-
sively smaller fraction of the fluid volume is active as the cascade progresses towards small scales
— implies ζn = 1 + (n− 3)h and thus relates the intermittency exponents to a scaling-symmetry

16



Figure 8: Brownian motion: a portion of a time series y(t) for a random velocity increment v(t)dt,
enlarged twice, illustrating its self-similarity (i.e., scale invariance). (Frisch, 1995)

Figure 9: (Top) Velocity signal from a jet with Reλ ≈ 700. (Bottom) Same signal as in (a) subject
to high-pass filtering showing intermittent bursts. (Gagne, 1980)
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Figure 10: Single-point, single-quantity PDFs p[α] for temperature (continuous line) and velocity
increment (between separated points), where α is the quantity normalized by its standard deviation.
The panels are for different increment separation distances: (a) jet, with distance r/η = 100; (b)
wind tunnel, with distance r/η = 1307. (Castaing et al., 1990)
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exponent h different from the h = 1/3 value in (13); however, it too is not well supported by data.
A model based on a log-normal distribution is not as bad a fit as these others models. She and
Leveque (1994) devised a hierarchical structure model using the so-called log Poisson distribution
that implies ζn = n/9 + 2[1− (2/3)n/3]; based on the data in Fig. 11 and subsequent experiments,
this latter model seems to fit the data quite well. Nevertheless, the estimation uncertainty is large
for {ζn}, and a statistical fit is certainly not a dynamical theory for the intermittency of turbulence.
More recently, Lundgren (2008) proposed an alternative statistical model that is at least as suc-
cessful in fitting empirical intermittency measures. It implies that the spatial “dimension” d of the
near-singularities in the flow that contribute most to dissipation rate ε is d ≈ 2.8, indicating that
the cascade of 3D turbulence is nearly, but not quite, volume-filling. Finally, Benzi et al.(1993)
et seq. have established the experimental validity of Extended Self-Similarity (ESS) with the same
exponent set, {ζn}, for all values of Re, thus demonstrating that the nature of the intermittency
in turbulence is the same even outside the idealized Re → ∞ limit where a well-defined inertial
range occurs (but still for L values much larger than η); of course, the degree of intermittency does
increase with Re.

Figure 11: Variation of exponent ζn as a function of the order n from different experiments with
different Re values. The curves are various model fits: the dash-dot line is from Kolmogorov
(1941); the dashed line is the β model of Frisch et al. (1978), and the solid line is from a log-
normal distribution. (Anselmet et al., 1984)

The fact of increasing intermittency with Re is shown with some rather more direct measures
in Fig. 12: the experimentally measured skewness Sk and kurtosis (or flatness) Ku (or F ) (i.e.,
the averaged third and fourth powers of a single-point quantity suitably normalized by the variance
raised to the powers 1.5 and 2, respectively) for a longitudinal velocity derivative and a passive
scalar derivative as functions of Re. For a quantity with a Gaussian probability distribution func-
tion, the skewness is zero and the kurtosis is 3.03. Large values of the statistical measures indicate
probability distributions with high probability of large values, i.e., intermittency. As we see, all of
these measures are increasing functions of Re up to as high as has been measured; their dependen-

3Be careful about definitions. Often F is used as synonymous with Ku (as here). Sometimes, though, F =
Ku/3− 1 is used, so that F becomes a normalized measure of the non-Gaussianity.
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cies have approximately a power-law form, with

Sk(∂u/∂x) ∼ Re1/8, F (∂u/∂x) ∼ Re1/3, F (∂θ/∂x) ∼ Re1/2 . (48)

This shows that turbulence has a degree of intermittency that increases without bound as the Re
increases. Thus, if there is a hope of understanding the behavior in nature at larger values of Re
than can be achieved in computations or controlled experiments, it is to be able to identify suitable
scaling relations, like those above, and extrapolate them in Re to the naturally occurring regimes.
These scaling exponents for Sk and F are consistent with the statistical model of Lundgren (2008).

The intermittency of a passively advected-diffused scalar c(x, t) is accessible to a more com-
plete and rigorous mathematical analysis than velocity u(x, t) when the former problem is posed
under the simplifying assumption that the advecting velocity field is a Gaussian random variable
satisfying the incompressibility constraint (i.e., not a u(x, t) from a real turbulent flow; see the
review article by Shraiman and Siggia, 2000).

8 Vortex Stretching and Coherent Vortices
Vortex stretching was introduced in Turbulent Flows: General Properties as a mechanistic explana-
tion of the energy cascade. Here we revisit the process as a basis for understanding the widespread
occurrence of vortex tubes in 3D homogeneous turbulence as a particular manifestation of coherent
structures in different turbulent regimes.

We form the vorticity equation by taking the curl of the momentum equation in (1). Using
index notation, it can be written as

Dζi
Dt

= ζjSij + ν∇2ζi , (49)

where Sij is the strain-rate or deformation-rate tensor, i.e., the symmetric part of the velocity-
gradient tensor,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (50)

The interesting term here is the first one on the right-hand side of (49); it describes the stretching
and turning of vortex lines (Fig. 13).

The turbulent cascade of 3D turbulence is often associated with vortex stretching, whereby a
vortex tube is turned to become aligned with the axis of strain and then becomes longer through
stretching that causes its radius to shrink and its vorticity amplitude to grow (while preserving
its circulation,

∫ ∫
ζ dA, as Kelvin’s theorem requires). In the inertial range, an estimate for the

vorticity amplitude ζL is

ζL =
VL
L

=
(εL)1/3

L
= ε1/3L−2/3 , (51)

which increases as L decreases. The dominant energy is thus at the outer scale, while the dominant
vorticity (i.e., enstrophy) is at the Taylor microscale or even the smaller Kolmogorov dissipation
scale.

We can illustrate this process with a simple solution that generalizes the solution in Turbu-
lent Flows: General Properties. Consider the case of a purely straining background flow that is
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Figure 12: Variations of skewness and kurtosis with Reλ in 3D homogeneous turbulence from
various experiments: (top)−Sk(∂xu); (middle) Ku((∂xu); (bottom) Ku((∂xT ). (Sreenivasan and
Antonia, 1997)
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Figure 13: (Left) The increase of ζy by stretching (ζx = ζz = 0). (Right) The change of ζy by
turning the vorticity vector. (Tennekes, 1989)

axisymmetric about the ẑ axis. In cylindrical coordinates,

U = (−sr, 0, 2sz) . (52)

The equation for the vertical component of vorticity ζz for deviations from the background flow is
therefore

Dζz

Dt
= 2sζz + ν∇2ζz . (53)

This has a self-similar solution for vorticity and azimuthal velocity of the form

ζz(r, t) =
Γ

4δ2
e−r

2/4δ2

uφ(r, t) =
Γ

2πr

[
1− e−r2/4δ2

]
, (54)

where the vortex tube radius δ is

δ2 =
ν

s
+
[
δ2o −

ν

s

]
e−st . (55)

This describes an exponentially stretching, narrowing, intensifying vortex that ultimately reaches
a steady-state balance between stretching and viscous diffusion on a scale Lv = (ν/s)1/2 that is
equivalent to the Taylor microscale, λ in (18), for this situation. This final state solution is called
Burger’s vortex.

The viscously-arrested vortex tube is a paradigm for the coherent structures of 3D homoge-
neous turbulence, vortex tubes or vorticity filaments (or even “worms”). By computational and
experimental techniques, tubes have been shown to be ubiquitously present in this turbulent regime
(Figs. 14-16), albeit not exactly in the stationary state of (55) but with associated movement, de-
formation, creation, and destruction phases of their life cycles.
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Coherent structures were discussed in Turbulent Flows: General Properties, particularly in
reference to the competition between vorticity and strain in non-divergent horizontal flows where
the vorticity-dominated regions of the flow have a more persistent, hence coherent, evolution. We
will encounter coherent structures in each of the physical regimes of geophysical turbulence. Their
particular shape and dynamics vary with the regime, but they also have many attributes in common
across regimes. The following is a working definition of a coherent structure that is not overly tied
to any particular regime:

• a recurrent, spatially local pattern in the fields, especially in ζ = ∇× u.

• a preferred state with respect to the conservative nonlinear fluid dynamics, permitting self-
organization of the flow by dissipative evolution towards an attractor.

• spatially isolated from each other, hence dynamically weakly coupled, most of the time;
thus, intermittent in their strong coupling events (e.g., where dissipation occurs most strongly).

• long-lived in a Lagrangian reference frame; thus, weakly dissipative over most of its lifetime
and capable of “anomalous” material transport (i.e., different from D ∝ t or the appropriate
inertial-range power-law, e.g., t3 in (41) for 3D homogeneous turbulence).

Many scientists, including me, believe that the investigation of coherent structures is one of
the most fruitful paths in turbulence research. A formalization of this opinion is the hypothesis of
ubiquity and dynamical control:

Turbulent motions at largeRe develop coherent structures whose dynamics govern
the aggregate properties of the flow, such as the transport and dissipation, in combi-
nation with other influences from the macroscopic forcing and damping (hence mean
circulations), wave propagation, and boundaries.

This hypothesis has yet to be fully proved, although it is perhaps close to being well demonstrated
in 2D Homogeneous Turbulence. It can be rather subtle to devise ways to test and/or demonstrate
the hypothesis.

The coherent structures of 3D homogeneous turbulence, vortex tubes, do conform to this defi-
nition, although less strongly so in several ways than the structures of other regimes. Their pattern
is one of strong vorticity amplitude aligned along a long axis with length ∼ Lo and a much nar-
rower width∼ λ. The latter means that they are of relatively small scale, compared to less isotropic
regimes where the coherent structures often occur over a wider range of sizes. Their associated
velocity field is an azimuthal swirl about the vorticity axis; thus, locally the flow is anisotropic,
approximately axisymmetric, and “horizontally” non-divergent. However, the orientation of this
axis is arbitrary, and isotropy is recovered after averaging over many coherent vortices. The dy-
namically preferred or selected state of vortex tubes is represented by the self-similar solution (54)
for vortex stretching in a large-scale strain field: given a more complex initial condition for the
fluctuation field, this is the one that comes to dominate with time, while the other components are
more vulnerable to cascading to dissipation, particularly once the vortex flow adds to their ambi-
ent strain field. The vortex tubes are usually isolated from each other (Figs. 14-16), but when the
large-scale flow pushes them together, they can undergo a vortex reconnection event (Fig. 17) that
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involves substantial dissipation; usually the reconnections are local switches in the connectivity of
the approaching vortex lines, but in extreme cases of globally parallel and anti-parallel approaches,
the outcomes are combined by merger and or annihilation, respectively. Vortex reconnection is an
extreme event in its scale contraction and vorticity amplification; it has even been shown to be
a plausible candidate for a finite-time singularity of the Euler equations (i.e., with ν = 0); see
Kerr (1993), but see also a skeptic’s statement by Frisch (1995), and a general discussion of the
mathematical structure of a possible instability in Majda and Bertozzi (2002). My own view is
that this issue is unsettled for lack of a sufficiently clean computational test, though it remains a
hot topic in the literature. Vortex lifetimes are on the order of a large-eddy turnover time τo except
when close encounters occur sooner. The rationale for this is that the tubes are sustained by being
correctly aligned with the large-scale strain field, and when the latter changes faster than the vortex
can follow by turning, then the tube configuration loses stability, through vortex breakdown. This
lifetime is rather short compared to more anisotropic flow regimes, where the coherent structures
often persist for many τo. The potential for anomalous transport is due to the tendency of parcels
near a tube to stay near it, since the flow is primarily recirculating. The hypothesis that vortex
tubes control the Kolmogorov cascade in 3D homogeneous turbulence has not yet been substan-
tially proved, although Chorin (1994) presents arguments in this direction. On the other hand, it
seems quite plausible that the intermittency statistics of this regime are the consequence of the
structure and dynamics of tubes, although this too has not been convincingly shown (but see the
discussion in Frisch, 1995).

Readings
1. Stewart and Garrett (2004) [an enticement article for high school mathematics students;

http://media.pims.math.ca/pi in sky/pi8.pdf.]

2. Sreenivasan (1990) [a News and Views article in Nature] 344, 192-193, entitled “Turbulence
and the tube”.]
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Figure 14: Intermittent vortex filaments in a 3D computational simulation of equilibrium homoge-
neous turbulence. (She et al., 1991)
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Figure 15: Two images of high concentrations of vorticity obtained in water seeded with small
bubbles for visualization. The tank is lit with diffusive light from behind, and the bubbles appear
dark: (a) a vorticity filament in ∼ homogeneous 3D turbulence; the core of an axial vortex below
a rotating disk (i.e., a pseudo-tornado). (Bonn et al., 1993)
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Figure 16: |ζ| iso-surfaces at several magnifications in a computational simulation of randomly
forced, 3D, isotropic, homogeneous turbulence. (L, λ, η) = forcing, Taylor, and Kolmogorov
scales. (Kaneda, 2005)
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Figure 17: Vortex reconnection: the initial orientations of a pair of neighboring vortex tubes is
indicated in the left column. They are advected closer together in the middle column, and their
configurations after reconnection are in the right column.
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