
2D Homogeneous Turbulence
2D homogeneous turbulence is relevant to geophysical turbulence on large horizontal scales

because of the thinness of Earth’s atmosphere and ocean (i.e., H/L� 1) and Earth’s rotation (i.e.,
Ro � 1) and stable stratification (i.e., Fr � 1), both of which tend to suppress vertical flow and
make the 2D horizontal velocity component dominant. A detailed explanation for this involves the
theory for geostrophic turbulence, which is a later topic. Danilov and Gurarie (2000) is a review
of the connection between 2D and geostrophic turbulence.

The homogeneous momentum and continuity equations are also applicable to 2D flow. Its vec-
tors are, of course, 2D, and we will identify these two dimensions with the horizontal coordinates
(x, y) and velocities (u, v). Thus, w = ∂z = 0. Because of horizontal non-divergence,

u = ẑ×∇ψ , (1)

and the only vorticity component is vertical, ~ζ = ẑζ , with

ζ = ∇2ψ . (2)

The vorticity equation is particularly simple in 2D flows,

Dζ

Dt
= ν∇2ζ , (3)

lacking any vortex stretching. It is isomorphic to a passive scalar equation, but it also governs the
flow evolution through (1)-(2). Thus, vorticity extrema can only decay with time, but the decay
can be slow if viscous effects are weak and a forward cascade is not efficient (as occurs locally
inside 2D coherent vortices when Re� 1; Sec. 2).

2D flow fits into the special category of horizontally non-divergent horizontal flows discussed
in Turbulent Flows: General Properties — except here without any z dependence in ψ. There
an analysis is made the local gradient advective competition between dominance by vorticity or
strain rate, i.e., coherence or cascade. This analysis is perhaps the most fundamental one for 2D
turbulence, playing an analogous role in this regard to the Kolmogorov cascade analysis for 3D
turbulence, whose local evolutionary process is primarily by vortex stretching. A clear difference
between these two conceptual views is that there is a non-cascading component in 2D turbulence
(i.e., quantities whose spectrum variance does not systematically move in wavenumber space to-
wards either larger or smaller wavenumbers and whose patterns are persistent rather than evanes-
cent). Insofar as 2D turbulence is a dynamical paradigm for turbulence in highly anisotropic flows
— as occur in many geophysical regimes — then the latter too will have non-cascading compo-
nents. There are no 2D flows in nature, although there are rather strong approximate isomorphisms
with the dynamics in non-neutral plasmas and thin soap films, which have therefore provided at
least a limited laboratory experimental comparison standard for 2D theory and modeling; hence,
the primary evidence has come from computations; these are all the more feasible in 2D at large
Re because there is one fewer space dimension to span than in 3D. So, the basis of our interest in
2D turbulence is as a possible paradigm for anisotropic turbulence, not its physical realizability. Its
great virtue as a dynamical system for turbulence is its greater computability because of its lower
spatial dimensionality.

Unlike the unsolved proof or disproof of global regularity in the 3D Navier-Stokes equations,
the matter in 2D has long been resolved in favor of regularity (Lions and Prodi, 1959; Ladyzhen-
skaya, 1969).



1 Energy and Enstrophy Cascades
Turbulence is an inherently dissipative phenomenon since advectively induced cascades spread the
variance across different spatial scales, reaching down to arbitrarily small scales where molecular
viscosity and diffusion can dampen the fluctuations through mixing. Integral kinetic energy and
enstrophy (i.e., vorticity variance) budgets can be derived from the momentum equations with
spatially periodic boundary conditions (for simplicity):

dE

dt
= −ν

∫ ∫
dx dy (∇u)2 = −E

dEns

dt
= −ν

∫ ∫
dx dy (∇ζ)2 = −

∫ ∫
dx dy η̂ , (4)

where
E =

1

2

∫ ∫
dx dy u2 , (5)

and
Ens =

1

2

∫ ∫
dx dy ζ2 . (6)

(In Turbulent Flows,
∫
η̂ dx was denoted as Eζ at the end of Sec. 1.) Therefore, due to the viscosity,

E and Ens are non-negative quantities that are non-increasing with time as long as there is no
external forcing of the flow. The respective dissipation rates are ε and η̂ (not to be confused with
the Kolmogorov scale in 3D).

The common means of representing the scale distribution of a field is through its Fourier trans-
form and spectrum. For example, the Fourier transform of ψ(x) is ψ̂(k), and its spectrum is
S(k) = 〈 |ψ̂(k)|2 〉. The averaging is over any appropriate symmetries for the physical situation
of interest (e.g., over time in a statistically stationary situation, over the directional orientation of
k in an isotropic situation, or over independent realizations in a recurrent situation). S(k) can be
interpreted as the variance of ψ associated with a spatial scale, L = 1/k, with k = |k|, such that
the total variance,

∫
dxψ2, is equal to

∫
dkS (i.e., Parceval’s Theorem).

With a Fourier representation, the energy and enstrophy are integrals over their corresponding
spectra,

E =

∫
dkE(k), Ens =

∫
dkEns(k) , (7)

with
E(k) =

1

2
k2 S, Ens(k) =

1

2
k4 S = k2E(k) . (8)

In the latter relations, the spatial gradient of ψ has a Fourier transform equal to the product of ik
and ψ̂. In an isotropic flow the spectrum is a function only of k, not k, even though the transform
itself ψ̂ remains a function of k at any given time (i.e., it contains spatial phase information about
the pattern). The spectra in (8) have different shapes due to their different weighting factors of k,
and the enstrophy spectrum has a relatively larger magnitude at smaller scales (larger k) than does
the energy spectrum (Fig. 1, top).

In the absence of viscosity — or during the early time in the interval after initialization with
smooth, large-scale fields before the cascade carries enough variance to small scales to make the
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Figure 1: (Top) Schematic isotropic spectra for energy E(k) and enstrophy Ens(k) in 2D turbu-
lence at large Reynolds number. Note that the energy peak occurs at smaller k than the enstrophy
peak. (Middle) Time evolution of total energy E(t) and enstrophy Ens(t), each normalized by
their initial value. The energy is approximately conserved when Re � 1, but the enstrophy has
significant decay over many eddy advective times L/V . (Bottom) Evolution of the energy spec-
trum E(k, t) at three successive times, t1 < t2 < t3. With time the spectrum spreads, and the peak
moves to smaller k.
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right-side terms in (4) significant — both E and Ens are conserved with time. If the cascade pro-
cess broadens the spectra (a generic behavior in turbulence, transferring variance across different
spatial scales), the only way that both integral quantities can be conserved, given their different
k weights, is that more of the energy is transferred toward larger scales (smaller k) while more
of the enstrophy is transferred toward smaller scales (larger k). This behavior is firmly estab-
lished by computational and laboratory studies, and it can, at least partly, be derived as a necessary
consequence of spectrum broadening by the cascades. Define a centroid wavenumber kE (i.e., a
characteristic wavenumber averaged across the spectrum), and a wavenumber bandwidth ∆kE for
the energy spectrum as follows:

kE =

∫
dk |k|E(k)

/
E

∆kE =

(∫
dk (|k| − kE)2E(k)

/
E

)1/2

. (9)

Both quantities are positive by construction. If the turbulent evolution broadens the spectrum, then
conservation of E and Ens (i.e., Ė = ˙Ens = 0, with the overlying dot again denoting a time
derivative) implies that the energy centroid wavenumber must decrease,

∆̇kE > 0 ⇒ −2kE k̇E > 0 ⇒ k̇E < 0 .

This implies a systematic transfer of the energy toward larger scales. This tendency is accompanied
by an increasing enstrophy centroid wavenumber, k̇Ens > 0 (with kEns defined analogously to
kE).1 These two, co-existing tendencies are referred to, respectively, as the inverse energy cascade
and the forward enstrophy cascade of 2D turbulence. The indicated direction in the latter case is
“forward” to small scales and large k values, which is the most common behavior for different
quantities in different regimes of turbulence (e.g., in 3D, uniform-density turbulence, the energy
cascade is in the forward direction, and while Ens is not an inviscid integral invariant, its cascade
direction is also forward).

In the presence of viscosity — or after the forward enstrophy cascade acts for long enough to
make the dissipation terms become significant — E will be much less efficiently dissipated than
Ens because so much less of its variance — and the variance of the integrand in its dissipative
term in the right side of (4) — resides in the small scales. Thus, for large Re (small ν), Ens will
decay significantly with time while E may not decay much at all (Figs. 1, middle, and 2)2. Over
the course of time, the energy spectrum shifts toward smaller wavenumbers and larger scales due
to the inverse cascade, and its dissipation rate further declines (Fig. 1, bottom).

From the above, it is therefore plausible that, as Re → ∞, E → 0, and Eζ approaches a
finite value at least after the interval of spectrum broadening extends the enstrophy spectrum to
the viscous scales. It is the enstrophy dissipation that is of central important in 2D turbulence, in
contrast to the energy dissipation in 3D (n.b., hypothesis H3 in 3D Homogeneous Turbulence). We
can make a scaling estimate for the enstrophy dissipation rate η̂:

η̂ =
Ens

τζ
= Ens3/2, (10)

1The only proof this statement is too lengthy to include here.
2In decaying 3D turbulence, energy is efficiently dissipated through its forward cascade, with E ∝ t−1 (Batchelor,

1953).

4



where the the nonlinear evolutionary time scale is an advective one, like the eddy turnover time,
but associated with the enstrophy, τζ = Ens−1/2, whose spectrum peak is at smaller scales (Fig.
1, top). The necessary time interval to reach the dissipation scales from smooth initial conditions
is t − t0 ∼ τd = Lo/Vo logRe (as seen from closure-theory calculations (e.g., Lesieur, 1997)
and numerical solutions). This time formally → ∞ as Re → ∞ — in contrast with the 3D
cascade where the time of onset of dissipation is finite as Re→∞; see the previous predictability
discussion — but its logarithmic dependence is so weak that in practice this time is only a few
large-eddy turnover times Lo/Vo. Note that both 1/τζ and η̂ will decrease with time if Ens is
not renewed against dissipation, and the energy-related advective rate Vo/Lo will also decrease if
Lo ∼ 1/ke grows while Vo ∼ E1/2 is preserved by the inverse cascade. Also note that τd can also
be expressed as

τd = Ens−1/2 logRe (11)

for the early-time evolution from narrow-band initial conditions, since the energy and enstrophy
time scales are identical then.

Because E → 0 as Re → ∞, E is referred to as a rugged invariant in 2D turbulence, because
(as with the circulation or total material content in either 2D or 3D) it has the same conservative
behavior with small ν, κ as with zero ν, κ. Obviously, Ens— like the scalar variance V (Turbulent
Flows, eq. (4)) in either 2D or 3D — is not a rugged invariant. Most conservative invariants of
Euler equations are not rugged invariants in most regimes of turbulence, but the few that are rugged
ones are very important as interpretive constraints on the evolution.

2 Decaying 2D Turbulence and Coherent Vortex Emergence

Figure 2: Kinetic energy in decaying 2D turbulence, normalized by the initial energy and an eddy
turnover time. The dashed curve has a much lowerRe value than the solid curve, and their forcings
are at large and small scales, Lf1 and Lf2 respectively. (Bracco et al., 2000)
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The cascade and dissipation in 2D turbulence co-exist with vortex emergence, movement, and
mergers (Fig. 3). From smooth initial conditions, coherent vortices emerge by axisymmetrization;
move approximately the same way point vortices do; they occasionally couple as rapidly moving
dipole vortex pairs for brief intervals; and they merge when two with the same circulation parity
move close enough together (Fig. 4)3. (These vortex processes are described further in the Ap-
pendix.) With time there are fewer vortices become fewer; they are larger, and sparser in space,
and they undergo less frequent close encounters. Since those close encounters are the occasions
when the vortices change through deformation in ways other than simple movement, the overall
evolutionary rates for the spectrum shape and vortex population become ever slower, even though
the kinetic energy does not diminish. Enstrophy dissipation occurs primarily during emergence
and merger events, as filaments of vorticity are stripped off of vortices. The filamentation is a
consequence of the differential velocity field (i.e., shear, strain rate) of one vortex acting on an-
other; this increases rapidly as the vortex separation distance diminishes. The filaments continue
irreversibly to elongate until their transverse scale shrinks enough to come under the control of
viscous diffusion, and the enstrophy they contain is thereby dissipated. So, the integral statistical
outcomes of cascade and dissipation in 2D turbulence are the result of a local dynamical processes
sequence of the elemental coherent vortices, at least during the period after their emergence from
complex initial conditions or forcing. The vortices substantially control the dynamics of 2D turbu-
lent evolution.

The preceding discussion refers to freely evolving or decaying turbulence, where the ultimate
outcome is energy and enstrophy dissipation through the inexorable action of viscosity. Alterna-
tively, one can consider forced, equilibrium turbulence, where a statistically stationary state occurs
with the turbulent generation rate balancing the dissipation rate for energy, enstrophy, and all other
statistical measures. The generation process may either be the instability of a forced mean flow
or be an imposed fluctuating force. For 2D turbulence with fluctuations generated on intermediate
spatial scales (smaller than the domain size and larger than the viscous scale), inverse energy and
forward enstrophy cascades ensue (Sec. 4). To achieve an equilibrium energy balance some dissi-
pative process, beyond viscosity, must be included to deplete the energy at large scales, or else this
component of the energy will continue to grow through its inverse cascade. (A common choice is
a linear drag force, motivated by the effect of an Ekman boundary layer.) The degree of coherent
vortex emergence and subsequent dynamical control of the equilibrium turbulence depends upon
the relative rates of forcing and energy dissipation (which disrupt the vortex dynamics) and of
vortex advection (which sustains it).

Now we consider the continuation of the initial-value problem, going beyond the early phase
of spectrum broadening through the dual cascades, inverse in energy and forward in enstrophy. We
assume that the domain size is large compared to the scale of the initial conditions k−1

o and that
the boundary conditions are periodic in both x and y; periodicity requires that

∫ ∫
ζ dx = 0 so

that ∇2ψ = ζ has a solution for ψ. The time histories of the kinetic energy and its wavenumber
spectrum are shown in Figs. 2-5. At early times, for t < τd, the plotted statistical measures
are essentially unchanged from their initial values, except for the spectrum centroid wavenumbers
which change in the expected sense, k̇e < 0 and k̇ens > 0. Once the spectrum has broadened to
reach the dissipation wavenumber kd (22), then the enstrophy dissipation rate η̂ begins to grow
and the enstrophy, Ens, begins to decay; in contrast, the energy E hardly decays at all, although

3Note that the 2D merger process is the topologically equivalent to the parallel vortex reconnection process in 3D.
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Figure 3: Vortex emergence and evolution in computational 2D turbulence, as seen in ζ(x, y) at
sequential times, with random, spatially smooth initial conditions. Solid contours are for positive
ζ , and dashed ones are for negative ζ . The contour interval is twice as large in the first panel as
in the others. The times are non-dimensional based on an advective scaling L/V . (Adapted from
McWilliams, 1984.)
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Figure 4: Computational solution for the merger of two like-sign, bare-monopole vortices (in non-
dimensional time units scaled by L/V ) initially located near each other. The exterior strain field
from each vortex deforms the vorticity distribution of the other one so that the ζ fields wrap around
each other; their centers move together along spiral trajectories; and ultimately they blend together
after viscous diffusion smooths the strong gradients. While this is occurring, vorticity filaments are
cast off from the merging vortices, stretched by the exterior strain field, and dissipated by viscosity.
(Adapted from McWilliams, 1991.)
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Figure 5: Evolution of the kinetic energy spectrum in decaying 2D turbulence at high Re. The
different curves are for different times after initialization, with a general tendency toward lowering
of E(k) at high k and raising it at low k. (Bracco et al., 2000)

ε does reach a small peak around t = τd. With the dissipation of enstrophy at small scales, the
enstrophy centroid kens(t) reverses its direction and begins to follow the inverse cascade of the
persistent (i.e., non-cascading) component of the ζ field. Finally, in addition to all these trends
associated with the second-moments of the solution, the kurtosis of the vorticity field Ku(ζ) (not
shown), begins to grow for t > τd, essentially without limit as long as the turbulent evolution
continues. Here we define the average as a spatial one over the domain. A large value of Ku
indicates significant spatial intermittency, and a growing value indicates increasing intermittency.
This is a statistical indication of the emergence of, and subsequently increasing dominance of the ζ
field by, the coherent vortices of 2D turbulence and of the the expanding area between the vortices
where the vorticity field is weak. Another statistical measure of intermittency is the single-point
PDF, shown in Fig. 6 for ζ at an intermediate time after the kurtosis has become large. The 2D
PDF shows the ∼ exponential tails for large amplitude values that were discussed earlier as the
nearly universal form for 3D turbulence at large Re (cf., McWilliams, 2007); however, the 2D PDF
form is quite different for small amplitude ζ values that become highly probable when the area
between vortices is large.

3 Dynamical Control by Coherent Vortices
The dynamical control of 2D turbulence by coherent vortices can be demonstrated in several differ-
ent ways. A direct way is by comparisons between solutions from a random initial condition (as in
the preceding section) and other solutions that start from either vortex-absent or vortex-only ideal-
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Figure 6: Evolution of the single-point PDF for vorticity in decaying 2D turbulence at high Re.
The different curves are for different times after initialization (when the PDF is Gaussian), with a
general tendency for increasing p for small |ζ|, lowering of p for intermediate |ζ|, and little change
of p for large |ζ|. (Bracco et al., 2000)

izations of the original solution once it has evolved into a coherent state (McWilliams, 1990). The
vortex-absent (v-a) state is obtained by preserving the amplitude (i.e., the spectrum) but scrambling
the phase of every Fourier component of the original solution at some time t∗,

ψ̂v−a(k, t∗) = |ψ̂orig(k, t∗)|ei2πrk , (12)

where rk is a random variable uniformly distributed in [0, 1]. The subsequent vortex-absent evo-
lution shows much more cascade and dissipation and much less intermittency until such time as
coherent vortices re-emerge (Fig. 7). The vortex-only (v-o) idealized states are ones in which
ζ(x) → ζv−o(x) is set to zero at t = t∗ everywhere except in the vortex core regions, or addition-
ally the core regions are made axisymmetric while preserving their circulation, or additionally their
core positions are randomly scrambled. In all cases the subsequent statistical evolution is statisti-
cally similar to the original solution (n.b., it cannot remain phase-coherent beyond a predictability
time ∼ an eddy turnover time), except for an early paucity of small-scale variance in the spectrum
that is filled soon in by the enstrophy cascade fed by vortex close encounters.

An indirect, but much more dynamically explicit, way of demonstrating vortex control is
through the success of vortex-based dynamical systems (i.e., vortex population-dynamics models;
cf., Turbulent Flows: General Properties). The simplest one is a mean-vortex theory in which the
N -vortex population distributions are assumed to collapse to a single value for size and strength,
and the evolution occurs in a way that preserves both the core vorticity amplitude and the energy,

ζo ∼ t0, E = Nπζ2oR
4
o ∼ NΓ2

o ∼ t0 , (13)

where Ro is the vortex radius and Γo = πζoR
2
o is the vortex circulation (Carnevale et al., 1991).
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Figure 7: Vorticity snapshots ζ(x, y) at t = 20, (above) and enstrophy spectra (below) in 2D tur-
bulence. The left column is for a decaying solution, and the right column is for a phase-scrambled
field whose spectrum is equivalent to the decaying solution’s at the scrambling time, and whose
subsequent evolution shows much stronger cascade and dissipation until such time as new coher-
ent vortices emerge (e.g., after several time units). This shows how vortices control the turbulent
evolution. (McWilliams, 1990)
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With these constraints, plus an assumption that the population evolution can be self-similar in time,
with the number of vortices decreasing as

N ∼ t−ξ (14)

because of mergers (where ξ ≈ 0.72 based on numerical solutions; (Fig. 8), the theory predicts

Ro ∼ tξ/4, Γo ∼ tξ/2 (15)

for the vortex size and strength and with

Ens = Nπζ2oR
2
o ∼ t−ξ/2

Kuζ =

(
Area

π

)
Nζ4oR

2
o

(Nζ2oR
2
o)

2
∼ tξ/2 (16)

for these bulk statistical measures. These predicted behaviors are roughly confirmed in the numeri-
cal solutions for 2D turbulence, although the enstrophy decay there is faster than in the mean-vortex
scaling theory, presumably because the latter implicitly assumes Re→∞.

Figure 8: Evolution of vortex population statistics in decaying 2D turbulence: (Left) population
number N(t) in two solutions with higher (dots) and lower (triangles) values of Re. (Right) pop-
ulation N , average vorticity extremum ζ , average radial size r, and average circulation Γ in the
solution with higher Re. (Bracco et al., 2000)

A more general vortex-based dynamical system is one based on the conservative point-vortex
model for vortex movement, but with evolutionary interruptions by abrupt, non-conservative events.
The latter mimic mergers; their abruptness could be justified either by rapid completion of the
merger (which is not strikingly true) or by the rapid dynamical decoupling of the local vortex pair
interaction leading to merger and the movements of the vortex system as a whole, including the
merging pair that has a bulk movement like a single vortex in addition to its local co-rotation. This,
then, is an example of the approximate equivalence of loss of information from the large-scale de-
grees of freedom (i.e., the coarse-grain representation by vortices) to smaller scales (the details of
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the merging vortices and the associated vorticity filaments) and dissipation. To the point-vortex
system, the abrupt merger transformation looks like a dissipative jump. This type of model is
called punctuated Hamiltonian dynamics (pHd) (Weiss and McWilliams, 1993). The system is
represented as N unequal vortices, with amplitudes ζi(t), radii Ri(t), circulations Γi (= πζiR

2
i ),

and positions (xi(t), yi(t)), i = 1, ..., N . The conservative part of the evolution is the Hamiltonian
point vortex system, with

ζ̇i = Ṙi = 0

ẋi =
∂H

∂yi
, ẏi = −∂H

∂xi
, (17)

where H(xi, yi,Γi) is the Hamiltonian for point vortices. The abrupt transformations occur when

|xk − xl| ≤ Dcr(Rk, Rl) and
ζk
ζl
> 0 , (18)

where Dc is the critical separation distance for the merger of unequal, like-sign vortices, as de-
termined from the moment model. The consequent transformation rules for (k, l) → m have the
same assumptions as in the mean-vortex theory, conservation of core vorticity and energy:

ζm = ζl ×max

[
1,
ζk
ζl

]
Γ2
m = Γ2

k + Γ2
l

xm =
(Γkxk + Γlxl)

(Γk + Γl)
. (19)

The pHd model asymptotically approaches the self-similar temporal scaling solution (13)-(16)
with great precision, which itself seems to be a reasonably successful correspondence to the free
evolution of 2D turbulence during its intermediate phase of a vortex-dominated evolution, follow-
ing vortex emergence and preceding the approach to the dipole end-state. Its calculated temporal
scaling exponent, ξ ≈ 0.7, for population decay is essentially the same as in the fluid solutions
However, the correspondence between the vortex population distribution functions of pHd and 2D
turbulence is less precise (with relatively more small vortices in pHd) in the scaling regime, al-
though it is still unclear how much this is due to excessive simplicity in the transformation rules
(17)-(19) or to finite Re effects in the numerical solution for 2D turbulence. (Similar success
has occurred using pHd to mimic fluid-dynamical solutions for equilibrium 2D turbulence with
the addition of vortex generation and large-scale damping rules.) Recently Dritschel et al.(2008)
revisited the population evolution problem and argued for a scaling exponent ξ = 2/3 based on
an argument that vortex close encounters leading to merger are effected primarily by rapid dipole
motions colliding with monopoles; phenomenologically, the evidence for this as a dominant vortex
process is not entirely convincing, and in any event it is included among the behaviors occurring
in the pHd model. LaCasce (2009) demonstrates that the population evolution exponent ξ can be
associated with the dispersion rate (i.e., D ∼ t1+ξ/2; also see Sec. 6 for a discussion of material
transport)4 for particles both inside and outside coherent vortices for the possibly lengthy interval

4The exponent 1 + ξ/2 ≈ 1.35 is indicative of “anomalous dispersion”, i.e., the exponent is not 1 and it is not
expressive of an inertial cascade range. It implies that dispersion is not simply due to random passing of trajectories
from one large eddy to a next one, and it also implies a degree of longer time correlation than in a random-walk
conception.
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in which mutual advection and merger of vortices is the dominant behavior (Sec. 2). This does
not fully resolve the question of why ξ has the value it does, but it provides further support for the
view that vortex motion dynamics determines vortex population and spectrum evolution.

4 Equilibrium Inertial Cascade Ranges
We can develop a 2D cascade theory, analogous to the Kolmogorov theory in 3D, by dimensional
analysis and with the assumption that the cascade rate is independent of the spatial scale for Ld <
L < Lo (Kraichnan, 1967). There are two possible inertial cascade ranges for 2D turbulence. In
an inverse energy inertial cascade range, we assume that ε is the scale-independent cascade rate
toward larger scales, whence

E(k) ∼ ε2/3k−5/3 , (20)

which has the same shape as in 3D (as it must have for dimensional consistency), albeit with a
different interpretation of the role of ε. In a forward enstrophy inertial cascade range, we assume
that η̂ is the scale-independent cascade rate toward smaller scales (with dimensions of time−3),
whence

E(k) ∼ η̂2/3 k−3 , (21)

which is a much steeper spectrum shape. The cascade of enstrophy to small scales implies a
transition to the enstrophy dissipation range at a scale Ld defined by

Ld =

(
ν3

η̂

)1/6

, (22)

which is analogous to the Kolmogorov dissipation length in 3D homogeneous turbulence.
These results allow us to posit an equilibrium spectrum E(k) for 2D turbulence (Fig. 9). We

assume that the system is somehow forced at a wavenumber, kf = 1/Lf , much larger than the
smallest available wavenumber in the domain and much smaller than the dissipation wavenumber,
kd = 1/Ld. The energy accumulation associated with the forcing moves towards larger scales
with a spectrum shape (20). There is an implicit assumption that equilibrium is achieved because
there is an energy sink on some very large scale since viscosity is ineffective at energy dissipation.
Often boundary-layer (i.e., Ekman) drag and radiative (i.e., Rayleigh) damping are invoked as
geophysically important large-scale energy sinks. The enstrophy accumulation associated with the
forcing moves toward smaller scales with a spectrum shape (21). Enstrophy dissipation must occur
in balance with the enstrophy generation by the forcing, and it can occur through viscous effects
on k ≥ kd. In a loose geophysical interpretation of this spectrum, it is plausible to imagine that
the high-k end of the anisotropic 2D cascade actually may be set by the transition to isotropic
3D turbulence; from this perspective the viscous dissipation in 2D turbulence is an eddy-viscosity
surrogate for the missing 3D dynamics of nature. We will return below to a discussion of when
and how well these equilibrium inertial ranges are realized in 2D turbulence.

The inertial-range spectrum shapes, justified most simply by dimensional reasoning, are the
following:

• An inverse energy cascade range with a constant energy flux across wavenumbers ε [m2s−3]
has the energy spectrum E(k) [m3s−2] shape,

E(k) ∝ ε2/3k−5/3 .
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Figure 9: A cartoon of the isotropic kinetic energy spectrum in equilibrium 2D homogeneous
turbulence, presuming a single source of forcing at an intermediate scale Lf .
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• A forward enstrophy cascade range with a constant enstrophy flux across wavenumbers η̂
[s−3] has the energy spectrum shape,

E(k) ∝ η̂2/3k−3 .

Notice that the former shape is identical to the 3D Kolmogorov shape, as it must be if it de-
pends only on ε and k. However, the k-direction of the energy flux is opposite in 2D and 3D.
Asymptotically in large scale separations among the domain, forcing, and dissipation lengths, the
inverse enstrophy and forward energy fluxes, respectively, are vanishingly small in the energy and
enstrophy inertial ranges.

We can make estimates for various quantities in the enstrophy range using an analogous phe-
nomenological scaling theory. Given the k−3 spectrum shape, a velocity estimate at scale L is

VL = η̂1/3 L , (23)

and the associated time scale is
τL = η̂− 1/3 . (24)

The dissipation scales are

Ld =

(
ν3

η̂

)1/6

= L0

[
η̂

(V0/L0)3

]− 1/6

Re− 1/2 and τd = η̂− 1/3 =
L0

V0

[
η̂

(V0/L0)3

]− 1/3

;

(25)
hence, the size of a turbulent event is(

Lo
Ld

)2

× τo
τd

=

[
η̂

(V0/L0)3

]2/3
Re . (26)

Thus, compared to their 3D counterparts, the enstrophy inertial-range velocity is much weaker, the
time scale is much longer (and independent of Re), and the size of a turbulent cascade event is
much smaller. In particular, the ratio of 2D and 3D event sizes is ∝ Re− 7/4, implying enormous
measurement and computational advantages in 2D. (This estimate does not take into account the
potentially very long lifetime of the coherent vortices in 2D (Fig. 10), lasting for many cascade
events.)

Computational simulations have also been made of equilibrium 2D turbulence (cf., decaying
turbulence in Sec. 2). To achieve equilibration in the presence of viscosity, a sustained excitation
source is needed and, because of inverse cascade, an extra energy sink is needed at large scales
since ν is ineffective at energy dissipation. An extension of (3) with these features is

Dζ

Dt
= F + µψ + ν∇2ζ . (27)

F [s−2] is a random forcing; the scales where it acts can either be relatively large if the focus is
on the forward enstrophy cascade or small if the focus is the inverse cascade. µ [m−2s−1] is a
“hypo-viscous” damping coefficient. Both F and µ are artifices compared to more realistic forcing
in nature from unstable mean currents and large-scale dissipation from infrared radiation or bottom
drag. As long as |F | is small compared to the enstrophy and Re is large, coherent vortices (Fig.
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Figure 10: Instantaneous vorticity field ζ(x, y) in equilibrium 2D turbulence in one-quarter of a
doubly periodic domain at high Re. Notice the multiply-folded filaments between the coherent
vortices near the forcing scale, the internal fluctuations within the dominant dipole, and the much
finer-scale vortices in the far-field regions with weak large-scale strain. This solution has a spec-
trum close to E ∝ k−3 on scales smaller than F . (Bracco and McWilliams, 2010)
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10) and strong intermittency can coexist with the expected inertial cascades. Notice that there is
interesting interior structure in the large-scale vortices when Re is large enough.

Figure 11 shows the spectrum (with k = 1 the largest wavenumber in a domain of size 2π)
and the PDF for ζ in equilibrium 2D turbulence (27). These are from a sequence of solutions with
increasing grid size N × N and decreasing ν (hence increasing Re), with the large-scale random
forcing F and damping coefficient µ unchanging. The spectrum both increases in overall energy
level and convincingly approaches a k−3 shape asRe increases, thereby confirming the expectation
of an enstrophy inertial-cascade range. This range also extends to higher wavenumbers as the
enstrophy dissipation scaleLd in (22) decreases with smaller ν. The PDF is plotted against vorticity
magnitude (combining both signs since this variable is parity symmetric here) and normalized by
the standard deviation of ζ , which does increase with Re. The PDF is approximately invariant
with Re, apart from some non-systematic variability in the tail reflecting a finite averaging time.
In particular, a characteristic intermittency measure, Ku[ζ] ≈ 7.2, and it scales approximately
as Ro0, quite different from its scaling as Re1/3 in equilibrium 3D turbulence. This is because
intermittency in 2D is controlled by the large- and medium-sized coherent vortices that do not
strongly change with Re, whereas in 3D the intermittency is dominated by flow structure near the
Kolmogorov scale, Ld ∼ Re− 3/4 (3D Homogeneous Turbulence).

Another result from Bracco and McWilliams (2010) is that different random forcing statistics,
in particular the forcing correlation time, lead to different Re scaling exponents for the bulk prop-
erties of the flow (e.g., energy, enstrophy, η) and a different values for the asymptotic intermittency
measure Ku[ζ], even though the energy spectrum shape continues to approach the inertial range
form, k−3. This implies that 2D turbulence is a non-universal regime, and the reason for this is that
different problems will have different populations of coherent vortices at larger scales where the
random forcing acts.

The inertial ranges of 2D turbulence have provided a simple standard against which to com-
pare atmospheric and oceanic spectra (Fig. 12). Motions on the synoptic scale in the extra-tropical
atmosphere have an approximately k−3 velocity and temperature spectrum shape, and oceanic
mesoscale motions in the ocean have an approximately k−5 shape for sea level (as would be ex-
pected for pressure in geostrophic balance with velocity; i.e., φ̂ ∼ û/fk). Furthermore, the
atmospheric mesoscale spectrum shows an approximately k−5/3 shape for velocity in a scale range
where the velocity field is highly anisotropic (with w � u, v) so the flow is not like 3D homoge-
neous turbulence. Of course, none of these regimes are two-dimensional. So, the rationalization of
relevance is that geostrophic and stratified turbulence regimes can share these inertial range shapes
with 2D turbulence. For the enstrophy inertial range, the assumed “forcing” is the instability of
mean currents (e.g., jet stream and Gulf stream) at scales just larger than the inertial range. For
the atmospheric mesoscale, the assumed forcing is at the convective scale ∼ 1 − 10 km. Lilly
(1989) argued that equilibrium 2D turbulence with both large- and small-scale forcing would have
a large-scale enstrophy range and small-scale energy range, with their respective cascade fluxes
passing through each other without disruptive interference (Fig. 13). We have to impose these
as forcings somewhat arbitrarily in our 2D dynamics since their true fluid dynamics involves 3D
motions. Although it is undoubtedly too simplistic to expect 2D turbulence to be an adequate
model for geophysical turbulence, it nevertheless is suggestive that it seems consistent with the
gross distributions of synoptic and mesoscale energy in nature.5

5In the case of the atmospheric mesoscale spectrum, Callies et al. (2015) have recently demonstrated that it is more
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Figure 11: Statistical measures of equilibrium 2D turbulence at a sequence of horizontal grid sizes
N ×N and Re values, ranging from (N = 256, Re = 1.5× 103) to (N = 8096, Re = 6× 106):
(left) kinetic energy spectrum E(k); (right) PDF of vorticity, ω = |ζ|, normalized by its standard
deviation σ. The curves are labeled by Re. (Bracco and McWilliams, 2010)

Probably a modern consensus is something very like a forward enstrophy cascade is realized in
the atmosphere and ocean on the larger mesoscales, but the possibility of an inverse (kinetic) energy
cascade on the smaller mesoscales is restricted to the “surfaces” (cf., surface quasigeostrophy;
Capet et al., 2008a) rather than the volumetric interiors where the energy cascades, if any, are
more likely to be in the forward direction. (But non-geostrophic models of the surface layer in the
sub-mesoscale range do exhibit forward kinetic energy cascades; Capet et al., 2008b).

We can estimate the magnitudes of various quantities in the inertial ranges, as in the 3D case.
For the energy range, the estimates are the same as in 3D, given the different interpretation of ε.
For the enstrophy range, the estimates are

VL = η̂1/3L, ζL = η̂1/3, τL = η̂−1/3 . (28)

Note that both the vorticity amplitude and the advective time scale are independent of the length.
The former means that a Taylor microscale is ill-defined in this range since the vorticity spectrum
will not have a sharply defined peak (i.e., k2e ∼ k−1 here) until a small enough scale is reached so
that viscosity depletes the spectrum amplitude (n.b., viscosity is also necessary in 3D turbulence
for the Taylor microscale to be well defined). From the earlier estimate of η̂ = Ens3/2, we can
replace the time scale here with η̂−1/3 = Ens−1/2.

consistent with internal-wave dynamics than with geostrophic dynamics that might be analogous to 2D turbulence.
This interpretation is also consistent with the modern understanding of stably stratified turbulence that its energy
cascade at large Re is in the forward direction.
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Figure 12: Measured spectra of kinetic energy near the tropopause in the atmosphere (left; Nastrom
and Gage, 1985) and and sea-surface dynamic height in the ocean (right; Fu, 1983). The reference
power laws, based on 2D turbulence inertial ranges, for the former are k−3 and k−5/3, consistent
with a forward enstrophy cascade from large-scale forcing and an inverse energy cascade from
small-scale forcing. The reference power law for the latter is k−5, consistent with a k−3 velocity
spectrum, geostrophic balance between horizontal velocity and surface dynamic height (pressure),
and a forward enstrophy cascade from large-scale forcing.
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Figure 13: A cartoon of the isotropic kinetic energy spectrum in equilibrium 2D homogeneous
turbulence, presuming two sources of forcing at large and small scales, Lf1 and Lf2 respectively
(cf., Lilly, 1989).
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5 Predictability in 2D
Using these estimates, we can estimate the predictability horizon within the enstrophy cascade
range, analogous to the 3D energy-range estimates that also apply to the 2D energy range. Again,
the phenomenological model for the evolution of the bounding wavenumber kp(t) between pre-
dictable and unpredictable portions of the spectrum is the following:

dkp
dt

= −kp
τk
, kp(0) = k∗ (29)

where now 1/τk = Ens1/2, a constant with respect to kp. Thus, the solution is

kp(t) = k∗ exp
[
−Ens1/2t

]
. (30)

Note that k∗ never becomes negligible in this formula, unlike 3D. Furthermore, the predictability
horizon time Tp–defined as the time it takes kp to reach the large-scale end of the enstrophy range
ko–is

Tp = Ens−1/2 log

[
k∗
ko

]
= Ens−1/2 log[Re∗] , (31)

where Re∗ is a Reynolds number based on the initial ignorance scale L∗. Thus, as Re∗ → ∞,
Tp → ∞ (unlike in 3D), although the rate of increase is with a slow logarithmic dependence so
that in practice Tp will be only a modest multiple of the advective turn-over time Ens−1/2. Note
that the logarithmic dependence on Re here is like that of the dissipation onset time. From these
dependencies, in contrast with the independence of Re in the 3D energy cascade, we can say that
the 2D enstrophy cascade is a less efficient.

6 Material Transport
As a final topic we consider material transport in 2D homogeneous turbulence as measured by
the statistical behavior of individual parcel trajectories. On a sufficiently long time scale τ � τζ ,
the dispersion D(τ) does seem to approach a linear function of τ , indicating a random-walking
behavior. However, this time can be very long, because parcels can both be trapped within vortex
cores or excluded from them for very long time intervals (Fig. 14). There seems to be no process
that will bring a parcel into the core of a surviving vortex, and parcels on the periphery of a vortex
will circulate around and be carried with it until some close vortex interaction strips it away. Thus,
the time for a passive tracer field to become well mixed everywhere is very long in 2D turbulence,
although the vortex exterior region (i.e., the majority of the area in the domain) becomes well
mixed after a time of only O(τζ).

We compare a Lagrangian stochastic diffusion model of particle dispersion (Sec. 4 of 3D
Homogeneous Turbulence notes) with the results of a 2D turbulence simulation after a time interval
on several eddy recirculation times (Fig. 15). It is clear that there is relatively more clumping of
particles with small pairwise separation distances in 2D than is consistent with diffusion. Particle
trapping in and near the coherent vortices is the primary reason.

A phenomenological theory for dispersion can be developed for the 2D enstrophy inertial range,
analogous to the one in Sec. 4 of 3D Homogeneous Turbulence notes. We start with the Lagrangian
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Figure 14: Trajectories of two advected parcels initially seeded into different regions in equilibrium
2D turbulence. The axis scales are in units of the computational grid spacing. The left panel shows
a parcel seeded inside a vortex, while the right panel shows a parcel seeded in the region outside
the vortices. Parcels do not enter the cores of vortices, and parcels within vortices stay inside for
as long as the vortex survives. (Provenzale et al., 1995)

diffusivity definition and estimate its right-hand side with an inertial range correlation time scale,
tc ∼ η−1/3:

κ =
d

dt
D ∼ D

tc
. (32)

Since this tc is independent of time since release and/or parcel separation distance, the result is
exponential dispersion,

D(t) ∼ exp[η1/3t] , (33)

with a corresponding κ that is also exponential. (For the 3D energy inertial range, we choose
tc ∼ ε−1/3D1/3, equating D with the local scale L2. The result is D(t) ∼ εt3; i.e., Richardson’s
law in eq. (33) of the 3D notes.) An observational evaluation forD on separation scales of 100s km
in the atmospheric stratosphere in Fig. 16 is consistent with exponential dispersion among balloon
pairs in (33). LaCasce (2010) shows other consistent evidence from the ocean over mesoscale
separation distances. Both indicate that 2D turbulence is relevant to mesoscale and synoptic scale
flows in nature.

A simple depiction of exponential separation behavior comes particle trajectories in a a uniform
strain flow in 2D; e.g.,

u = −αx , v = αy , (34)

where α is a strain rate assumed constant. This flow is steady and it has neither divergence nor
vorticity. It can be viewed as an idealization of the far-field flow in the neighborhood of a coherent
vortex. We solve trajectory equations for X(t) in this flow:

dX

dt
= −αX ,

dY

dt
= αY . (35)
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Figure 15: Two examples of particle advection. The 484 particles in the upper left panel have been
advected by the stochastic model (eq. (30) of 3D Homogeneous Turbulence notes), while the 121
particles in the upper right panel were advected by a 2D turbulent flow. The lower panels show
histograms of the x-displacements. (LaCasce, 2008)
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Figure 16: Dispersion vs. time for the EOLE balloon pairs in the stratosphere. The symbol D2

here is the same as D in Sec. 4 of 3D Homogeneous Turbulence notes. Notice the exponential
dispersion for smaller times, consistent with the enstrophy inertial range of 2D turbulence. At late
times the dispersion is approximately linear, consistent with diffusion by large eddies. (Morel and
Larcheveque, 1974)
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The solutions are exponentials,

X(t) = X(0)e−αt , Y (t) = Y (0)e+αt , (36)

and in particular the distance between two parcels with different initial locations in y will grow
exponentially in time. In 2D turbulence the vortices on scales larger than the enstrophy inertial
range provide a slowly varying strain field that causes the dispersion behavior in (33)6.

7 2D Turbulence in a Bounded Domain
Now assume that there are no-normal flow and no-slip boundary conditions of the side of a finite-
size 2D domain. This, of course, violates the homogeneity assumption, but nevertheless it provides
an early view of boundary-layer shear turbulence, and it might be viewed as a relevant analog
model for oceanic geostrophic turbulence which does have a bottom that rises to the surface at the
coastline, hence has a no-slip side boundary condition of sorts. (Actually the physically relevant
boundary stress is at the bottom, but still it has the effect of making the horizontal flow approach
zero at the coastline.) Because this problem has only two spatial dimensions, it is much more
computationally accessible than the 3D problems just mentioned.

The most important new behavior in a bounded domain is that any flow near the boundary, e.g.,
due to a coherent vortex, will induce a boundary layer with vorticity of the opposite sign and with
a magnitude that is larger as the boundary layer gets thinner, as happens when the Re value gets
larger (Fig. 17). This means that even in a freely decaying problem, there is an enstrophy source
near the boundary, although the energy decay continues to be monotonic.
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Figure 17: Sketch of the velocity and vorticity for a coherent vortex near a no-slip boundary. A
boundary layer develops adjacent to the boundary, and its associated vorticity is of the opposite
sign with a magnitude that increases without bound as Re− >∞.

There is a modest literature on this problem, focusing on free decay (e.g., Clercx et al., 2009).
Recently with a colleague, Guillaume Roullet, we have revisited this problem for both free decay

6Notice the similarity of the larger-scale flow structures and the smaller-scale effects in the different contexts of
vortex stretching in 3D (Sec. 7 of the 3D notes) and material dispersal in 2D.
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and randomly forced equilibrium cases in a variety of domain shapes. The novelty of our ap-
proach is a subgrid-scale parameterization for both the interior dissipation and the boundary-layer
vorticity generation that allows us to achieve much higher Re than previously and one with a time-
amplitude symmetry that is consistent with never reaching a late-time viscous decay phase as the
flow amplitude decreases (i.e., the advective time-scale evolution merely slows down as the energy
decays). The work is not yet published.
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Figure 18: Snapshots of the vorticity (here ζ = ω) with a sign-preserving logarithmic scale to
see a large amplitude range. The left figure is from a free decay problem (FD) in an irregular
domain (note the black land mask) with large Re, and the right one is from a randomly forced
statistical equilibrium problem (EQ) with the same Re. The grid resolution is N = 1024 in each
direction. Both plots are at late times when the flow is either self-similarly evolving with a slow
decay of energy (FD), or fluctuating about stationary statistics for energy, enstrophy, etc. Notice
the abundance of coherent vortices of both signs, the thin strips of vorticity in the boundary layer,
and flow separation from the boundary followed by vortex-filament instability and vortex roll-up
to form new coherent small-scale vortices. Some interior vortices have undergone mergers to grow
in size, but no vortex survives indefinitely long because of occasional destructive close-encounter
interactions with the boundaries.

An illustration of the flow fields for free-decay (FD) and forced-equilibrium (EQ) states is in
Fig. 18. As we have come to expect in 2D turbulence, the flow is dominated by coherent vortices.
Without going into much detail about these results, I’ll simply remark that the existence of the
boundaries alters the system evolution in several important ways:

• The self-similar distribution of vortex shapes in the late-time FD evolution involves a con-
tinual vorticity generation at small scales near the boundary, upscale energy cascade in the
interior, and intermittent large-vortex destruction during close approaches to the boundary.
This is inconsistent with inertial-range cascades as are found in unbounded and periodic-
domain 2D turbulence.

• In particular, for large enough Re in FD, there is no approach at late-time to a few-vortex
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non-turbulent end-state as occurs in a finite-size periodic domain. Instead, the continual
regeneration of small vortices near the boundary maintains a stable, many-vortex population
distribution.

• In EQ for large enough Re, there is no need for an “artificial” large-scale energy dissipation
mechanism, unlike in a periodic domain. The vortex destruction process for large-vortices
that come close enough to the boundary is sufficient to arrest the inverse energy cascade
before it reaches the domain scale.

Thus, 2D turbulence in a bounded domain provides a better analog dynamics for real geophys-
ical flows insofar as it does not exhibit the “unnatural” behaviors of a non-turbulent FD end-state
or the necessity of a large-scale dissipation process in EQ.
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Appendix: 2D Vortex Dynamics
Much of the interest in coherent vortices is their role as discrete dynamical elements that collec-
tively yield turbulent behaviors (i.e., the hypothesis of dynamical control). A scientific program
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for understanding and calculating turbulence is to identify the important processes for vortex dy-
namics (this Appendix) and then to use a population of vortices as a basis set for turbulent system
dynamics (Sec. 3). The terminology used in this section is only partly explained, and the reader
should refer to other sources on geophysical fluid dynamics for fuller explanations.

Individual coherent vortices are nonlinear stationary states of the inviscid dynamics. The most
common such state is an axisymmetric vortex, with

u · ∇ζ = J [ψ, ζ] = 0, (37)

and Rayleigh’s necessary condition for the instability of a symmetric, 2D flow, viz., the vorticity
gradient must change sign within the domain, favors the vorticity monopoles with ζ(r) monoton-
ically decreasing from the central extremum. There are also other stationary states with a vanish-
ing advection operator in some simple reference frame (e.g., oscillatory ζ(r), dipoles (modons),
tripoles, etc.), but none of these have the robustness to perturbations of a ζ(r) monopole. (One of
the major reasons why the coherent structures behave so differently in 2D and 3D homogeneous
turbulence is that there are no spatially local, inviscid stationary states in 3D.)

Coherent vortices emerge from complex antecedent conditions or forcing by a dissipative evo-
lution towards a stable, stationary state. For a vorticity monopole, this process is called axisym-
metrization. The principle argument for it is one of inevitability: there is no other type of localized
stationary state with vorticity of a single sign for the flow to evolve towards and escape the nonlin-
ear cascade to enstrophy dissipation. This argument can also be extended to explain the occurrence
of the merger interaction of close, like-sign vortices: when the vortices are well separated, like-sign
vortices can be a co-rotating stationary state (as with 2 point vortices). But, once they are close
enough together, within a distance between centers (e.g., a critical distance, Dcr ≈ 3.2R for two
equal vortices with mean radius R), there are no longer any co-rotating, 2-center stationary states
available, and so the flow must evolve to a single-center (i.e., merged) state. The merger interaction
involves entwining of the initially distinct vortex cores around each other while casting off vortex
filaments that are stretched out until enstrophy dissipation occurs (4). This like-sign vortex pair
interaction is in contrast to a close opposite-sign pair, for which the modon stationary state exits,
again as with 2 point vortices.

The simplest dynamical system (based on an assumption of a singularized vorticity distribu-
tion) that predicts the merger threshold is the elliptical moment model (Melander et al., 1987),
which is a generalization of the point-vortex model that also represents elliptical deformations of
the core vorticity region; outside the threshold separation distance, the moment model has a sta-
tionary state of two co-rotating, deformed, like-sign vortices, but inside the threshold the separation
distance tends to zero, and the vortex ellipticity tends to infinity with time. The moment model
also accounts for the robustness of coherent vortices in the stain field of the flow as a whole.

In a uniform strain field, an elliptically deformed vortex is a stationary solution as long as the
ζ amplitude is large enough compared to the background strain rate; otherwise, the vortex will
continue to elongate without limit in time. This illustrates another common vortex interaction in
2D turbulence: a weak vortex, of either sign, may be elongated towards irreversible dissipation
within the strain field around a stronger vortex, before it is either advected away or brought to
merger. This provides a mechanism whereby a population with many weak vortices may evolve
towards a distribution with fewer ones (viz., the scaling solution below).

Finally, since an isolated vortex filament is unstable to roll up into new vortices with a size
comparable to the filament width, secondary vortex generation may occur if the filaments gener-
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ated through vortex interactions are advected outside the elongating and stabilizing influence of
the primary vortices; however, turbulent solutions indicate this secondary generation process is
relatively rare.
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