Corrections to 2006 Edition of Fundamentals of Geophysical Fluid Dynamics
James C. McWilliams
6 January 2014
Note: Some corrections were made in the 2008 printing, and more were made in the 2011 printing. The only known corrections to the 2011 printing are listed at the end.

- Page 9, last line: replace the clause "and $m x a$ is momentum" with "the time derivative of velocity v, and $m v$ is momentum".
- Page 10, second line before (2.3): change "acceleration of a fluid parcel" to "time derivative"
- Page 20, Fig. 2.4: the sign symbol should be changed from "+" to "-" in the center of the right panel and "positive χ " should be changed to "negative χ " in the caption.
- Page 28, line 5: the pressure unit is equal to " $10^{5} \mathrm{~Pa}$ " not " 1 Pa ".
- Page 54, equation (3.17), last line, and equation (3.18): insert minus sign on right-hand side.

$$
\begin{align*}
\frac{d C}{d t} & =-\int_{\mathcal{C}} \frac{1}{\rho} \boldsymbol{\nabla} p \cdot \mathbf{d s}+\cdots \\
& =-\iint_{\mathcal{A}} \hat{\mathbf{n}} \cdot \boldsymbol{\nabla} \times\left[\frac{1}{\rho} \nabla p\right] d \mathcal{A}+\cdots \\
& =-\iint_{\mathcal{A}} \frac{1}{\rho^{2}} \hat{\mathbf{n}} \cdot \nabla p \times \nabla \rho d \mathcal{A}+\cdots \tag{3.17}\\
\frac{d C}{d t} & =-\iint_{\mathcal{A}} \frac{\hat{\mathbf{z}}}{\rho_{0}^{2}} \cdot \nabla_{h} p \times \nabla_{h} \rho d x d y+\cdots \tag{3.18}
\end{align*}
$$

- Page 65, equation (3.60): the final right-hand parenthesis in the third line should be deleted to become:

$$
\begin{align*}
\zeta(\mathbf{x}, t) & =\sum_{\alpha=1}^{N} C_{\alpha} \delta\left(\mathbf{x}-\mathbf{x}_{\alpha}\right) \\
\psi(\mathbf{x}, t) & =\frac{1}{2 \pi} \sum_{\alpha=1}^{N} C_{\alpha} \ln \left|\mathbf{x}-\mathbf{x}_{\alpha}\right| \\
\mathbf{u}(\mathbf{x}, t) & =\frac{1}{2 \pi} \sum_{\alpha=1}^{N} \frac{C_{\alpha}}{\left|\mathbf{x}-\mathbf{x}_{\alpha}\right|^{2}}\left[-\left(y-y_{\alpha}\right) \hat{\mathbf{x}}+\left(x-x_{\alpha}\right) \hat{\mathbf{y}}\right] \tag{3.60}
\end{align*}
$$

[This correction was made in the 2008 Edition.]

- Page 66, equation (3.67): replace it with

$$
\begin{equation*}
p_{\alpha}=\left|C_{\alpha}\right|^{1 / 2} x_{\alpha}, \quad q_{\alpha}=\left|C_{\alpha}\right|^{-1 / 2} C_{\alpha} y_{\alpha} \tag{3.67}
\end{equation*}
$$

and make the prefactor for H be $1 / 4 \pi$ in (3.69), instead of $1 / 2 \pi$.

- Page 73, first line after equation (3.72): the sentence should begin "Introducing (3.72) into (3.30) and ..."; i.e., the reference previously was (3.24), but should be (3.30).
- Page 74, equation after (3.77): delete one of the r factors in the right-side integral:

$$
\int_{0}^{\infty} g^{*} \partial_{r}\left[r \partial_{r} g\right] d r=-\int_{0}^{\infty} r\left(\partial_{r} g^{*}\right)\left(\partial_{r} g\right) d r
$$

- Page 74-75, bottom and top lines: replace parenthetical remark with "(since the point in x where $\partial_{x} \bar{\zeta}=0$ in a parallel flow is an inflection point for the velocity profile, $\partial_{x x} \bar{v}=0$)"
bullet Page 76, equation (3.85), the factor of 2 in γ^{2} should be in the numerator not denominator:

$$
\begin{equation*}
\gamma^{2}=\left.\frac{2}{r^{3}} \bar{A} \frac{d \bar{A}}{d r}\right|_{r=r_{o}} \tag{3.85}
\end{equation*}
$$

- Page 77, equation (3.91): there is a typographic error, and after its removal the formula is

$$
\begin{equation*}
s^{2}=\left(\frac{k U}{2}\right)^{2}\left(2 \frac{1+\left(1-[k D]^{-1}\right) \tanh [k D]}{k D(1+\tanh [k D])}-1\right) \tag{3.91}
\end{equation*}
$$

- Page 85, equation (3.106): a $\boldsymbol{\nabla}$ symbol needs to be inserted into the second left-side term to become:

$$
\frac{\partial \bar{\tau}}{\partial t}+\overline{\mathbf{u}} \cdot \nabla \bar{\tau}=-\nabla \cdot\left(\overline{\mathbf{u}^{\prime} \tau^{\prime}}\right)
$$

[This correction was made in the 2008 Edition.]

- Page 85, equations (3.107)-(3.108): move last line in the former to start of latter and put a factor of $1 / 2$ into the final line to become:

$$
\begin{align*}
\overline{\mathbf{u}^{\prime} \tau^{\prime}} & \approx-\overline{\overline{\mathbf{u}^{\prime}\left(\mathbf{r}^{\prime} \cdot \boldsymbol{\nabla}\right) \bar{\tau}}} \\
& =-\frac{\overline{d \mathbf{r}^{\prime}}}{d t}\left(\mathbf{r}^{\prime} \cdot \nabla\right) \bar{\tau} \tag{3.107}
\end{align*}
$$

and

$$
\begin{equation*}
\overline{\frac{d r^{i \prime}}{d t} r^{j \prime}}=\frac{1}{2} \frac{d}{d t} \overline{r^{i \prime} r^{j^{\prime}}}=\kappa_{e} \delta_{i, j}, \tag{3.108}
\end{equation*}
$$

- Page 90, equation (3.116): For Δk_{E} the $K E$ divisor belongs inside the square root:

$$
\begin{align*}
k_{E} & =\int d \mathbf{k}|\mathbf{k}| K E(\mathbf{k}) / K E \\
\Delta k_{E} & =\left(\int d \mathbf{k}\left(|\mathbf{k}|-k_{E}\right)^{2} K E(\mathbf{k}) / K E\right)^{1 / 2} / K E . \tag{3.116}
\end{align*}
$$

- Page 124, Fig. 4.11: The two dotted sloping lines connecting the middle equal-height points on the front and rear side of the wave form have the same propagation velocity $V_{+}\left(\xi_{+}\right)$, hence the same slope. The revised figure below depicts this feature more accurately.

Fig. 4.11. Nonlinear evolution for an isolated, shallow-water, gravity wave of elevation. The wave shape at the earlier time ($t=t_{1}$; top) evolves into the shape at a later time $\left(t=t_{2}\right.$; bottom) that has a shallower slope on its backward face and a steeper slope on its forward face. This example is for a rightward propagating wave. The characteristic coordinate, ξ_{+}, remains constant for each point on the wave, but its associated velocity, V_{+}, is larger where the elevation is higher (shown by the line slopes in the middle diagram).

- Page 125, top line of text (below Fig. 4.12): The coordinate relations are " $x_{1}<X<x_{2}$ ", not the reverse.
- Page 126-127, equations (4.92) and (4.97): In the expressions for \mathbf{u}_{h} and \mathbf{r}_{h}^{\prime}, cancel the g factors in numerator and denominator, and change the sign of the term $\propto f$.

$$
\begin{align*}
\eta & =\eta_{0} \cos [\Theta] \\
\mathbf{u}_{h} & =\frac{\eta_{0}}{H K^{2}}(\omega \mathbf{k} \cos [\Theta]+f \hat{\mathbf{z}} \times \mathbf{k} \sin [\Theta]) \\
w & =\frac{\omega \eta_{0} z}{H} \sin [\Theta] \tag{4.92}
\end{align*}
$$

and

$$
\begin{align*}
\mathbf{r}_{h}^{\prime} & =-\frac{\eta_{0}}{H K^{2}}\left(\mathbf{k} \sin [\Theta]-\frac{f}{\omega} \hat{\mathbf{z}} \times \mathbf{k} \cos [\Theta]\right), \\
r^{z \prime} & =\frac{\eta_{0} z}{H} \cos [\Theta] . \tag{4.97}
\end{align*}
$$

- Page 128, first unnumbered equation: The expression to the right of the arrow has a factor of $1 / 2$, i.e.,

$$
\mathbf{u}^{s t} \rightarrow \sqrt{\frac{g}{H}} \frac{\eta_{0}^{2}}{2 H}\left(\frac{\mathbf{k}}{K}\right)=\frac{u_{h 0}^{2}}{2 \sqrt{g H}}\left(\frac{\mathbf{k}}{K}\right)
$$

- Page 129, first line of equation (4.103): There are two horizontal gradient operators, i.e.,

$$
\begin{align*}
-\overline{\mathbf{u}_{h}^{\prime} \cdot \boldsymbol{\nabla}_{h} \tau^{\prime}} & =\overline{\left(\mathbf{u}_{h}^{\prime} \cdot \nabla_{h}\right)\left(\int^{t} \mathbf{u}_{h}^{\prime} d t\right) \cdot \nabla_{h} \bar{\tau}} \\
& \approx-\overline{\left(\left(\int^{t} \mathbf{u}_{h}^{\prime} d t\right) \cdot \nabla_{h}\right) \mathbf{u}_{h}^{\prime}} \cdot \boldsymbol{\nabla}_{h} \bar{\tau} \\
& =-\mathbf{u}^{s t} \cdot \nabla_{h} \bar{\tau} \tag{4.103}
\end{align*}
$$

- Page 135, second line following equation (4.124): The symbol R should be formatted the same as the first symbol in (4.124) and as on the fifth line following equation (4.124), i.e., approximately drawn as \mathcal{R}. [This correction was made in the 2008 Edition.]
- Page 151, equation (5.37): the prefactors for $\tilde{\psi}_{1}$ should have square roots:

$$
\begin{align*}
\psi_{1} & =\tilde{\psi}_{0}+\sqrt{\frac{H_{2}}{H_{1}}} \tilde{\psi}_{1} \\
\psi_{2} & =\tilde{\psi}_{0}-\sqrt{\frac{H_{1}}{H_{2}}} \tilde{\psi}_{1} \tag{5.37}
\end{align*}
$$

- Page 156, first line in equation (5.52): The exponent should be n, not $n+1$:

$$
\bar{\psi}_{n}=(-1)^{n} U y
$$

- Page 161, Fig. 5.6: remove the tilde symbols from the two layer streamfunctions in the third row of the figure, so they are ψ_{1}^{\prime} and ψ_{2}^{\prime}.
- Page 181, equation (5.103): The sign convention here for \mathbf{E} is the opposite of that used in Andrews, D.G., J.R. Holton, and C.B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press. [This is a remark not a needed correction.]
- Pages 198 (equation (6.30)), 199 (equation (6.33)), and 202 (equation (6.38), first line): the symbol f should be replaced by $|f|$ in these specific formulas. Also, in equation (6.38), the equation for $\bar{v}(z)$ should swap $\cos [\lambda z]$ and $\sin [\lambda z]$.

$$
\begin{align*}
h_{e k} & =\lambda^{-1}=\sqrt{\frac{2 \nu_{e}}{|f|}} \tag{6.30}\\
\epsilon_{e k, b o t} & =\sqrt{\frac{|f| \nu_{e}}{2}}=\frac{|f| h_{e k}}{2} \tag{6.33}
\end{align*}
$$

$$
\begin{align*}
& U(z)=\left(1-i \mathcal{S}_{f}\right) \frac{\tau_{s}^{x}+i \tau_{s}^{y}}{\rho_{o} \sqrt{2|f| \nu_{e}}} e^{\lambda\left(1+i \mathcal{S}_{f}\right) z} \\
& \begin{aligned}
& \bar{u}(z)= \frac{1}{\rho_{o} \sqrt{2|f| \nu_{e}}} e^{\lambda z}\left(\left(\tau_{s}^{x}+\mathcal{S}_{f} \tau_{s}^{y}\right) \cos [\lambda z]\right. \\
&\left.\quad+\left(\tau_{s}^{x}-\mathcal{S}_{f} \tau_{s}^{y}\right) \sin [\lambda z]\right) \\
& \begin{array}{c}
\bar{v}(z)= \\
\\
\\
\\
\\
\\
\rho_{o} \sqrt{2|f| \nu_{e}}
\end{array} e^{\lambda z}\left(\left(-\mathcal{S}_{f} \tau_{s}^{x}+\tau_{s}^{y}\right) \cos [\lambda z]\right. \\
&\left.\quad\left(\mathcal{S}_{f} \tau_{s}^{x}+\tau_{s}^{y}\right) \sin [\lambda z]\right),
\end{aligned}
\end{align*}
$$

- Page 238, Rotating shallow-water and wave dynamics, problem 7, fourth line: insert "zonal" before "velocity patch" so it becomes "; (c) a zonal velocity patch". [This correction was made in the 2008 Edition.]
- Page 239, Baroclinic and jet dynamics, problem 5, second line: insert "quasigeostrophic," before "baroclinic instability" so it becomes "quasigeostrophic, baroclinic instability of a mean flow." [This correction was made in the 2008 Edition.]
- Page 239-240, problem 8: We rotate the flow orientation to be consistent with the Answers. The equation in the third line should be changed from

$$
\mathbf{u}=S z \hat{\mathbf{y}}, \quad b=N^{2} z+f S x
$$

to

$$
\mathbf{u}=S z \hat{\mathbf{x}}, \quad b=N^{2} z-f S y
$$

The mean advection in the top two equations on p .240 should be changed from $V \partial_{y}$ to $S z \partial_{x}$, and the factor in the last term in the vertical boundary condition should be changed from $\partial_{y} \psi^{\prime}$ to $\partial_{x} \psi^{\prime}$. The new forms are

$$
\left[\partial_{t}+S z \partial_{x}\right] q^{\prime}=0 \quad \Rightarrow \quad q^{\prime}=0,
$$

and

$$
\left[\partial_{t}+S z \partial_{x}\right] \partial_{z} \psi^{\prime}-S \partial_{x} \psi^{\prime}=0
$$

- Page 243, reference Holland, W.R. (1986), second line: The editor's name should be J.J. O'Brien. [This correction was made in the 2008 Edition.]

I think that the corrections above were made in the 2011 printing.
Additional corrections are the following:

- Page 15: move remark about " $w=D_{t} z$ " from below 1st eqn. in Sec. 2.1.4 to below (2.19).
- Page 66, equation (3.69): make the prefactor for H be $1 / 4 \pi$, instead of $1 / 2 \pi$.
- Page 76, equation (3.85), the factor of 2 in γ^{2} should be in the numerator not denominator:

$$
\begin{equation*}
\gamma^{2}=\left.\frac{2}{r^{3}} \bar{A} \frac{d \bar{A}}{d r}\right|_{r=r_{o}} \tag{3.85}
\end{equation*}
$$

