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Preface

Earth’s atmosphere and oceans exhibit complex patterns of fluid motion over
a vast range of space and time scales. On the planetary scale they combine to
establish the climate of Earth in response to the forcing by solar radiation
inhomogeneously absorbed by the materials that comprise the air, water, and
land. Through instabilities of the planetary-scale circulation, spontaneous and
energetic variability arises in many different forms such as waves, jets, vortices,
boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the
science of all these types of fluid motion. It seeks to identify and analyze the
essential dynamical processes that lie behind observed phenomena. As with
any other theoretical science of complex, nonlinear dynamics, mathematical
and computational modeling are essential research methodologies, and there is
a continuing search for more powerful, accurate, and efficient techniques.

This book is an introduction to GFD for readers interested in doing research
in the physics, chemistry, and/or biology of Earth’s fluid environment. It is a
product of teaching a first graduate course on GFD in the Department of
Atmospheric and Oceanic Sciences at the University of California, Los Angeles
(UCLA) for several years. It is only an introduction to the subject; additional,
more specialized GFD courses are required to fully prepare for practicing
research in the subject. Nevertheless, to stimulate students’ enthusiasm, the
contents are a mixture of rudimentary mathematical analyses and somewhat
complex dynamical outcomes. Students in this course are expected to have
some familiarity with physics and mathematics, at the level of general
dynamics (mechanics) and partial differential equations. In the present
graduate curriculum at UCLA, students are first exposed to a course on basic
fluid dynamics and thermodynamics and to another course on the major
phenomena and underlying conceptual models for winds and currents. This
background comprises the starting point for this book.

GFD is a mature subject, having had its adolescence in the middle of the
last century. Consequently many meritorious books already exist. Most of
them are specialized in their material, but several of the more general ones are
usefully complementary to this book, e.g., Cushman-Roisan (1994), Gill
(1982), Holton (1992), Pedlosky (1987), Salmon (1998), and Stern (1975).
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Chapter 1

The Purposes and Value of
Geophysical Fluid Dynamics

In this book we will address a variety of topics that, taken together, comprise
an introduction to geophysical fluid dynamics (GFD). The discussion is
intended to be more about the concepts and methods of the subject than
specific formulae or observed phenomena. I hope they will be of both present
interest and future utility to those who intend to work in Earth Sciences but
do not expect to become specialists in the theory of dynamics, as well as to
those who do have that expectation and for whom this is only a beginning.

Before starting I would like to make some preliminary remarks about the
scope, purposes, and value of GFD.

The subject matter of GFD is motion in the fluid media on Earth and the
distributions of material properties, such as mass, temperature, ozone, and
plankton. (By common custom, planetary and astrophysical fluids are also
included in GFD, since many of the scientific issues are similar, but it is
awkward to use a more accurate title that explicitly includes all of these
media. This book will not leave Earth.) So there is some chemistry, and even
biology, in GFD, insofar as they influence the motion and evolution of the
reactive materials. Nevertheless, for the most part GFD is a branch of physics
that includes relevant aspects of dynamics, energy transfer by radiation, and
atomic and molecular processes associated with phase changes.

Yet GFD is by no means the entirety of ocean-atmosphere physics, much
less its biogeochemistry. Within its subject-matter boundaries, GFD is
distinguished by its purpose and its methodology. It is not principally
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concerned with establishing the facts about Earth’s natural fluids, but rather
with providing them a mathematical representation and an interpretation.
These, in my opinion, are its proper purposes.

Beyond knowledge provided by basic physics and chemistry, the facts about
Earth’s fluids are established in several ways:

• in the laboratory, where the constitutive relations, radiative properties,
and chemical reactions are established, and where some analog
simulations of natural phenomena are made;

• in the field, where measurements are made of the motion fields,
radiation, and material property distributions;

• by theory, where the fundamental laws of fluid dynamics are well known,
although — primarily because of their nonlinearity — only a small
fraction of the interesting problems can actually be solved analytically;
and

• on the computer, where relatively recent experience has demonstrated
that simulations, based upon the fundamental relations established in
the laboratory and theory as well as parameterizations of influential but
unresolved processes, can approach the reality of nature as represented
by the field measurements, but with much more complete information
than measurements can provide.

In physical oceanography most of the pioneering laboratory work (e.g., the
equation of state for seawater) has already been done, and so it is easy to take
it for granted. This is also true for physical meteorology, but to a lesser
degree: there remain important mysteries about the physical properties of
water droplets, aerosols, and ice crystals, especially in clouds since it is
difficult to simulate cloud conditions in the laboratory. For many decades and
still today, the primary activity in physical oceanography is field
measurements. Field measurements are also a major part of meteorology,
although computer modeling has long been a large part as well, initially
through the impetus of numerical weather forecasting. Field measurements
are, of course, quite important as the “measurable reality” of nature. But
everyone who does them comes to appreciate how difficult it is to make good
measurements of the atmosphere and ocean, in particular the difficulty in
obtaining a broad space-time sampling that matches the phenomena.

7



Computer simulations — the “virtual reality” of nature — are still primitive
in various aspects of their scope and skillfulness, though they are steadily
improving. There are successful examples of synoptic weather forecasting and
design of engineering fluid devices (such as an airplane) to encourage us in
this. One can also do analog simulations of geophysical fluid motions under
idealized conditions in laboratory experiments. Some valuable information has
been obtained in this way, but for many problems it is limited both by the
usually excessive influence by viscosity, compared to nature, and by
instrumental sampling limitations. Looking ahead it seems likely that
computer simulations will more often be fruitful than laboratory simulations.

The facts that come from laboratory experiments, field measurements, and
computer simulations are usually not simple in their information content.
There is nothing simple about the equation of state for seawater, for example.
As another example, a typical time series of velocity at a fixed location
usually has a broad-band spectrum with at most a few identifiable frequency
lines that rarely are sharp (tides are an exception). Associated with this will
be a generally decaying temporal lag correlation function, hence a finite time
horizon of predictability. Furthermore, most geophysical time series are more
appropriately called chaotic rather than deterministic, even though one can
defend the use of governing dynamical equations that are deterministic in a
mathematical sense but have the property of sensitive dependence, where any
small differences amplify rapidly in time (Chap. 3). The complexity of
geophysical motions is, in a generic way, a consequence of fluid turbulence.
Even the tides, arising from spatially smooth, temporally periodic
astronomical forcing, can be quite complex in their spatial response patterns.
There is no reason to expect the relevant simulations to be appreciably simpler
than the observations; indeed, their claim to credibility requires that they not
be. An illustration of fluid dynamical complexity is the accompanying satellite
image of sea surface temperature off the West Coast of the United States
where coastal upwelling frequently occurs (Fig. 1.1). Fig. 1.2 illustrates the
comparable complexity of a computational simulation of this regime.

Arthur Eddington, the British astrophysicist, remarked, “Never trust an
observation without a supporting theory.” Facts about nature can be either
important or trivial (i.e., generic or incidental) and can be grouped with other
facts either aptly or misleadingly (i.e., causal or coincidental). Only a theory
can tell you how to make these distinctions. For complex geophysical fluid
motions, I think there is little hope of obtaining a fundamental theory that
can be applied directly to most observations. Perhaps the Navier-Stokes

8



-128 -126 -124 -122
longitude (°W)

35

36

37

38

39

40

41

42

43

44

45

46

47
lati

tud
e (

°N
)

-128 -126 -124 -122
longitude (°W)

35

36

37

38

39

40

41

42

43

44

45

46

47

 

11 12 13 14 15 16 17

-128 -126 -124 -122
longitude (°W)

35

36

37

38

39

40

41

42

43

44

45

46

47

 

SST (°C)
9/5/94  0000

Columbia R.

Newport

Cape Blanco

Oregon
California

Cape Mendocino

Pt. Arena

SF

Courtesy of Jack Barth
and Ted Strub

Oregon State University

Figure 1.1: Sea surface temperature (SST) off the U.S. West Coast on 5 Septem-
ber 1994, measured with a satellite radiometer. The water near the coastline is
much colder due to upwelling of cold subsurface water. The upwelling is caused
by an equatorward alongshore wind stress in association with a horizontally
divergent, offshore Ekman flow in the upper ocean (Chap. 6) as well as an
alongshore surface geostrophic current (Chap. 2). The alongshore current is
baroclinically unstable (Chap. 5) and generates mesoscale vortices (Chap. 3)
and cold filaments advected away from the boundary, both with characteris-
tic horizontal scales of 10-100 km. The light patches to the left are obscuring
clouds. (Courtesy of Jack Barth and Ted Strub, Oregon State University.)
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Figure 1.2: Sea surface temperature (SST) off the U.S. West Coast in late
summer, from a numerical oceanic model. Note the general pattern similarity
with Fig. 1.1 for cold upwelled water near the coastline, mesoscale vortices, and
cold filaments advected away from the boundary. However, the measured and
simulated patterns should not be expected to agree in their individual features
because of the sensitive dependence of advective dynamics. (From Marchesiello
et al., 2003.)
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Equation (Chap. 2) is the only fundamental theory for fluid dynamics, albeit
only in a highly implicit form. Since it cannot be solved in any general way,
nor can it even be generally proven that unique, non-singular solutions exist,
this theory is often opaque to any observational comparison except through
some simulation that may be no easier to understand than the observations.
Therefore, for geophysics I prefer a rephrasing of the remark to the more
modest, ‘Never trust a fact, or a simulation, without a supporting
interpretation.’

It is the purpose of GFD to provide interpretations, and its methodology is
idealization and abstraction, i.e., the removal of unnecessary geographic detail
and contributing dynamical processes. Insofar as an observed or simulated
fact can be identified as a phenomenon that, in turn, can be reproduced in the
solution of a simple model, then the claim can be made (or, to be more
cautious, the hypothesis advanced) that the essential nature of the
phenomenon, including the essential ingredients for its occurrence, is
understood. And this degree of understanding is possibly as well as can be
hoped for, pending uncertain future insights. The proper practice of GFD,
therefore, is to identify generic phenomena, and devise and solve simple
models for them. The scientist who comes up with the simplest, relevant
model wins the prize! Occam’s Razor (‘given two theories consistent with the
known facts, prefer the one that is simpler or involves fewer assumptions’) is
an important criterion for judging GFD.

An objection might be raised that since computers will always be smaller
than the universe, or even the atmosphere and ocean, then any foreseeable
simulated virtual reality can itself only be an abstraction and an idealization
of nature, and thus no different in principle from a GFD model. While
literally this is true, there is such an enormous and growing gap in complexity
between the most accurate simulation models and simple GFD models of
idealized situations that I believe this objection can be disregarded in
practice. Nevertheless, the finite scope of geophysical simulation models must
be conceded, and in doing so another important purpose for GFD must be
recognized: to provide simple models for the effects of physically necessary
but computationally unresolved processes in a simulation model. This is often
called parameterization. The most common reason for parameterization is
that something essential happens on a spatial or temporal scale smaller than
the computational grid of the simulation model. Two examples of needed
parameterizations are (1) the transport (i.e., systematic spatial movement of
material and dynamical properties by the flow) by turbulent eddies in a
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planetary boundary layer near the surface of the land or ocean and (2) the
radiative energy transfer associated with cloud water droplets in the context
of a global simulation model. Each of these micro-scale phenomena could be
made simulation subjects in their own right, but not simultaneously with the
macro-scale general circulation, because together they would comprise too
large a calculation for current or foreseeable computers. Micro-scale
simulations can provide facts for GFD to interpret and summarily represent,
specifically in the form of a useful parameterization.

Dynamical theory and its associated mathematics are a particular scientific
practice that is not to everyone’s taste, nor one for which every good scientist
has a strong aptitude. Nevertheless, even for those who prefer working closer
to the discovery and testing of facts about the ocean and atmosphere, it is
important to learn at least some GFD since it provides one of the primary
languages for communicating and judging the facts. The number of nature’s
facts is effectively infinite. But which facts are the interesting ones? And how
does one decide whether different putative facts are mutually consistent or not
(and thus unlikely both to be true)? The answer usually is found in GFD.

Since this book is drawn from a course that lasts only three months, it helps
to take some short cuts. One important short cut is to focus, where possible,
on dynamical equations that have only zero (e.g., a fluid parcel), one, or two
spatial dimensions, although nature has three. The lower-dimensional
equations are more easily analyzed, and many of their solutions are strongly
analogous to the solutions of three-dimensional dynamical equations that are
more literally relevant to natural phenomena. Another short cut is to focus
substantially on linear and/or steady solutions since they too are more easily
analyzed, even though most oceanic and atmospheric behaviors are essentially
transient and appreciably influenced by nonlinear dynamics (turbulence). In
particular, pattern complexity and chaos (illustrated in Fig. 1.1 for a coastal
sea surface temperature pattern) are widespread and essentially the result of
nonlinearity in the governing equations. Nevertheless, the study of GFD
properly starts with simpler reduced-dimensional, linear, and steady solutions
that provide relevant, albeit incomplete, paradigms.

To help make this book a useful learning tool, a complete Glossary of
Symbols and an extensive Index are included.

12



Chapter 2

Fundamental Dynamics

This chapter establishes, but does not fully derive, the basic equations of
geophysical fluid dynamics and several of their most commonly used
approximate forms, such as incompressible, Boussinesq, hydrostatic, and
geostrophic equations. It also includes some particular solutions of these
equations in highly idealized circumstances. Many more solutions will be
examined in later chapters.

2.1 Fluid Dynamics

2.1.1 Representations

For the most part the governing equations of fluid dynamics are partial
differential equations in space (x) and time (t). Any field (i.e., a property of
the fluid), q, has an Eulerian expression as q(x, t). Alternatively, any field also
has an equivalent Lagrangian expression as q(a, t), where a is the x value at
t = 0 of an infinitesimal fluid element (or material parcel) and r(a, t) is its
subsequent x value moving with the local fluid velocity, u.

dr(t)

dt
≡ ∂r(a, t)

∂t
= u(x, t)

∣∣∣
x=r

, r(a, 0) = a . (2.1)

r is the trajectory of the parcel initially at a (Fig. 2.1). A line tangent to u
everywhere at a fixed time, t = t0, is a streamline, X(s, t0), with s the spatial
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coordinate along the streamline. Thus,

dX

ds
× u = 0 .

If
dX

ds
= u ,

then s has a normalization as a pseudo-time of movement along the streamline
that would be equivalent to real time if the flow were stationary (i.e.,
∂tu = 0). Alternatively, a streakline is the line traced in space of particles
released continuously in time from a single point (which is experimentally
much easier to determine by dye release and photography than a streamline).
In a stationary flow streamlines, streaklines, and trajectories are all equivalent.

r ( a , t)
a = r (a , 0)

u( r , t)

x

y

t

Figure 2.1: The geometry of a trajectory, r(a, t), projected onto the (x, y) plane.
a is the position of the fluid parcel at time, t = 0, and the parcel moves along
the trajectory with velocity, u(r, t)(a), as indicated in (2.1).

2.1.2 Governing Equations and Boundary Conditions

The starting point is the fundamental dynamical equations for a compressible
fluid in a Cartesian coordinate frame — transformations can always be made
to alternative frames such as a rotating spherical coordinate frame for
planetary flows — with a general equation of state and variable material
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composition. In GFD it is customary to associate the coordinate z with the
vertical direction, parallel to the gravitational force and directed outward
from Earth’s center; x with the eastward direction; and y with the northward
direction. It is also common usage to refer to the (x, y) directions as zonal and
meridional, in association with longitude and latitude. The accompanying
velocity components are denoted by w, u, and v, respectively. For further
discussion of basic fluid dynamics, refer to Batchelor (1967).

Momentum: A balance of acceleration and forces (i.e., Newton’s law,
F = ma with F force, m mass, a acceleration, and m× a momentum) is
expressed by

Du

Dt
= −1

ρ
∇∇∇p+ ∇∇∇Φ + F . (2.2)

This is referred to as the Navier-Stokes Equation. Here u is the velocity [with
units, m s−1]; ρ is the density [kg m−3]; p is the pressure [kg m−1 s−2 or,
equivalently, 1 Pa (for Pascal)]; Φ is the force potential [m2 s−2] (e.g., for
gravity, Φ = −gz with g = 9.81 m s−2); and F [m s−2] is all non-conservative
forces that do not appear in Φ (e.g., molecular viscous diffusion with
F = ν∇2u and viscosity, ν). ∇∇∇ is the spatial gradient operator. The
substantial time derivative, is the acceleration of a fluid parcel in a reference
frame moving with the flow,

D

Dt
=

∂

∂t
+ u · ∇∇∇ . (2.3)

The second term is called the advective operator, or more briefly advection; it
represents the movement of material with the fluid. Bold face symbols denote
vectors.

The essential nonlinearity of fluid dynamics — the source of instability,
chaos, and turbulence — appears in the quadratic product of velocities that is
the advection of momentum. Advection also is a prevalent influence on the
evolution of material tracer distributions ((2.6) below) that necessarily must
move with the flow. This leads to two common statements about fluid
dynamics, in general, and geophysical fluid dynamics, in particular. The first
statement is that the effect of advection usually dominates over molecular
diffusion. In a scale estimation analysis, if V is a characteristic velocity scale
and L is a characteristic length scale for flow variation, then advective
dominance is expressed as the largeness of the Reynolds number,

Re =
V L

ν
� 1 . (2.4)
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Since typical values for ν are 10−5 m2 s−1 (air) and 10−6 m2 s−1 (seawater),
then even a modest velocity difference of V = 1 m s−1 (air) or 0.1 m s−1

(seawater) over a distance of L = 100 m, has Re = 107, and even larger Re
values occur for stronger flows on larger scales. The second, related statement
is that, in such a situation, the typical time scale of evolution is at an
advective time, T = L/V , which is the passage time for some material pattern
to be carried past a fixed x point. This advective dominance is because a
diffusive evolution time, T = L2/ν, is much longer, hence relatively ineffective
on the shorter advective time. The ratio of these diffusive and advective times
is Re� 1.

Mass: A fluid by definition is comprised of continuous material, without any
ruptures in space. It can have no interior sources or sinks of mass for the
primary composition of the fluid, i.e., air in the atmosphere and water in the
ocean (as opposed to the minor constituent components, the material tracers,
whose fractional proportions can vary greatly). This is expressed as a
mass-conservation balance related to the fluid density, ρ, associated with the
primary composition:

∂ρ

∂t
+ ∇∇∇ · (ρu) = 0 ,

or
Dρ

Dt
= −ρ∇∇∇ · u . (2.5)

This is also called the continuity equation.

Material Tracer: For any gaseous (air) or dissolved (water) material
concentration, τ [mass fraction relative to the primary fluid component, or
mixing ratio], other than the primary fluid composition, the concentration
evolution equation is

∂(ρτ)

∂t
+ ∇∇∇ · (ρτu) = ρS(τ) , (2.6)

or, using (2.5),
Dτ

Dt
= S(τ) , (2.7)

where S(τ) [s−1] is all non-conservative sources and sinks of τ (e.g., chemical
reaction rates or material diffusion, with S = κ∇2τ and a diffusivity, κ). For
Earth’s air and water, κ is usually on the order of ν (i.e., their ratio, the
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Prandtl number, ν/κ, is O(1)), so advection usually dominates molecular
diffusion in (2.7) for the same reason that Re is usually large. When S (τ) is
negligible, then the movement of the material traces the flow, hence the
terminology for τ .

Internal Energy: For the internal energy, e [m2 s−2],

ρ
De

Dt
= −p∇∇∇ · u + ρQ , (2.8)

or, again using (2.5),
De

Dt
= −pD

Dt

(
1

ρ

)
+Q , (2.9)

where Q [m2 s−3] is the heating rate per unit mass. This equation is
sometimes referred to as the first law of thermodynamics: the energy of the
universe is constant, and the internal energy of a fluid subsystem (i.e., here
the internal energy, e) only changes through work done by compression (i.e.,
pressure times the volume change) or by heating (i.e., Q) by dissipation of
mechanical energy into heat, chemical reaction, phase change, or exchange
with the rest of the universe. (Of course, this is not the most fundamental
statement of energy conservation in the laws of physics, but it is general
enough for most fluid dynamical purposes when combined with additional
equations for kinetic and potential energy that are derived from the other
governing equations; e.g., Secs. 3.1 and 4.1.1.)

Entropy: For the fluid entropy, η [m2 s−2 K−1],

T
Dη

Dt
= Q−

∑

k

µkS(τk) . (2.10)

Here T [K] is the temperature and µk [m2 s−2] is the chemical potential for
the tracer species, τk. This equation is related to the second law of
thermodynamics: the entropy of the universe can only increase, and the
entropy of the fluid part, η, changes only through its heat and material
exchanges with the rest of the universe.

Equation of State: In addition to the preceding equations expressing
spatial flux and source/sink effects on the evolution of the fluid fields, there is
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a required thermodynamic statement about the density of the fluid in the
form of

ρ = ρ(T, p, τk) , (2.11)

where the right-side arguments are referred to as the state variables. The
equation of state differs for different types of fluids. For the ocean the
important tracer state variable is the salinity, S [Practical Salinity Unit
(PSU) = parts per thousand (ppt) = 103 × mass fraction]; for the atmosphere
it is the specific humidity, q [mass fraction]. Typical values for ρ are O(103)
kg m−3 (ocean) and O(1) kg m−3 near Earth’s surface and decreasing upward
to space (air).

Other thermodynamic relations are also needed between e, η, µk, and the
state variables; e.g., e = cvT for an ideal gas (Sec. 2.3.1), with cv the heat
capacity of the fluid at constant volume. Thermodynamic relations are also
needed for other material properties such as ν, κ, and the speed of sound, Cs

(Sec. 2.3.1). In general the thermodynamics of composite fluids is complicated
and subtle, and in this book we will consider only some of its simpler forms.
Fuller discussions of the oceanic and atmospheric thermodynamics are in
Fofonoff (1962), Bohren and Albrecht (1998), and Gill (Chaps. 3-4, 1982).

An important distinction in GFD is between conservative and
non-conservative motions. The former refer to governing equation sets that
imply that both the volume-integrated total energy and the the material
concentrations on every fluid parcel do not change in time. Thus, the causes
of non-conservation include external forces other than gravity (F), heating
other than by compression (Q), material sources (S), and molecular diffusion
(ν or κ).

Boundary and Initial Conditions: When a fluid has a well defined
boundary across which there is no relative motion, then the boundary must be
a material surface that retains its parcels. This is equivalent to saying that
the flow must either turn to bei.e., in F, Q, or S) parallel to the boundary,
and/or it must move perpendicular to the boundary at exactly the same speed
as the boundary itself is moving in that direction. The mathematical
expression for this is called the kinematic boundary condition. If

F (x, t) = 0 (2.12)
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is a mathematical definition of the boundary location, then the kinematic
boundary condition is

DF

Dt
= 0 at F = 0 . (2.13)

Some particular situations are the following:

(a) A stationary boundary at x0:

u · n̂ = 0 at n̂ · [x− x0] = 0 ; (2.14)

e.g., for F = x− x0, the outward unit normal vector is n̂ = x̂ and u = 0 at
x = x0.

(b) A moving boundary at x0(t):

u · n̂ =
dx0

dt
· n̂ at n̂ · [x− x0] = 0 . (2.15)

(c) A free surface at z = h(x, y, t) (e.g., the top surface of a water layer with
air above):

w =
Dh

Dt
at z = h . (2.16)

There are two other common types of boundary conditions, a continuity
boundary condition (e.g., the continuity of pressure across the air-sea
interface) and a flux boundary condition (e.g., the flux of water into the
atmosphere due to evaporation minus precipitation at the sea or land surface).
The combination of boundary conditions that is appropriate for a given
situation depends mathematically upon which partial differential equation
system is being solved (i.e., to assure well-posedness of the boundary-value
problem) and physically upon which external influences are being conveyed
through the boundary.

Furthermore, initial conditions are also required for partial differential
equations that contain time derivatives. Exactly how many fluid fields must
have their initial distributions specified again depends upon which dynamical
system is being solved. A typical situation requires initial conditions for
velocity, temperature, density, and all material tracers.

The practice of GFD is full of different approximations, where apt, and
some of types of approximations change the mathematical character of the
governing equation set and its requirements for well-posedness (e.g., Sec. 4.6).
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2.1.3 Divergence, Vorticity, and Strain Rate

The velocity field, u, is of such central importance to fluid dynamics that it is
frequently considered from several different perspectives, including its spatial
derivatives (below) and spatial integrals (Sec. 2.2.1).

The spatial gradient of velocity, ∇∇∇u, can be partitioned into several
components with distinctively different roles in fluid dynamics.

Divergence: The divergence,

δ ≡ ∇∇∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
, (2.17)

is the rate of volume change for a material parcel (moving with the flow).
This is shown by applying Green’s integral relation to the rate of change of a
finite volume, V , contained within a closed surface, S, moving with the fluid:

dV
dt

=
∫ ∫

S
d area u · n̂ =

∫ ∫ ∫

V
d vol ∇∇∇ · u =

∫ ∫ ∫

V
d vol δ . (2.18)

n̂ is a local outward unit normal vector, and d area and d vol are the
infinitesimal local area and volume elements (Fig. 2.2a).

Vorticity and Circulation: The vorticity is defined by

ζζζ ≡ ∇∇∇× u = x̂

(
∂w

∂y
− ∂v

∂z

)
+ ŷ

(
∂u

∂z
− ∂w

∂x

)
+ ẑ

(
∂v

∂x
− ∂u

∂y

)
.(2.19)

It expresses the local whirling rate of the fluid with both a magnitude and a
spatial orientation. Its magnitude is equal to twice the angular rotation
frequency of the swirling flow component around an axis parallel to its
direction. A related quantity is the circulation, C, defined as the integral of
the tangential component of velocity around a closed line C. By Stokes’
integral relation, it is equal to the area integral of the normal projection of the
vorticity through any surface S that ends in C (Fig. 2.2b):

C ≡
∫

C
u · dx =

∫ ∫

S
d area ζζζ · n̂ . (2.20)
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Figure 2.2: (a) Volume element, V , and its surface, S, that are used in deter-
mining the relation between divergence and volume change following the flow
(Green’s integral relation). (b) Closed curve, C, and connected surface, S, that
are used in determining the relation between vorticity and circulation (Stoke’s
integral relation).

Strain Rate: The velocity-gradient tensor, ∇∇∇u, has nine components in
three-dimensional space, 3D (or four in 2D). δ is one linear combination of
these components (i.e., the trace of the tensor) and accounts for one
component. ζζζ accounts for another three components (one in 2D). The
remaining five linearly independent components (two in 2D) are called the
strain rate, which has both three magnitudes and a spatial orientation of two
angles (one and one, respectively, in 2D). The strain rate acts through the
advective operator to deform the shape of a parcel as it moves, separately
from its volume change (due to divergence) or rotation (due to vorticity). For
example, in a horizontal plane the strain rate deforms a material square into a
rectangle in a 2D uniform strain flow when the polygon sides are oriented
perpendicular to the distant inflow and outflow directions (Fig. 2.3).

2.2 Oceanic Approximations

Almost all theoretical and numerical computations in GFD are made with
governing equations that are simplifications of (2.2)-(2.11). Discussed in this
section are some of the commonly used simplifications for the ocean, although
some others that are equally relevant to the ocean (e.g., a stratified resting
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t0

t0 t∆+

x

y

Figure 2.3: The deformation of a material parcel in a plane strain flow defined
by ψ = 1

2
S0xy, u = −∂yψ = −1

2
S0x, and v = ∂xψ = 1

2
S0y, with ∂xu− ∂yv = S0

the spatially uniform strain rate. The heavy solid lines are isolines of ψ with
arrows indicating the flow direction. The associated vorticity is ζζζ = 0. The
dashed square indicates a parcel boundary at t = t0 and the solid rectangle
indicates the same boundary at some later time, t = t0 + ∆t. The parcel is
deformed by squeezing it in x and extruding it in y, while preserving the parcel
area since the flow is non-divergent, δ = 0.
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state or sound waves) are presented in the next section on atmospheric
approximations. From a GFD perspective, oceanic and atmospheric dynamics
have more similarities than differences, and often it is only a choice of
convenience which medium is used to illustrate a particular phenomenon or
principle.

2.2.1 Mass and Density

Incompressibility: A simplification of the mass-conservation relation (2.5)
can be made based on the smallness of variations in density:

1

ρ

Dρ

Dt
= −∇∇∇ · u � |∂u

∂x
|, |∂v

∂y
|, |∂w

∂z
|

⇒ ∇∇∇ · u ≈ 0 if
δρ

ρ
� 1 . (2.21)

In this incompressible approximation, the divergence is zero, and material
parcels preserve their infinitesimal volume, as well as their mass, following the
flow (cf., (2.18)). In this equation the prefix δ means the change in the
indicated quantity (here ρ). The two relations in the second line of 2.21 are
essentially equivalent based on the following scale estimates for characteristic
magnitudes of the relevant entities: u ∼ V , ∇∇∇−1 ∼ L, and T ∼ L/V (i.e., an
advective time scale). Thus,

1

ρ

Dρ

Dt
∼ V

L

δρ

ρ
� V

L
.

For the ocean, typically δρ/ρ = O(10−3), so (2.21) is a quite accurate
approximation.

Velocity Potential Functions: The three directional components of an
incompressible vector velocity field can be represented, more concisely and
without any loss of generality, as gradients of two scalar potentials. This is
called a Helmholtz decomposition. Since the vertical direction is distinguished
by its alignment with both gravity and the principal rotation axis, the form of
the decomposition most often used in GFD is

u = −∂ψ
∂y
− ∂2X

∂x∂z
= −∂ψ

∂y
+
∂χ

∂x
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v =
∂ψ

∂x
− ∂2X

∂y∂z
=

∂ψ

∂x
+
∂χ

∂y

w =
∂2X

∂x2
+
∂2X

∂y2
≡ ∇2

hX , (2.22)

where ∇∇∇h is the 2D (horizontal) gradient operator. This guarantees ∇∇∇ · u = 0
for any ψ and X. ψ is called the streamfunction. It is associated with the
vertical component of vorticity,

ẑ · ∇∇∇× u ≡ ζ(z) = ∇2
hψ , (2.23)

while X is not. Thus, ψ represents a component of horizontal motion along its
isolines in a horizontal plane at a speed equal to its horizontal gradient, and
the direction of this flow is clockwise about a positive ψ extremum (Fig. 2.4a).
X (or its related quantity, χ = −∂zX, where ∂z is a compact notation for the
partial derivative with respect to z) is often called the divergent potential. It is
associated with the horizontal component of the velocity divergence,

∇∇∇h · uh ≡
∂u

∂x
+
∂v

∂y
≡ δh = ∇2

hχ , (2.24)

and the vertical motions required by 3D incompressibility, while ψ is not.
Thus, isolines of χ in a horizontal plane have a horizontal flow across them at
a speed equal to the horizontal gradient, and the direction of the flow is inward
toward a positive χ extremum that usually has an accompanying negative δh
extremum (e.g., , think of sin x and ∇2

h sin x = − sin x; Fig. 2.4b). Since

∂w

∂z
= −δh = −∇2

hχ , (2.25)

the two divergent potentials, X and χ, are linearly related to the vertical
velocity, while ψ is not. When the χ pattern indicates that the flow is coming
together in a horizontal plane (i.e., converging, with ∇2

hχ < 0), then there
must be a corresponding vertical gradient in the normal flow across the plane
in order to conserve mass and volume incompressibly.

Linearized Equation of State: The equation of state for seawater,
ρ(T, S, p), is known only by empirical evaluation, usually in the form of a
polynomial expansion series in powers of the departures of the state variables
from a specified reference state. However, it is sometimes more simply
approximated as

ρ = ρ0 [1− α(T − T0) + β(S − S0)] . (2.26)
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Figure 2.4: Horizontal flow patterns in relation to isolines of (a) streamfunction,
ψ(x, y), and (b) divergent velocity potential, χ(x, y). The flows are along and
across the isolines, respectively. Flow swirls clockwise around a positive ψ
extremum and away from a positive χ extremum.

Here the linearization is made for fluctuations around a reference state of
(ρ0, T0, S0) (and implicitly a reference pressure, p0; alternatively one might
replace T with the potential temperature (θ; Sec. 2.3.1) and make p nearly
irrelevant). Typical oceanic values for this reference state are (103 kg m−3,
283 K (10 C), 35 ppt). In (2.26),

α ≡ −1

ρ

∂ρ

∂T
(2.27)

is the thermal expansion coefficient for seawater and has a typical value of 2
×10−4 K−1, although this varies substantially with T in the full equation of
state; and

β ≡ +
1

ρ

∂ρ

∂S
(2.28)

is the haline contraction coefficient for seawater, with a typical value of 8
×10−4 ppt−1. In (2.27)-(2.28) the partial derivatives are made with the other
state variables held constant. Sometimes (2.26) is referred to as the
Boussinesq equation of state. From the values above, either a δT ≈ 5 K or a
S ≈ 1 ppt implies a δρ/ρ ≈ 10−3 (cf., Fig. 2.7).

Linearization is a type of approximation that is widely used in GFD. It is
generally justifiable when the departures around the reference state are small
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in amplitude, e.g., as in a Taylor series expansion for a function, q(x), in the
neighborhood of x = x0:

q(x) = q(x0) + (x− x0)
dq

dx
(x0) +

1

2
(x− x0)2 d

2q

dx2
(x0) + . . . .

For the true oceanic equation of state, (2.26) is only the start of a Taylor
series expansion in (T, S, p) variations around the reference state values.
Viewed globally, α and β show significant variations over the range of
observed conditions (i.e., with the local mean conditions taken as the
reference state). Also, the actual compression of seawater,

γδp =
1

ρ

∂ρ

∂p
δp, (2.29)

is of the same order as αδT and βδS in the preceding paragraph, when

δp ≈ ρ0gδz (2.30)

and δz ≈ 1 km. This is a hydrostatic estimate in which the pressure at a
depth δz is equal to the weight of the fluid above it. The compressibility effect
on ρ may not often be dynamically important since few parcels move 1 km or
more vertically in the ocean except over very long periods of time, primarily
because of the large amount of work that must be done converting fluid
kinetic energy to overcome the potential energy barrier associated with stable
density stratification (cf., Sec. 2.3.2). Thus, (2.26) is more a deliberate
simplification than an universally accurate approximation. It is to be used in
situations when either the spatial extent of the domain is not so large as to
involve significant changes in the expansion coefficients or when the
qualitative behavior of the flow is not controlled by the quantitative details of
the equation of state. (This may only be provable a posteriori by trying the
calculation both ways.) However, there are situations when even the
qualitative behavior requires a more accurate equation of state than (2.26);
e.g., at very low temperatures a thermobaric instability can occur when mixing
two parcels of seawater with the same ρ, but different T and S, yields a parcel
with the average values for T and S but a larger ρ, hence a gravitational
instability with respect to the unmixed environment. The general form for
ρ(T, S, p) is sufficiently nonlinear that odd behaviors can sometimes occur.

2.2.2 Momentum

With or without the use of (2.26), the same rationale behind (2.21) can be
used to replace ρ by ρ0 everywhere except in the gravitational force and
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equation of state. The result is an approximate equation set for the ocean
that is often referred to as the incompressible Boussinesq Equations. In an
oceanic context that includes salinity variations, they can be written as

Du

Dt
= −∇∇∇φ− g ρ

ρ0

ẑ + F ,

∇∇∇ · u = 0 ,
DS

Dt
= S ,

cp
DT

Dt
= Q . (2.31)

Here φ = p/ρ0 [m2 s−2] is called the geopotential function (n.b., the related
quantity, Z = φ/g [m], is called the geopotential height), and cp ≈ 4× 103 m2

s−2 K−1 is the oceanic heat capacity at constant pressure. The salinity
equation is a particular case of the tracer equation (2.7), and the temperature
equation is a simple form of the internal energy equation that ignores
compressive heating (i.e., the first right-side term in (2.8)). Eqs. (2.31) are a
mathematically well-posed problem in fluid dynamics with any meaningful
equation of state, ρ(T, S, p). If compressibility is included in the equation of
state, it is usually sufficiently accurate to replace p by its hydrostatic
estimate, −ρ0gz (with −z the depth beneath a mean sea level at z = 0),
because δρ/ρ � 1 for the ocean. (Eqs. (2.31) should not be confused with
the use of the same name for the approximate equation of state (2.26). It is
regrettable that history has left us with this non-unique nomenclature.

The evolutionary equations for entropy and, using (2.26), density, are
redundant with (2.31):

T
Dη

Dt
= Q− µS ; (2.32)

1

ρ0

Dρ

Dt
= − α

cp
Q+ βS . (2.33)

This type of redundancy is due to the simplifying thermodynamic
approximations made here. Therefore (2.33) does not need to be included
explicitly in solving (2.31) for u, T , and S.

Qualitatively the most important dynamical consequence of making the
Boussinesq dynamical approximation in (2.31) is the exclusion of sound waves,
including shock waves (cf., Sec. 2.3.1). Typically sound waves have relatively
little energy in the ocean and atmosphere (barring asteroid impacts, volcanos,
jet airplanes, and nuclear explosions). Furthermore, they have little influence
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on the evolution of larger scale, more energetic motions that usually are of
more interest. The basis for the approximation that neglects sound wave
dynamics, can alternatively be expressed as

M ≡ V

Cs
� 1 . (2.34)

Cs is the sound speed ≈ 1500 m s−1 in the ocean; V is a fluid velocity
typically ≤ 1 m s−1 in the ocean; and M is the Mach number. So M ≈ 10−3

under these conditions. In contrast, in and around stars and near jet
airplanes, M is often of order one or larger.

Motions with Q = S = 0 are referred to as adiabatic, and motions for which
this is not true are diabatic. The last two equations in (2.31) show that T and
S are conservative tracers under adiabatic conditions; they are invariant
following a material parcel when compression, mixing, and heat and water
sources are negligible. Eqs. (2.33-2.34) show that η and ρ are also
conservative tracers under these conditions. Another name for adiabatic
motion is isentropic because the entropy does not change in the absence of
sources or sinks of heat and tracers. Also, under these conditions, isentropic is
the same as isopycnal, with the implication that parcels can move laterally on
stably stratified isopycnal surfaces but not across them. The adiabatic
idealization is not exactly true for the ocean, even in the stratified interior
away from boundary layers (Chap. 6), but it often is nearly true over time
intervals of months or even years.

2.2.3 Boundary Conditions

The boundary conditions for the ocean are comprised of kinematic, continuity,
and flux types. The usual choices are the following ones (Fig. 2.5):

Sides/Bottom: At z = −H(x, y), there is no flow into the solid boundary,
u · n̂ = 0, which is the kinematic condition (2.13).

Sides/Bottom & Top: At all boundaries there is a specified tracer flux,
commonly assumed to be zero at the solid surfaces (or at least negligibly small
on fluid time scales that are much shorter than, say, geological time scales),
but the tracer fluxes are typically non-zero at the air-sea interface. For
example, although there is a geothermal flux into the ocean from the cooling
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z = − H(x,y)

z = 0

z = h(x,y,t)

Figure 2.5: Configuration for an oceanic domain. The heights, 0, h, and −H,
represent the mean sea level, instantaneous local sea level, and bottom position,
respectively.

of Earth’s interior, it is much smaller on average (about 0.09 W m−2) than the
surface heat exchange with the atmosphere, typically many tens of W m−2.
However, in a few locations over hydrothermal vents, the geothermal flux is
large enough to force upward convective plumes in the abyssal ocean.

At all boundaries there is a specified momentum flux: a drag stress due to
currents flowing over the underlying solid surface or the wind acting on the
upper free surface or relative motion between sea ice on a frozen surface and
the adjacent currents.

Top: At the top of the ocean, z = h(x, y, t), the kinematic free-surface
condition from (2.16) is

w =
Dh

Dt
,

with h the height of the ocean surface relative to its mean level of z = 0. The
mean sea level is a hypothetical surface associated with a motionless ocean; it
corresponds to a surface of constant gravitational potential — almost a sphere
for Earth, even closer to an oblate spheroid with an Equatorial bulge, and
actually quite convoluted due to inhomogeneities in solid Earth with
local-scale wrinkles of O(10) m elevation. Of course, determining h is
necessarily part of an oceanic model solution.
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Also at z = h(x, y, t), the continuity of pressure implies that

p = patm(x, y, t) ≈ patm,0 , (2.35)

where the latter quantity is a constant ≈ 105 kg m−1 s−2 (or 105 Pa). Since
δpatm/patm ≈ 10−2, then, with a hydrostatic estimate of the oceanic pressure
fluctuation at z = 0 (viz., δpoce = gρ0h), then δpoce/patm ≈ gρ0h/patm,0 = 10−2

for an h of only 10 cm. The latter magnitude for h is small compared to
high-frequency, surface gravity wave height variations (i.e., with typical wave
amplitudes of O(1) m and periods of O(10) s), but it is not necessarily small
compared to the wave-averaged sea level changes associated with oceanic
currents at lower frequencies of minutes and longer. However, if the surface
height changes to cancel the atmospheric pressure change, with
h ≈ −δpatm/gρ0 (e.g., a surface depression under high surface air pressure),
the combined weight of air and water, patm + poce, along a horizontal surface
(i.e., at constant z) is spatially and temporally uniform in the water, so no
oceanic accelerations arise due to a horizontal pressure gradient force. This
type of oceanic response is called the inverse barometer, and it is common for
slowly evolving, large-scale atmospheric pressure changes such as those in
synoptic weather patterns. In nature h does vary due to surface waves,
wind-forced flows, and other currents.

Rigid-Lid Approximation: A commonly used — and mathematically
easier to analyze — alternative for the free surface conditions at the top of the
ocean (the two preceding equations) is the rigid-lid approximation in which
the boundary at z = h is replaced by one at the mean sea level, z = 0. The
approximate kinematic condition there becomes

w(x, y, 0, t) = 0 . (2.36)

The tracer and momentum flux boundary conditions are applied at z = 0.
Variations in patm are neglected (mainly because they cause an inverse
barometer response without causing currents except temporarily during an
adjustment to the static balance), and h is no longer a prognostic component
of the ocean model (i.e., one whose time derivative must be integrated
explicitly as an essential part of the governing partial differential equation
system). However, as part of this rigid-lid approximation, a hydrostatic,
diagnostic (i.e., for a dependent variable that can be evaluated in terms of the
prognostic variables outside the system integration process) estimate can be
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made from the ocean surface pressure at the rigid lid for the implied sea-level
fluctuation, h∗, and its associated vertical velocity, w∗, viz.,

h∗ ≈
1

gρ0

(p(x, y, 0, t)− patm) , w∗ =
Dh∗
Dt

. (2.37)

This approximation excludes surface gravity waves from the approximate
model but is generally quite accurate for calculating motions on larger space
and slower time scales. The basis of this approximation is the relative
smallness of surface height changes for the ocean, h/H = O(10−3)� 1, and
the weakness of dynamical interactions between surface gravity waves and the
larger-scale, slower currents. More precisely stated, the rigid-lid
approximation is derived by a Taylor series expansion of the free surface
conditions around z = 0; e.g., the kinematic condition,

Dh

Dt
= w(h) ≈ w(0) + h

∂w

∂z
(0) + . . . , (2.38)

neglecting terms that are small in h∗/H, w∗/W , and h∗/WT (H, T , and W
are typical values for the vertical length scale, time scale, and vertical velocity
of currents in the interior). A more explicit analysis to justify the rigid-lid
approximation is given near the end of Sec. 2.4.2 where specific estimates for
T and W are available.

An ancillary consequence of the rigid-lid approximation is that mass is no
longer explicitly exchanged across the sea surface since an incompressible
ocean with a rigid lid has a constant volume. Instead this mass flux is
represented as an exchange of chemical composition; e.g., the actual injection
of fresh water that occurs by precipitation is represented as a virtual outward
flux of S based upon its local diluting effect on seawater, using the relation

δH2O

H2O
= − δS

S
. (2.39)

The denominators are the average amounts of water and salinity in the
affected volume.

2.3 Atmospheric Approximations

2.3.1 Equation of State for an Ideal Gas

Assume as a first approximation that air is an ideal gas with constant
proportions among its primary constituents and without any water vapor, i.e.,
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a dry atmosphere. (In this book we will not explicitly treat the often
dynamically important effects of water in the atmosphere, thereby ducking the
whole subject of cloud effects.) Thus, p and T are the state variables, and the
equation of state is

ρ =
p

RT
, (2.40)

with R = 287 m2 s−2 K−1 for the standard composition of air. The associated
internal energy is e ≡ cvT , with a heat capacity at constant volume, cv = 717
m2 s−2 K−1. The internal energy equation (2.9) becomes

cv
DT

Dt
= −pD

Dt

(
1

ρ

)
+Q . (2.41)

In the absence of other state variables influencing the entropy, (2.10) becomes

T
Dη

Dt
= Q, (2.42)

and in combination with (2.41) it becomes

T
Dη

Dt
=

De

Dt
+ p

D

Dt

(
1

ρ

)

= cv
DT

Dt
+ p

D

Dt

(
RT

p

)

= cp
DT

Dt
− 1

ρ

Dp

Dt
. (2.43)

Here cp = cv +R = 1004 m2 s−2 K−1.

An alternative state variable is the potential temperature, θ, related to the
potential density, ρpot, with both defined as follows:

θ ≡ T

(
p0

p

)κ
, ρpot ≡

p0

Rθ
= ρ

(
p0

p

)1/γ

, (2.44)

where κ ≡ R/cp ≈ 2/7, γ ≡ cp/cv ≈ 7/5, and p0 is a reference constant for
pressure at sea level, patm,0 ≈ 105 kg m−1 s−2 = 1 Pa. From (2.40)-(2.44), the
following are readily derived:

Dθ

Dt
=

(
p0

p

)κ Q
cp
≡ Q̃

cp
, (2.45)
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and
Dρpot
Dt

= −ρpotQ
cpT

. (2.46)

Thus, isentropic (adiabatic) motions with Q = Q̃ = 0 have both θ and ρpot
evolve as conservative tracers, whereas T and ρ do change along trajectories
due to compression or expansion of a parcel with the pressure changes
encountered en route. Being able to distinguish between conservative and
non-conservative effects is the reason for defining the alternative
thermodynamic variables in (2.44). One can similarly define θ and ρθ for the
ocean using its equation of state; the numerical values for oceanic θ do not
differ greatly from its T values, even though ρ changes much more with depth
than ρθ does because seawater density has a much greater sensitivity to
compression than temperature does (Fig. 2.7).

Sound Waves: As a somewhat tangential topic, consider the propagation of
sound waves (or acoustic waves) in air. With an adiabatic assumption (i.e.,
Q = 0), the relation for conservation of ρpot (2.46) implies

D

Dt


ρ
(
p0

p

)1/γ

 = 0

(
p0

p

)1/γ (
Dρ

Dt
− ρ

γp

Dp

Dt

)
= 0

Dρ

Dt
− C−2

s

Dp

Dt
= 0 , (2.47)

with Cs ≡
√
γp/ρ =

√
γRT , the speed of sound in air (≈ 300 m s−1 for

T = 300 K). Now linearize this equation plus those for continuity (2.5) and
momentum (i.e., (2.2) setting F = 0) around a reference state of ρ = ρ0 and
u = 0, neglecting all terms that are quadratic in fluctuations about the static
reference state:

∂ρ

∂t
− C−2

s

∂p

∂t
= 0

∂ρ

∂t
+ ρ0∇∇∇ · u = 0

∂u

∂t
= − 1

ρ0

∇∇∇p ⇒ ∇∇∇ · ∂u

∂t
= − 1

ρ0

∇2p . (2.48)
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The combination of these equations, ∂t (2nd equation) - ∂t (1st) - ρ0× (3rd),
implies that

∂2p

∂t2
− C2

s∇2p = 0 . (2.49)

This equation has the functional form of the canonical wave equation that is
representative of the general class of hyperbolic partial differential equations.
It has general solutions of the form

p(x, t) = F [ê · x− Cst] (2.50)

when Cs is constant (i.e., assuming T ≈ T0). This form represents the
uniform propagation of a disturbance (i.e., a weak perturbation about the
reference state) having any shape (or wave form) F with speed Cs and an
arbitrary propagation direction ê. Equation (2.50) implies that the wave
shape is unchanged with propagation. This is why sound is a reliable means of
communication. Equivalently, one can say that sound waves are
non-dispersive (Secs. 3.1.2, 4.2, et seq.). Analogous relations can be derived
for oceanic sound propagation without making the incompressibility
approximation, albeit with a different thermodynamic prescription for Cs that
has a quite different magnitude, ≈ 1500 m s−1.

2.3.2 A Stratified Resting State

A resting atmosphere, in which u = 0 and all other fields are horizontally
uniform, ∇∇∇h = 0, is a consistent solution of the conservative governing
equations. The momentum equation (2.2) with F = 0 is non-trivial only in the
vertical direction, viz.,

∂p

∂z
= −gρ . (2.51)

This is a differential expression of hydrostatic balance. It implies that the
pressure at a point is approximately equal to the vertically integrated density
(i.e., the weight) for all the fluid above it, assuming that outer space is
weightless. Hydrostatic balance plus the equation of state (2.40) plus the
vertical profile of any thermodynamic quantity (i.e., T , p, ρ, θ, or ρpot)
determines the vertical profiles of all such quantities in a resting atmosphere.
(Again, there is an analogous oceanic resting state.)

One simple example is a resting isentropic atmosphere, in which θ(z, t) = θ0,
a constant:

⇒ dθ

dz
= 0 (2.52)
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Figure 2.6: Vertical profiles of time- and area-averaged atmospheric quanti-
ties: (upper left) temperature, T [K]; (upper right) potential temperature, θ
[K]; (lower left) specific humidity, q [mass fraction × 103]; and (lower right)
geopotential height, Z [m]. The vertical axis is pressure, p [hPa = 102 Pa].
In each panel are curves for three different areas: (solid) tropics, with lati-
tudes ± (0 − 15)deg; (dash) middle latitudes, ± (30 − 60)deg; and (dot) poles,
± (75− 90)deg. Note the poleward decreases in T and q; the reversal in T (p) at
the tropopause, p ≈ 100 − 200 hPa; the ubiquitously positive stratification in
θ(p) that increases in the stratosphere; the strong decay of q with height (until
reaching the stratosphere, not plotted, where it becomes more nearly uniform);
and the robust, monotonic relation between Z and p. (From the National Cen-
ters for Environmental Prediction climatological analysis (Kalnay et al., 1996),
courtesy of Dennis Shea, National Center for Atmospheric Research.)
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⇒ d

dz

[
T

(
p0

p

)κ]
= 0 (2.53)

⇒ dT

dz
= − g

cp
≈ −10−2 K m−1 , (2.54)

after using (2.40) and (2.51). This final relation defines the lapse rate of an
isentropic atmosphere, also called the adiabatic lapse rate. Integrating (2.54)
gives

T = θ0 −
gz

cp
(2.55)

if T = θ0 at z = 0. Thus, the air is colder with altitude as a consequence of
the decreases in pressure and density. Also,

p = p0

(
T

θ0

)1/κ

(2.56)

⇒ p = p0

[
1− gz

cpθ0

]1/κ

(2.57)

and

ρ =
p0

Rθ0

(
p

p0

)1/γ

(2.58)

⇒ ρ = ρpot,0

[
1− gz

cpθ0

]1/κγ

. (2.59)

An isentropic atmosphere ends (i.e., ρ = p = T = 0) at a finite height above
the ground,

H =
cpθ0

g
≈ 3 × 104 m (2.60)

for θ0 = 300 K.

A different example of a resting atmosphere is an isothermal atmosphere,
with T = T0. From (2.40) and (2.51),

dρ

dz
=

1

RT0

dp

dz
= − g

RT0

ρ (2.61)

⇒ ρ = ρ0e
−z/H0 . (2.62)

The scale height for exponential decay of the density is H0 ≡ RT0/g ≈ 104 m
for T0 = 300 K. Also,

p = RT0ρ0e
−z/H0 , θ = T0e

κz/H0 , ρpot = ρ0e
−κz/H0 . (2.63)
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Thus, an isothermal atmosphere extends to z =∞ (ignoring any astronomical
influences), and it has an increasing potential temperature with altitude and a
potential density that decreases much more slowly than the density (since
κ� 1).

Earth’s atmosphere has vertical profiles much closer to isothermal than
isentropic in the particular sense that it is stably stratified, with ∂zθ > 0 on
average. Similarly, the ocean is stably stratified on average. Figs. 2.6 -2.7
show horizontal- and time-averaged vertical profiles from measurements that
can usefully be viewed as the stratified resting states about which the wind-
and current-induced thermodynamic and pressure fluctuations occur.

2.3.3 Buoyancy Oscillations and Convection

Next consider the adiabatic dynamics of an air parcel slightly displaced from
its resting height. Denote the resting, hydrostatic profiles of pressure and
density by p(z) and ρ(z) and the vertical displacement of a parcel originally at
z0 by δz. The conservative vertical momentum balance (2.2) is

Dw

Dt
≡ D2δz

Dt2
= −g − 1

ρ

∂p

∂z
. (2.64)

Now make what may seem at first to be an ad hoc assumption: the parcel
displacement is such that the parcel pressure p instantaneously adjusts to the
local value of p as it moves. (This assumption excludes any sound wave
behavior in the calculated response; in fact, it becomes valid as a result of
sound waves having been emitted in conjunction with the parcel displacement,
allowing the parcel pressure to locally equilibrate.) After using the hydrostatic
balance of the mean profile to substitute for ∂zp(z0 + δz),

D2δz

Dt2
= g

(
ρ− ρ
ρ

) ∣∣∣
z=z0+δz

= g

(
ρpot − ρpot

ρpot

) ∣∣∣
z=z0+δz

. (2.65)

The second line follows from ρ and ρ depending only on a common
pressure-dependent factor in relation to ρpot and ρpot, which then cancels out
between the numerator and denominator. Since potential density is preserved
following a parcel for adiabatic motions and δz is small so that the potential
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Figure 2.7: Mean vertical profiles of θ (which is nearly the same as in situ T on
the scale of this plot), S, ρ, and ρθ (i.e., potential density with a reference pres-
sure at the surface) for the ocean. These are averages over time and horizontal
position for a historical collection of hydrographic measurements (Steele et al.,
2001). The “sigma” unit for density is kg m−3 after subtracting a constant
value of 103. Note the strongly stratified thermocline in T and pycnocline in
ρθ; the layered influences in S of tropical precipitation excess near the surface,
subtropical evaporation excess near 200 m depth, and subpolar precipitation
excess near 800 m depth; the increase in ρ with depth due to compressibility,
absent in ρθ; and the weakly stratified abyss in T , S, and ρθ. (Courtesy of
Gokhan Danabasoglu, National Center for Atmospheric Research.)
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density profile can be Taylor-expanded about the parcel’s resting location,
then

ρpot(z0 + δz) = ρpot(z0) = ρpot(z0 + δz)− δz dρpot
dz

(z0) + ... (2.66)

⇒ D2δz

Dt2
= −N 2(z0)δz + ... , (2.67)

where

N2 ≡ −g d
dz

ln [ρpot] (2.68)

is the square of the buoyancy frequency or Brünt-Väisällä frequency. The
solution of (2.67) shows that the parcel displacement evolves in either of two
ways. If N 2 > 0 (i.e., ρpot decreases with altitude, indicative of lighter air
above denser air), the atmosphere is stably stratified, and the solutions are
δz ∝ e±iNt where i =

√
−1. These are oscillations in the vertical position of

the parcel with a period, P = 2π/N . The oscillations are a simple form of
internal gravity waves. However, if N 2 < 0 (with denser air above lighter air),
there is a solution δz ∝ e|N |t that grows without limit (up to a violation of the
assumption of small δz) and indicates that the atmosphere is unstably
stratified with respect to a parcel displacement. The growth rate for the
instability is |N |, with a growth time of |N |−1. The fluid motion that arises
from unstable stratification is called convection or gravitational instability .

Using the previous relations and taking the overbar symbol as implicit,

N2 = − g

ρpot

∂ρpot
∂z

=
g

θ

∂θ

∂z

=
g

T

(
∂T

∂z
− κT

p

∂p

∂z

)

=
g

T

(
∂T

∂z
+
g

cp

)

=
g

T

(
∂T

∂z
− ∂T

∂z

∣∣∣
δη=0

)
. (2.69)

N is related to the difference between the actual lapse rate and the adiabatic
or isentropic rate that appears in (2.54). In the extra-tropical troposphere, a
typical value for N is about 10−2 s−1 ⇒ P ≈ 10 min; in the stratosphere, N
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is larger (n.b., the increase in dzθ above the tropopause; Fig. 2.6). There are
analogous relations for the ocean based on its equation of state. A typical
upper-ocean value for N is similar in magnitude, ∼ 10−2 s−1, within the
pycnocline underneath the often well-mixed surface boundary layer where T &
S are nearly uniform and N ≈ 0; in the abyssal ocean N 2 values are usually
positive but much smaller than in the upper oceanic pycnocline (Fig. 2.7).

2.3.4 Hydrostatic Balance

The hydrostatic relation (2.51) is an exact one for a resting atmosphere. But
it is also approximately valid for fluid motions superimposed on mean profiles
of p(z) and ρ(z) if the motions are “thin” (i.e., have a small aspect ratio,
H/L� 1, with H and L typical vertical and horizontal length scales). All
large-scale motions are thin, insofar as their L is larger than the depth of the
ocean (≈ 5 km) or height of the troposphere (≈ 10 km). This is demonstrated
with a scale analysis of the vertical component of the momentum equation
(2.2). If V is a typical horizontal velocity, then W ∼ V H/L is a typical
vertical velocity such that the contributions to δ are similar for all coordinate
directions. Assume that the advective acceleration and pressure gradient
terms have comparable magnitudes in the horizontal momentum equation, i.e.,

Duh
Dt

∼ 1

ρ
∇∇∇hp (2.70)

(n.b., the subscript h denotes horizontal component). For ρ ≈ ρ ∼ ρ0 and
t ∼ L/V (advective scaling; Sec. 2.1.1), this implies that the pressure
fluctuations have a scaling estimate of δp ∼ ρ0V

2. The further assumption
that density fluctuations have a size consistent with these pressure
fluctuations through hydrostatic balance implies that δρ ∼ ρ0V

2/gH. The
hydrostatic approximation to (2.2) requires that

ρ
Dw

Dt
� δpz ∼ gδρ (2.71)

in the vertical momentum balance. Using the preceeding scale estimates, the
left and right sides of this inequality are estimated as

ρ0 ·
V

L
· V H
L
� ρ0

V 2

H
, (2.72)

or, dividing by the right-side quantities,
(
H

L

)2

� 1 . (2.73)
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This is the condition for validity of the hydrostatic approximation for a
non-rotating flow (cf., (2.112)), and it necessarily must be satisfied for
large-scale flows because of their thinness.

2.3.5 Pressure Coordinates

With the hydrostatic approximation (2.51), almost all aspects of the fully
compressible atmospheric dynamics can be made implicit by transforming the
equations to pressure coordinates. Formally this transformation from “height”
or “physical” coordinates (x, t) to pressure coordinates (x̃, t̃) is defined by

x̃ ≡ x , ỹ ≡ y , z̃ ≡ F (p) , t̃ ≡ t ; (2.74)

F can be any monotonic function. In height coordinates z is an independent
variable while p(x, y, z, t) is a dependent variable; in pressure coordinates, z̃(p)
is independent while z(x̃, ỹ, z̃, t̃) is dependent. The pressure-height
relationship is a monotonic one (Fig. 2.6, lower right) because of nearly
hydrostatic balance in the atmosphere. Monotonicity is a necessary condition
for F (p) to be a valid alternative coordinate.

Meteorological practice includes several alternative definitions of F; two
common ones are

F (p) ≡ (p0 − p)
gρ0

, (2.75)

and

F (p) ≡ H0

(
1−

[
p

p0

]κ)
, H0 =

cpT0

g
(≈ 30 km) . (2.76)

Both of these functions have units of height [m]. They have the effect of
transforming a possibly infinite domain in z into a finite one in z̃, whose outer
boundary condition is p→ 0 as z →∞. The second choice yields z̃ = z for
z ≤ H0 in the special case of an isentropic atmosphere (2.57). The resulting
equations are similar in their properties with either choice of F , but (2.76) is
the one used in (2.77) et seq.

The transformation rules for derivatives when only the z̃ coordinate is
redefined (as in (2.74)) are the following:

∂x = ∂x̃ +
∂z̃

∂x
∂z̃ = ∂x̃ −

∂x̃z

∂z̃z
∂z̃

∂y = ∂ỹ +
∂z̃

∂y
∂z̃ = ∂ỹ −

∂ỹz

∂z̃z
∂z̃
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∂z =
∂z̃

∂z
∂z̃ =

1

∂z̃z
∂z̃

∂t = ∂t̃ +
∂z̃

∂t
∂z̃ = ∂t̃ −

∂t̃z

∂z̃z
∂z̃ . (2.77)

The relations between the first and center column expressions in (2.77) are the
result of applying the chain rule of calculus; e.g., the first line results from
applying ∂x |y,z,t to a function whose arguments are
(x̃(x), ỹ(y), z̃(x, y, z, t), t̃(t)). The coefficient factors in the third column of
the equations in (2.77) are derived by applying the first two columns to the
quantity z; e.g.,

∂z

∂x
=

∂z

∂x̃
+
∂z̃

∂x

∂z

∂z̃
= 0

⇒ ∂z̃

∂x
= −∂x̃z

∂z̃z
. (2.78)

The substantial derivative has the same physical meaning in either
coordinate system because the rate of change with time following the flow is
independent of the spatial coordinate system it is evaluated in. It also has a
similar mathematical structure in any space-time coordinate system:

D

Dt
=

Dt

Dt
∂t +

Dx

Dt
∂x +

Dy

Dt
∂y +

Dz

Dt
∂z

≡ ∂t + u∂x + v∂y + w∂z

=
Dt̃

Dt
∂t̃ +

Dx̃

Dt
∂x̃ +

Dỹ

Dt
∂ỹ +

Dz̃

Dt
∂z̃

≡ ∂t̃ + u∂x̃ + v∂ỹ + ω∂z̃ . (2.79)

The first two lines are expressed as applicable to a function in height
coordinates and the last two to a function in pressure coordinates. What is
ω ≡ Dtz̃? By using the right-side of the transformation rules (2.77)
substituted into this expression and the second line in (2.79), the expression
for ω is derived to be

ω =
1

∂z̃z

(
w − ∂z

∂t̃
− u ∂z

∂x̃
− v ∂z

∂ỹ

)
. (2.80)

The physical interpretation of ω is the rate of fluid motion across a surface of
constant pressure (i.e., an isobaric surface, z̃ = const.), which itself is moving
in physical space. Stated more literally, it is the rate at which the coordinate
z̃ changes following the flow.
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Now consider the equations of motion in the transformed coordinate frame.
The hydrostatic relation (2.51), with (2.40), (2.44), (2.76), and (2.77), becomes

∂Φ

∂z̃
=

cp
H0

θ , (2.81)

where
Φ ≡ gz (2.82)

is the geopotential function appropriate to the pressure-coordinate frame. The
substantial time derivative is interpreted as the final line of (2.79). After
similar manipulations, the horizontal momentum equation from (2.2) becomes

Duh
Dt

= −∇̃∇∇hΦ + Fh ; (2.83)

the subscript h again denotes horizontal component. The internal energy
equation is the same as (2.45), viz.,

Dθ

Dt
=
Q̃
cp
, (2.84)

with

Q̃ ≡
(
p0

p

)κ
Q =

Q
1− z̃/H0

, (2.85)

the potential temperature heating rate. The continuity equation (2.5) becomes

∇̃∇∇h · uh +
1

G(z̃)

∂

∂z̃
[G(z̃)ω ] = 0 , (2.86)

with the variable coefficient,

G(z̃) ≡
(

1− z̃

H0

)(1−κ)/κ

. (2.87)

Note that (2.86) does not have any time-dependent term expressing the
compressibility of a parcel. The physical reason is that the transformed
coordinates have an elemental “volume” that is not a volume in physical space,

d vol = dx dy dz ,

but a mass amount,

dx dy dp = dx dy pzdz = −gρd vol ∝ dmass ,
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when the hydrostatic approximation is made. With the assumption that mass
is neither created nor destroyed, the pressure-coordinate element does not
change with time.

The equation set (2.81)-(2.86) is called the (hydrostatic) Primitive
Equations (PE). It comprises a closed set for the dependent variables Φ, θ, uh,
and ω. It can be augmented by various diagnostic equations — such as (2.76)
for p, (2.40) for ρ, (2.80) for w — when these other quantities are of interest.
Its solutions can also be transformed back into height coordinates by (2.74)
for geographical interpretation in physical space. The same name and its
abbreviation, PE, is used for the simplified form of the Boussinesq Equations
(2.31) with an additional hydrostatic approximation, and the modifiers “in
physical coordinates” or “in pressure coordinates” can be appended to
distinguish them.

Notice that (2.81)-(2.86) is very close in mathematical form to
incompressible fluid dynamics, most specifically because there is no time
derivative in (2.86): the mass conservation equation has changed its character
from a prognostic to a diagnostic relation. In fact, (2.81)-(2.86) is isomorphic
to a subset of the incompressible Boussinesq Equations (2.31) (i.e., with the
hydrostatic approximation and disregarding S for the atmosphere) if (∂z̃G)/G
is neglected relative to (∂z̃ω)/ω in (2.86). This latter approximation is
appropriate whenever the actual transformed vertical scale of the motion is
small in the sense of

H̃ �
(

κ

1− κ
)
H0 ≈ 12 km . (2.88)

Even for troposphere-filling motions (with a vertical extent ∼ 10 km), this
approximation is often made for simplicity, although in practice it does not
significantly complicate solving the equations. So the hydrostatic,
incompressible Primitive Equations is one of the most fundamental equation
sets for GFD studies of large-scale (thin) oceanic and atmospheric motions,
and it is justified through the arguments leading either to (2.31) with (2.51)
or to (2.81)-(2.86) with G ≈ 1 or not.

The standard oceanic and atmospheric General Circulation Models — used
to calculate the weather and climate — are based upon the PE. For
quantitative realism, the oceanic General Circulation Models do include the
effects of salinity, S, and the general equation of state for seawater, and the
atmospheric General Circulation Models include water vapor, q, and G 6= 1.
Choosing the Primitive Eequations excludes sound waves and inaccurately
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represents motions with strong vertical acceleration. Examples of the latter
are strong convection, surface gravity waves, and even high-frequency internal
gravity waves (with frequency near N ; Sec. 4.2.2). Since these phenomena do
occur in nature, the presumption must be that these excluded or distorted
motions either do not matter for the general circulation or their important
effects in the general circulation will be expressed through parameterizations
(Chap. 1).

2.4 Earth’s Rotation

Earth and most other astronomical bodies are rotating. It is usually easier to
analyze the fluid dynamics by making a transformation into the rotating
reference frame of an observer on the rotating body since the relative motions
are much smaller than the absolute ones (i.e., V � Ωa, where V is a typical
scale for the relative motion, Ω is the planetary rotation rate (= 2π radians
day−1 ≈ 0.73 s−1), and a is its radius (≈ 6400 km)). If the body has an
approximately spherical shape with a surrounding, gravitationally bound fluid
layer, then the transformation is most appropriately done with spherical shell
coordinates. (And for Earth the shell is thin when viewed on the planetary
scale.) But the essential results can more simply be demonstrated for the
situation of rotation in a Cartesian coordinate frame about an axis aligned
with the local vertical direction (parallel to gravity). Small-scale motions
typically are not influenced very much by rotation, because their time scale is
short compared to the rotation period (hence their Rossby number, Ro, is
large; see (2.103) below). Large-scale motions are influenced by rotation, but
due to their thinness (i.e., small aspect ratio, (2.73)), usually only the vertical
component of Earth’s rotation vector is dynamically important (as explained
at the end of Sec. 2.4.2). Compared to the true rotation vector of Earth, ΩΩΩe

— with its direction parallel to the axis of rotation, pointed outward through
the north pole, and magnitude equal to the angular frequency of rotation —
only the local vertical component is retained here,

ΩΩΩ ≡ Ωẑ = (ΩΩΩe · ẑ)ẑ = |ΩΩΩe| sin[θ] ẑ ; (2.89)

θ is the latitude (Fig. 2.8). Note that Ω has different signs in the two
hemispheres; by a right-handed convention (i.e., for the right thumb aligned
with Earth’s rotation vector, the direction of rotation coincides with the curl
of the fingers), Ω is positive in the northern hemisphere since the ΩΩΩe · ẑ is
positive there.
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Figure 2.8: Geometry of Earth’s rotation vector, ΩΩΩe. Its direction is outward
and parallel to the north pole. A local Cartesian coordinate system has unit
vectors, (x̂, ŷ, ẑ), and the local vertical component of ΩΩΩe is ΩΩΩ = |ΩΩΩe| sin[θ] ẑ,
where θ is the latitude.
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Along with the vertical-component approximation in (2.89), a spatially local
approximation is also often made using a Taylor series expansion in
θ − θ0 � 1, or equivalently (y − y0) � a, where a is Earth’s radius:

Ω ≡ |ΩΩΩ| = |ΩΩΩe| (sin[θ0] + cos[θ0] (θ − θ0) + . . .)

=
1

2
(f0 + β0 (y − y0) + . . .) . (2.90)

The Coriolis frequency and its gradient are defined as

f0 = 2|ΩΩΩe| sin[θ0] and β0 =
2|ΩΩΩe|
a

cos[θ0] . (2.91)

f0 changes sign between the hemispheres, vanishes at the Equator, and is
largest at the poles. β0 is positive everywhere and is largest at the Equator.
When the characteristic length scale is, L, is sufficiently small, then only the
first term in (2.90) is retained; this approximation is called f -plane. When
L/a is not completely negligible, then the second term is also retained in the
β-plane approximation. When L/a is not small, then no approximation to Ω
is warranted, and a Cartesian coordinate frame is not apt.

2.4.1 Rotating Coordinates

As in (2.74) for pressure coordinates, a coordinate transformation is defined
here from non-rotating (or inertial) coordinates, (x, t), to rotating ones,
(X, T ) (Fig. 2.9). The rotating coordinates are defined by

X ≡ x cos[Ωt] + y sin[Ωt] ,

Y ≡ −x sin[Ωt] + y cos[Ωt] ,

Z ≡ z, T ≡ t . (2.92)

The unit vectors in the rotating frame are

X̂ = x̂ cos[Ωt] + ŷ sin[Ωt] , Ŷ = −x̂ sin[Ωt] + ŷ cos[Ωt] , Ẑ = ẑ , (2.93)

and their associated velocities are

U = u− Ωẑ× x , (2.94)

where U is the relative velocity in the rotating reference frame. This says that
the relative velocity in the rotating frame is the stationary-frame velocity
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minus the motion of the rotating frame itself. In terms of the velocity
components,

U = (u+ Ωy) cos[Ωt] + (v − Ωx) sin[Ωt] ,

V = −(u+ Ωy) sin[Ωt] + (v − Ωx) cos[Ωt] ,

W = w .

(2.95)

x, u X, U

y, v Y, V

z, w Z, W

Ω

t  & T  &

rotating coordinatesstationary coordinates

Figure 2.9: A rotating coordinate frame with coordinates, (X,Y, Z, T ), and a
non-rotating frame with coordinates, (x, y, z, t). The rotation vector is parallel
to the vertical axis, ΩΩΩ = Ωẑ.

Now analyze how the relevant operators are transformed. An operator in
the non-rotating, or stationary, frame is denoted by subscript s and one in the
rotating frame by subscript r. The advection and gradient operators have
isomorphic forms in the two frames, as can be verified by substituting from
(2.92)-(2.95) and applying the differential chain rules (as in Sec. 2.3.5).

D

Dt s
≡ ∂t + u∂x + v∂y + w∂z

=
D

Dt r
≡ ∂T + U∂X + V ∂Y +W∂Z . (2.96)

∇∇∇s ≡ x̂∂x + ŷ∂y + ẑ∂z

= ∇∇∇r ≡ X̂∂X + Ŷ∂Y + Ẑ∂Z . (2.97)
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Similarly, the incompressible continuity equation in (2.31) preserves its form,

∇∇∇s · u = ∇∇∇r ·U = 0 , (2.98)

implying that material parcel volume elements are the same in each frame,
with dx = dX. The tracer equations in (2.31) also preserve their form because
of (2.96). The material acceleration transforms as

Du

Dt s
=

D

Dt
[x̂u+ ŷv + ẑw]

=
D

Dt
[X̂(U − ΩY ) + Ŷ(V + ΩX) + ẐW ]

=
DU

Dt r
+ 2ΩẐ×U +

1

ρ0

∇∇∇rP , (2.99)

with

P ≡ − ρ0Ω2

2
(X2 + Y 2) .

The step from the first and second lines in (2.99) is an application of (2.94).
In the step to the third line, use is made of (2.96) and the relations,

DX̂

Dt
= ΩŶ,

DŶ

Dt
= −ΩX̂,

DẐ

Dt
= 0 , (2.100)

that describe how the orientation of the transformed coordinates rotates.
Since ∇∇∇sφ = ∇∇∇rφ by (2.97), the momentum equation in (2.31) transforms into

DU

Dt r
+ 2ΩẐ×U = −∇∇∇r

(
φ+

P

ρ0

)
− Ẑ

gρ

ρ0

+ F . (2.101)

After absorbing the incremental centrifugal force potential, P/ρ0, into a
redefined geopotential function, φ, then (2.101) has almost the same
mathematical form as the original non-rotating momentum equation, albeit in
terms of its transformed variables, except for the addition of the Coriolis
force, −2ΩΩΩ×U. The Coriolis force has the effect of accelerating a
rotating-frame horizontal parcel displacement in the horizontally
perpendicular direction (i.e., to the right when Ω > 0). This acceleration is
only an apparent force from the perspective of a rotating-frame observer, since
it is absent in the inertial-frame momentum balance.

Hereafter, the original notation (e.g., x) will also be used for rotating
coordinates, and the context will make it clear which reference frame is being
used. Alternative geometrical and heuristic discussions of this transformation
are in Pedlosky (Chap. 1.6, 1987), Gill (Chap. 4.5, 1982), and
Cushman-Roisan (Chap. 2, 1994).
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2.4.2 Geostrophic Balance

The Rossby number, Ro, is a non-dimensional scaling estimate for the relative
strengths of the advective and Coriolis forces:

u · ∇∇∇u

2ΩΩΩ× u
∼ V V/L

2ΩV
=

V

2ΩL
, (2.102)

or

Ro ≡ V

fL
, (2.103)

where f = 2Ω is the Coriolis frequency. In the ocean mesoscale eddies and
strong currents (e.g., the Gulf Stream) typically have V ≤ 0.5 m s−1, L ≈ 50
km, and f ≈ 10−4 s−1 (∼ 2π day−1); thus, Ro ≤ 0.1. In the atmosphere the
Jet Stream and synoptic storms typically have V ≤ 50 m s−1, L ≈ 103 km,
and f ≈ 10−4 s−1; thus, Ro ≤ 0.5. Therefore, large-scale motions have
moderate or small Ro, hence strong rotational influences on their dynamics.
Motions on the planetary scale have a larger L ∼ a and usually a smaller V ,
so their Ro values are even smaller.

Assume as a starting model the rotating Primitive Equations with the
hydrostatic approximation (2.51). If t ∼ L/V ∼ 1/fRo, F ∼ RofV (or
smaller), and Ro� 1, then the horizontal velocity is approximately equivalent
to the geostrophic velocity, ug = (ug, vg, 0), viz.,

uh ≈ ug ,

and the horizontal component of (2.101) becomes

fvg =
∂φ

∂x
, fug = − ∂φ

∂y
, (2.104)

with errors O(Ro). This is called geostrophic balance, and it defines the
geostrophic velocity in terms of the pressure gradient and Coriolis frequency.
The accompanying vertical force balance is hydrostatic,

∂φ

∂z
= −g ρ

ρo
= −g(1− αθ) , (2.105)

expressed here as a notational hybrid of (2.26), (2.51) and (2.81) with the
simple equation of state,

ρ/ρo = 1− αθ .
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Combining (2.104)-(2.105) yields

f
∂vg
∂z

= gα
∂θ

∂x
, f

∂ug
∂z

= −gα∂θ
∂y

, (2.106)

called thermal-wind balance. Thermal-wind balance implies that the vertical
gradient of horizontal velocity (or vertical shear) is directed along isotherms in
a horizontal plane with a magnitude proportional to the horizontal thermal
gradient.

Geostrophic balance implies that the horizontal velocity, ug, is
approximately along isolines of the geopotential function (i.e., isobars) in
horizontal planes. Comparing this with the incompressible velocity potential
representation (Sec. 2.2.1) shows that

ψ =
1

f
φ+O (Ro) ; (2.107)

i.e., the geopotential is a horizontal streamfunction whose isolines are
streamlines (Sec. 2.1.1). For constant f (i.e., the f-plane approximation),
∂xug + ∂yvg = 0 for a geostrophic flow; hence, δh = 0 and w = 0 at this order
of approximation for an incompressible flow. So there is no divergent potential
as part of the geostrophic velocity, X = χ = 0 (Sec. 2.2.1). However, the
dynamically consistent evolution of a geostrophic flow does induce small but
nonzero X, χ, and w fields associated with an ageostrophic velocity component
that is an O(Ro) correction to the geostrophic flow, but the explanation for
this is deferred to the topic of quasigeostrophy in Chap. 4.

Now make a scaling analysis in which the magnitudes of various fields are
estimated in terms of the typical magnitudes of a few primary quantities plus
assumptions about what the dynamical balances are. The way that it is done
here is called geostrophic scaling. The primary scales are assumed to be

u, v ∼ V , x, y ∼ L , z ∼ H , f ∼ f0 . (2.108)

From these additional scaling estimates are derived,

T ∼ L

V
, p ∼ ρ0f0V L , ρ ∼ ρ0f0V L

gH
, (2.109)

by advection as the dominant rate for the time evolution, geostrophic balance,
and hydrostatic balance, respectively. For the vertical velocity, the scaling
estimate from 3D continuity is W ∼ V H/L. However, since geostrophic
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balance has horizontal velocities that are approximately horizontally
non-divergent (i.e., ∇∇∇h · uh = 0), they cannot provide a balance in continuity
to a w with this magnitude. Therefore, the consistent w scaling must be an
order smaller in the expansion parameter, Ro, viz.,

W ∼ Ro
V H

L
=

V 2H

f0L2
. (2.110)

Similarly, by assuming that changes in f(y) are small on the horizontal scale
of interest (cf., (2.90)) so that they do not contribute to the leading-order
momentum balance (2.104), then

β ≡ df

dy
∼ Ro

f0

L
=

V

L2
. (2.111)

This condition for neglecting β can be recast, using β ∼ f0/a (with
a ≈ 6.4× 106 m, Earth’s radius), as a statement that L/a = Ro� 1, i.e., L is
a sub-global scale. Finally, with geostrophic scaling the condition for validity
of the hydrostatic approximation in the vertical momentum equation can be
shown to be

Ro2
(
H

L

)2

� 1 (2.112)

by an argument analogous to the non-rotating one in Sec. 2.3.4 (cf., (2.73)).

Equipped with these geostrophic scaling estimates, now reconsider the basis
for the oceanic rigid-lid approximation (Sec. 2.2.3). The approximation is
based on the smallness of Dth compared to interior values of w. The scalings
are based on horizontal velocity, V , horizontal length, L, vertical length, H,
and Coriolis frequency, f , a geostrophic, estimate for the sea level fluctuation,
h ∼ fV L/g, and the advective estimate, Dt ∼ V/L. These combine to give
Dth ∼ fV 2/g. The geostrophic estimate for w is (2.110). So the rigid lid
approximation is accurate if

w � Dh

Dt
V 2H

f0L2
� fV 2

g

R2
e � L2 , (2.113)

with

Re ≡
√
gH

f
. (2.114)
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Re is called the external or barotropic deformation radius (cf., Chap. 4), and
it is associated with the density jump across the oceanic free surface (as
opposed to the baroclinic deformation radii associated with the interior
stratification; cf., Chap. 5). For mid-ocean regions with H ≈ 5000 m, Re has
a magnitude of several 1000s km. This is much larger than the characteristic
horizontal scale, L, for most oceanic currents.

Geostrophic scaling analysis can also be used to determine the conditions for
consistently neglecting the horizontal component of the local rotation vector,
fh = 2Ωe cos[θ], compared to the local vertical component, f = 2Ωe sin[θ] (Fig.
2.8). The Coriolis force in local Cartesian coordinates on a rotating sphere is

2ΩΩΩe × u = x̂ (fhw − fv) + ŷ fu − ẑ fhu . (2.115)

In the x̂ momentum equation, fhw is negligible compared to fv if

Ro
H

L

fh
f
� 1 , (2.116)

based on the geostrophic scale estimates for v and w. In the ẑ momentum
equation, fhu is negligible compared to ∂zp/ρ0 if

H

L

fh
f
� 1 , (2.117)

based upon the geostrophic pressure scale, p ∼ ρ0fLV . In middle and high
latitudes, fh/f ≤ 1, but it becomes large near the Equator. So, for a
geostrophic flow with Ro ≤ O(1), with small aspect ratio, and away from the
Equator, the dynamical effect of the horizontal component of the Coriolis
frequency, fh, is negligible. Recall that thinness is also the basis for consistent
hydrostatic balance. For more isotropic motions (e.g., in a turbulent Ekman
boundary layer; Sec. 6.1) or flows very near the Equator, where f � fh since
θ � 1, the neglect of fh is not always valid.

2.4.3 Inertial Oscillations

There is a special type of horizontally uniform solution of the rotating
Primitive Equations (either stably stratified or with uniform density). It has
no pressure or density variations around the resting state, no vertical velocity,
and no non-conservative effects:

δφ = δθ = w = F = Q = ∇∇∇h = 0 . (2.118)

53



The horizontal component of (2.101) implies

∂u

∂t
− fv = 0,

∂v

∂t
+ fu = 0 , (2.119)

and the other dynamical equations are satisfied trivially by (2.118). A linear
combination of the separate equations in (2.119) as ∂t (1st) + f× (2nd) yields
the composite equation,

∂2u

∂t
+ f 2u = 0 . (2.120)

This has a general solution,

u = u0 cos[ft+ λ0] . (2.121)

Here u0 and λ0 are amplitude and phase constants. From the first equation in
(2.119), the associated northward velocity is

v = −u0 sin[ft+ λ0] . (2.122)

The solution (2.121)-(2.122) is called an inertial oscillation, with a period
P = 2π/f ≈ 1 day, varying from half a day at the poles to infinity at the
Equator. (Its dynamics is somewhat similar to Foucault’s pendulum that
appears to a ground-based observer to precess with frequency f as Earth
rotates underneath it. But the analogy is not exact; see Cushman-Roisin,
1994, Sec. 2.5.) For such a solution, the streamlines are parallel, and they
rotate clockwise/counterclockwise with frequency |f | for f > 0/< 0 in the
northern/southern hemisphere when viewed from above. The associated
streamfunction (Sec. 2.2.1) is

ψ(x, y, t) = −u0 (x sin[ft+ λ0] + y cos[ft+ λ0]) . (2.123)

The trajectories are circles (going clockwise for f > 0) with a radius of u0/f ,
often called inertial circles. This direction of rotary motion is also called
anticyclonic motion, meaning rotation in the opposite direction from Earth’s
rotation (i.e., with an angular frequency about ẑ with the opposite sign of f).
Cyclonic motion is rotation with the same sign as f . The same terminology is
applied to flows with the opposite or same sign, respectively, of the vertical
vorticity, ζz, relative to f (Chap. 3).

Since f ∼ Ω ≈ 10−4 s−, it is commonly true that f � N in the atmospheric
troposphere and stratosphere and oceanic pycnocline. Inertial oscillations are
typically slower than buoyancy oscillations (Sec. 2.3.3), but both are typically
faster than the advective evolutionary rate, V/L, for geostrophic winds and
currents.
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Chapter 3

Barotropic and Vortex Dynamics

The ocean and atmosphere are full of vortices, i.e., locally recirculating flows
with approximately circular streamlines and trajectories. Most often the
recirculation is in horizontal planes, perpendicular to the gravitational
acceleration and rotation vectors in the vertical direction. Vortices are often
referred to as coherent structures, connoting their nearly universal circular
flow pattern, no matter what their size or intensity, and their longevity in a
Lagrangian coordinate frame that moves with the larger-scale, ambient flow.
Examples include winter cyclones, hurricanes, tornadoes, dust devils,
Gulf-Stream Rings, Meddies (a sub-mesoscale, subsurface vortex, with
L ∼ 10s km, in the North Atlantic whose core water has chemical properties
characteristic of the Mediterranean outflow into the Atlantic), plus many
others without familiar names. A coincidental simultaneous occurrence of
well-formed vortices in Davis Strait is shown in Fig. 3.1. The three oceanic
anticyclonic vortices on the southwestern side are made visible by the pattern
of their advection of fragmentary sea ice, and the cyclonic atmospheric vortex
to the northeast is exposed by its pattern in a stratus cloud deck. Each vortex
type probably developed from an antecedent horizontal shear flow in its
respective medium.

Vortices are created by a nonlinear advective process of self-organization,
from an incoherent flow pattern into a coherent one, more local than global.
The antecedent conditions for vortex emergence, when it occurs, can either be
incoherent forcing and initial conditions or be a late-stage outcome of the
instability of a prevailing shear flow, from which fluctuations extract energy
and thereby amplify. This self-organizing behavior conspicuously contrasts
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Figure 3.1: Oceanic and atmospheric vortices in Davis Strait (north of the
Labrador Sea, west of Greenland) during June 2002. Both vortex types are
mesoscale vortices with horizontal diameters of 10s-100s km. (Courtesy of
Jacques Descloirest, NASA Goddard Space Flight Center.)
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with the nonlinear advective dynamics of turbulence. On average turbulence
acts to change the flow patterns, to increase their complexity (i.e., their
incoherence), and to limit the time over which the evolution is predictable. A
central problem in GFD is how these contrasting paradigms — coherent
structures and turbulence — can each have validity in nature. This chapter is
an introduction to these phenomena in the special situation of
two-dimensional (2D), or barotropic, fluid dynamics.

3.1 Barotropic Equations

Consider 2D dynamics, with ∂z = w = δρ = δθ = 0, and purely vertical
rotation with ΩΩΩ = ẑ f/2. The governing momentum and continuity equations
under these conditions are

Du

Dt
− fv = −∂φ

∂x
+ F (x)

Dv

Dt
+ fu = −∂φ

∂y
+ F (y)

∂u

∂x
+
∂v

∂y
= 0 , (3.1)

with
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
.

These equations conserve the total kinetic energy,

KE =
1

2

∫ ∫
dx dy u2 , (3.2)

when F is zero and no energy flux occurs through the boundary:

d

dt
KE = 0 . (3.3)

This can be shown by multiplying the momentum equation in (3.1) by u· ,
integrating over the domain, and using continuity to show that there is no net
energy source or sink from advection and the pressure force. The 2D
incompressibility relation implies that the velocity can be represented entirely
in terms of a streamfunction, ψ(x, y, t),

u = −∂ψ
∂y
, v =

∂ψ

∂x
, (3.4)

57



since there is no divergence (cf., (2.17)). The vorticity (2.19) in this case only
has a vertical component, ζ = ζz:

ζ =
∂v

∂x
− ∂u

∂y
= ∇2ψ . (3.5)

(In the present context, it is implicit that ∇∇∇ ≡ ∇∇∇h.) There is no buoyancy
influence on the dynamics. This is an example of barotropic flow using either
of its common definitions, ∂z = 0 (sometimes enforced by taking a depth
average of a 3D flow) or ∇∇∇φ× ∇∇∇ρ = 0. (The opposite of barotropic is
baroclinic; Chap. 5). The consequence of these simplifying assumptions is that
the gravitational force plays no overt role in 2D fluid dynamics, however much
its influence may be implicit in the rationale for why 2D flows are
geophysically relevant (McWilliams, 1983).

3.1.1 Circulation

The circulation (defined in Sec. 2.1) has a strongly constrained time
evolution. This will be shown using an infinitesimal calculus. Consider the
time evolution of a line integral

∫
C A · dr, where A is an arbitrary vector and

C is a closed material curve (i.e., attached to the material parcels along it). A
small increment along the curve between two points marked 1 and 2,
∆r = r2 − r1, becomes ∆r′ after a small interval, ∆t (Fig. 3.2):

∆r′ ≡ r′2 − r′1
≈ (r2 + u2∆t)− (r1 + u1∆t)

= ∆r + (u2 − u1)∆t , (3.6)

using a Taylor series expansion in time for the Lagrangian coordinate, r(t).
Thus,

∆r′ −∆r

∆t
≈ u2 − u1 ≈

∂u

∂s
∆s = (∆r · ∇∇∇)u (3.7)

for small ∆s ≡ |∆r|, where s is arc length along C. As ∆t→ 0, (3.7) becomes

D

Dt
∆r = (∆r · ∇∇∇)u . (3.8)

This expresses the stretching and bending of ∆r through the tangential and
normal components of (∆r · ∇∇∇)u, respectively. Now divide C into small line
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Figure 3.2: Schematic of circulation evolution for a material line that follows
the flow. C is the closed line at times, t and t′ = t + ∆t. The location of two
neighboring points are r1 and r2 at time t, and they move with velocity v1 and
v2 to r′1 and r′2 at time t′.
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elements ∆ri to obtain

d

dt

∫

C
A · dr ≈ d

dt

∑

i

Ai ·∆ri

=
∑

i

[
DAi

Dt
·∆ri + Ai ·

D∆ri
Dt

]

=
∑

i

[
DAi

Dt
·∆ri + Ai · (∆ri · ∇∇∇)u

]
(3.9)

for any vector field, A(r, t). The time derivative, dt, for the material line
integral as a whole is replaced by the substantial derivative, Dt, operating on
each of the local elements, Ai and ∆ri. As maxi |∆ri| → 0, (3.9) becomes

d

dt

∫

C
A · dr =

∫

C

DA

Dt
· dr +

∫

C
A · (dr · ∇∇∇)u . (3.10)

When A = u, the last term vanishes because

∫

C
u · (dr · ∇∇∇)u =

∫

C
u · ∂u

∂s
ds =

∫

C
ds
∂

∂s

(
1

2
u2
)

=
1

2
u2|end

start = 0 , (3.11)

since the start and end points are the same point for the closed curve, C. Thus,

d

dt

∫

C
u · dr =

∫

C

Du

Dt
· dr . (3.12)

The left-side integral operated upon by Dt is called the circulation, C. After
substituting for the substantial derivative from the momentum equations (3.1),

d

dt

∫

C
u · dr =

∫

C
[−ẑf × u− ∇∇∇φ+ F] · dr . (3.13)

Two of the right-side terms are evaluated as

∫

C
∇∇∇φ · dr =

∫

C

∂φ

∂s
ds = 0 , (3.14)

and

−
∫

C
ẑf × u · dr = −

∫

C
fu · n̂ds

=
∫

C
f
∂ψ

∂s
ds

= −
∫

C
ψ
∂f

∂s
ds , (3.15)
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again using the fact that the integral of a derivative vanishes. So here the
form of Kelvin’s circulation theorem is

dC

dt
=

d

dt

∫

C
u · dr =

∫

C
[−ψ∇∇∇f + F] · dr . (3.16)

Circulation can only change due to non-conservative viscous or external
forces, or due to spatial variation in f , e.g., , in the β-plane approximation
(Sec. 2.4). Insofar as the latter are minor effects, as is often true, then
circulation is preserved on all material circuits, no matter how much they
move around and bend with the advecting flow field. This strongly constrains
the evolutionary possibilities for the flow, but the constraint is expressed in an
integral, Lagrangian form that is rarely easy to interpret more prosaically.

Baroclinic Kelvin’s Theorem: As remarked after (3.5), the more
fundamental definition of baroclinic is ∇∇∇p× ∇∇∇ρ 6= 0. As a brief diversion,
consider Kelvin’s theorem for a fully 3D flow to see why ∇∇∇p× ∇∇∇ρ is germane
to non-barotropic dynamics. For a fully compressible fluid, the derivation of
Kelvin’s circulation theorem includes the following pressure-gradient term on
its right side:

dC

dt
= −

∫

C

1

ρ
∇∇∇p · ds + · · ·

= −
∫ ∫

A
n̂ · ∇∇∇×

[
1

ρ
∇∇∇p
]
dA + · · ·

=
∫ ∫

A

1

ρ2
n̂ · ∇∇∇p× ∇∇∇ρ dA + · · · . (3.17)

The dots denote other contributions not considered here. The gradient
operator, ∇∇∇, here is fully 3D, A is the area of the 2D surface interior to the
curve C, and n̂ is the unit vector normal to this surface. With the Boussinesq
momentum approximation applied to circulation within horizontal planes
(i.e., n̂ = ẑ),

dC

dt
=

∫ ∫

A

ẑ

ρ2
0

· ∇∇∇hp× ∇∇∇hρ dx dy + · · · . (3.18)

Therefore, circulation is generated whenever ∇∇∇hp× ∇∇∇hρ 6= 0, the usual
situation for 3D, stratified flows. But this will not happen if ρ = ρ0, or
ρ = ρ(z), or { p = p̃(x, y, t)p̂(z), ρ = −(p̃/g) dp̂/dz, uh = ũnp̂ }. The first two
of these circumstances are consistent with ∂uh/∂z = 0, a 2D flow, while the
third one is not. The third circumstance is often called an equivalent
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barotropic flow, whose dynamics have a lot in common with shallow-water
flow (Chap. 4). For further discussion see Gill (p. 237-8, 1982).

3.1.2 Vorticity and Potential Vorticity

The vorticity equation is derived by taking the curl, (ẑ · ∇∇∇h×) , of the
momentum equations in (3.1). Examine in turn each term that results from
this operation, with an arrow indicating the change in a term from the
momentum equation after applying the curl:

∂u

∂t
−→ − ∂2u

∂y∂t
+

∂2v

∂x∂t
=

∂ζ

∂t
; (3.19)

(u · ∇)u −→ − ∂
∂y

[
u
∂u

∂x
+ v

∂u

∂y

]
+
∂

∂x

[
u
∂v

∂x
+ v

∂v

∂y

]

= u

(
∂2v

∂x2
− ∂2u

∂y∂x

)
+ v

(
∂2v

∂y∂x
− ∂2u

∂y2

)

−∂u
∂y

(
∂u

∂x
+
∂v

∂y

)
+
∂v

∂x

(
∂u

∂x
+
∂v

∂y

)

= u · ∇∇∇ζ , (3.20)

using the 2D continuity relation in (3.1);

∇∇∇φ −→ − ∂
∂y

(
∂φ

∂x

)
+
∂

∂x

(
∂φ

∂y

)
= 0 ; (3.21)

f ẑ× u −→ − ∂
∂y

(−fv) +
∂

∂x
(fu)

= f

(
∂u

∂x
+
∂v

∂y

)
+ u

∂f

∂x
+ v

∂f

∂y

= u · ∇∇∇f ; (3.22)

and

F −→ −∂F
x

∂y
+
∂F y

∂x
≡ F . (3.23)

The result is
Dζ

Dt
= −u · ∇∇∇f + F . (3.24)
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The vorticity only changes following a parcel because of a viscous or external
force curl, F , or spatial variation in f . Notice the similarity with Kelvin’s
theorem (3.16). This is to be expected because, as derived in Sec. 2.1,

∫

C
u · dr =

∫ ∫

A
ζ dx dy . (3.25)

Equation (3.24) is a local differential relation, rather than an integral relation,
but since (3.16) applies to all possible material curves, both relations cover
the entire 2D domain.

Advection Operator: Using (3.4) the advection operator can be rewritten
as

u · ∇∇∇A = u
∂A

∂x
+ v

∂A

∂y

= −∂ψ
∂y

∂A

∂x
+
∂ψ

∂x

∂A

∂y
≡ J [ψ,A] (3.26)

for any advected field, A. J is called the Jacobian operator, and it is the
approximate form for advection in flows dominated by ψ (cf., Sec. 2.2.1), even
in 3D.

Potential Vorticity: Since ∂tf = 0, (3.24) can be rewritten as

Dq

Dt
= F , (3.27)

with the potential vorticity defined by

q ≡ f + ζ . (3.28)

When F = 0 (conservative flow), q is a parcel invariant; i.e., Dtq = 0 for all
parcels in the domain. This implies that a conservative flow can only
rearrange the spatial distribution of q(x) without changing any of its
aggregate (or integral) properties; e.g.,

d

dt

∫ ∫
dx dy qn = 0 (3.29)

for any value of n as long as there is no potential-vorticity flux at the
boundary, qu · n̂ = 0.
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A Univariate Dynamical System: Eqs. (3.24) or (3.27), with (3.5)
and/or (3.28), comprise a partial differential equation system with ψ as the
only dependent variable (assuming that f is known and F can be expressed in
terms of the flow) because φ does not appear in the potential vorticity
equation, in contrast to the momentum-continuity formulation (3.1). For
example, with f = f0 and F = 0, (3.24) can be written entirely in terms of ψ
as

∇2∂ψ

∂t
+ J [ψ,∇2ψ] = 0 . (3.30)

Equation (3.30) is often called the barotropic vorticity equation since it has no
contributions from vertical shear or any other vertical gradients.

Rossby Waves: As an alternative to (3.30) when f = f(y) = f0 +β0(y− y0)
(i.e., the β-plane approximation (2.90)) and advection is neglected (i.e., the
flow is linearized about a resting state), (3.24) or (3.28) becomes

∇2∂ψ

∂t
+ β0

∂ψ

∂x
= 0 . (3.31)

In an unbounded domain, this equation has normal-mode solutions with
eigenmodes,

ψ = Real
(
ψ0e

i(kx+`y−ωt)
)
, (3.32)

for an arbitrary amplitude constant, ψ0 (with the understanding that only the
real part of ψ is physically meaningful) and eigenvalues (eigenfrequencies),

ω = − β0k

k2 + `2
. (3.33)

This can be verified as a solution by substitution into (3.31). The type of
relation (3.33), between the eigenfrequency and the wavenumbers and
environmental parameters (here β0), is called a dispersion relation, and it is a
usual element for wave and instability solutions (Chap. 4). These particular
eigenmodes are westward-propagating (i.e., ω/k < 0), barotropic Rossby
waves. (Secs. 4.6-4.7 have more analyses.)

3.1.3 Divergence and Diagnostic Force Balance

The divergence equation is derived by operating on the momentum equations
in (3.1) with (∇∇∇ · ) . Again examine the effect of this operation on each term:

∂u

∂t
−→ ∂

∂x

∂u

∂t
+
∂

∂y

∂v

∂t
= 0 ; (3.34)
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(u · ∇∇∇)u −→ ∂

∂x

(
u
∂u

∂x
+ v

∂u

∂y

)
+
∂

∂y

(
u
∂v

∂x
+ v

∂v

∂y

)

= −2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)

= −2J

[
∂ψ

∂x
,
∂ψ

∂y

]
; (3.35)

−∇∇∇φ −→ −∇2φ ; (3.36)

f ẑ× u −→ ∂

∂x
(−fv) +

∂

∂y
(fu) = −∇∇∇ · (f∇∇∇ψ) ; (3.37)

and
F −→ ∇∇∇ · F . (3.38)

The result is

∇2φ = ∇∇∇ · (f∇∇∇ψ) + 2J

[
∂ψ

∂x
,
∂ψ

∂y

]
+ ∇∇∇ · F . (3.39)

This relation allows φ to be calculated diagnostically from ψ and F, whereas,
as explained near (3.30), ψ can be prognostically solved for without knowing
φ. The partial differential equation system (3.27) and (3.39) is fully equivalent
to the primitive variable form (3.1), given consistent boundary and initial
conditions. The former equation pair is a system that has only a single time
derivative. Therefore, it is a first-order system that needs only a single field
(e.g., ψ(x, 0)) as the initial condition, whereas an incautious inspection of
(3.1), by counting time derivatives, might wrongly conclude that the system is
second order, requiring two independent fields as an initial condition. The
latter mistake results from overlooking the consequences of the continuity
equation that relates the separate time derivatives, ∂tu and ∂tv. This mistake
is avoided for the univariate system because the continuity constraint is
implicit in the use of ψ as the prognostic variable.

After neglecting ∇∇∇ · F and using the following scaling estimates,

u ∼ V, x ∼ L, f ∼ f0, ψ ∼ V L, φ ∼ f0V L, β =
df

dy
∼ Ro

f0

L
, (3.40)

for Ro� 1, (3.39) becomes

∇2φ = f0∇2ψ[ 1 +O(Ro) ] ⇒ φ ≈ f0ψ . (3.41)
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This is the geostrophic balance relation (2.107). For general f and Ro, the 2D
divergence equation is

∇2φ = ∇∇∇ · (f∇∇∇ψ) + 2J

[
∂ψ

∂x
,
∂ψ

∂y

]
, (3.42)

again neglecting ∇∇∇ · F.

This is called the gradient-wind balance relation. Equation (3.42) is an exact
relation for conservative 2D motions, but also often is a highly accurate
approximation for 3D motions with Ro ≤ O(1) and compatible initial
conditions and forcing. In comparison geostrophic balance is accurate only if
Ro� 1. When the flow evolution satisfies a diagnostic relation like (3.41) or
(3.42), it is said to have a balanced dynamics and, by implication, exhibits
fewer temporal degrees of freedom than allowed by the more general
dynamics. Most large-scale flow evolution is well balanced, but inertial
oscillations and internal gravity waves are not balanced (cf., Chaps. 2 & 4).
Accurate numerical weather forecasts require that the initial conditions of the
time integration be well balanced, or else the evolution will be erroneously
oscillatory compared to nature.

3.1.4 Stationary, Inviscid Flows

Zonal Flow: A parallel flow, such as the zonal flow,

u(x, t) = U(y) x̂ , (3.43)

is a steady flow when F = 0 (e.g., when ν = 0). This is called an inviscid
stationary state, i.e., a non-evolving solution of (3.1) and (3.28) for which the
advection operator is trivial. On the f -plane a stationary parallel flow can
have an arbitrary orientation, but on the β-plane, with f = f(y), only a zonal
flow (3.43) is a stationary solution. This flow configuration makes the
advective potential-vorticity tendency vanish,

∂q

∂t
= − J [ψ, q] = − J

[
−
∫ y

U(y′) dy′, f(y)− dU

dy
(y)

]
= 0 ,

as a consequence of the Jacobian operator’s property that it vanishes if each
of its arguments is a functional of a single variable, here y. In a zonal flow, all
other flow quantities (e.g., ψ, φ, ζ, q) are functions only of the coordinate y.
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Vortex Flow: A simple example of a vortex solution for 2D, conservative,
uniformly rotating (i.e., f = f0) dynamics is an axisymmetric flow where
ψ(x, y, t) = ψ(r) and r = [(x− x0)2 + (y − y0)2]1/2 is the radial distance from
the vortex center at (x0, y0). This too is a stationary state since in
(3.24)-(3.26), J [ψ(r), ζ(r)] = 0 (see (3.75) for the definition of J in cylindrical
coordinates). The most common vortex radial shape is a monopole vortex (Fig.
3.3). It has a monotonic decay in ψ as r increases away from the extremum at
the origin (ignoring a possible far-field behavior of ψ ∝ log[r]; see (3.50)
below). An axisymmetric solution is most compactly represented in cylindrical
coordinates, (r, θ), that are related to the Cartesian coordinates, (x, y), by

x = x0 + r cos θ, y = y0 + r sin θ . (3.44)

The solution has corresponding cylindrical-coordinate velocity components,
(U, V ), related to the Cartesian components by

u = Ucos θ − V sin θ, v = Usin θ + V cos θ . (3.45)

Thus, for an axisymmetric vortex,

u = U = ẑ× ∇∇∇ψ −→ V =
∂ψ

∂r
, U = 0

ζ = ẑ · ∇∇∇× u −→ ζ =
1

r

∂

∂r
[rV ] . (3.46)

A monopole vortex whose vorticity, ζ(r), is restricted to a finite core region
(i.e., ζ = 0 for all r ≥ r∗) has a nearly universal structure to its velocity in the
far-field region well away from its center. Integrating the last relation in
(3.46) with the boundary condition V (0) = 0 (i.e., there can be no azimuthal
velocity at the origin where the azimuthal direction is undefined) yields

V (r) =
1

r

∫ r

0
ζ(r′)r′ dr′ . (3.47)

For r ≥ r∗, this implies that

V (r) =
C

2πr
. (3.48)

The associated far-field circulation, C, is

C(r) =
∫

r≥r∗
u · dr′
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Figure 3.3: An axisymmetric anticyclonic monopole vortex (when f0 > 0).
(Left) Typical radial profiles for ψ and V . (Right) Typical radial profiles for ζ,
showing either a monotonic decay (“bare”) or an additional outer annulus of
opposite-sign vorticity (“shielded”).
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=
∫ 2π

0
V (r)r dθ

= 2πrV (r)

= 2π
∫ r∗

0
ζ(r′)r′ dr′ . (3.49)

C(r) is independent of r in the far-field; i.e., the vortex has constant
circulation around all integration circuits, C, that lie entirely outside r∗. Also,

∂ψ

∂r
= V

⇒ ψ =
∫ r

0
V dr′ + ψ0

⇒ ψ ∼ ψ0 as r → 0

⇒ ψ ∼ C

2π
ln r as r →∞ . (3.50)

For monopoles with only a single sign for ζ(r) (e.g., the “bare” profile in Fig.
3.3), C 6= 0. In contrast, for a “shielded” profile (Fig. 3.3), there is a
possibility that C = 0 due to cancellation between regions with opposite-sign
ζ. If C = 0, the vortex far-field flow (3.48) is zero to leading order in 1/r, and
V (r) is essentially, though not precisely, confined to the region where ζ 6= 0.
In this case its advective influence on its neighborhood is spatially more
localized than when C 6= 0. Finally, the strain rate for an axisymmetric vortex
has the formula,

S = r
d

dr

[
V

r

]
∼ − C

2πr2
as r →∞ . (3.51)

Thus, the strain rate is spatially more extensive than the vorticity for a
vortex, but it is less extensive than the velocity field.

Monopole vortices can have either sign for their azimuthal flow direction
and the other dynamical variables. Assuming f0 > 0 (northern hemisphere)
and geostrophic balance (3.41), the two vortex parities are categorized as

cyclonic: V > 0, ζ > 0, C > 0, ψ < 0, φ < 0.

anticyclonic: V < 0, ζ < 0, C < 0, ψ > 0, φ > 0.

(For ζ the sign condition refers to ζ(0) as representative of the vortex core
region.) In the southern hemisphere, cyclonic refers to
V < 0, ζ < 0, C < 0, ψ > 0, but still φ < 0, and vice versa for anticyclonic.
The 2D dynamical equations for ψ, (3.24) or (3.27) above, are invariant under
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the following transformation:

(ψ, u, v, x, y, t,F , df/dy) ←→ (−ψ, u,−v, x,−y, t,−F , df/dy) , (3.52)

even with β 6= 0. Therefore, any solution for ψ with one parity implies the
existence of another solution with the opposite parity with the sense of
motion in y reversed. 2D dynamics is in general parity invariant, even though
the divergence relation and its associated pressure field are not parity
invariant. Specifically, the 2D dynamics of cyclones and anticyclones are
essentially equivalent. (This is not true generally for 3D dynamics, except for
geostrophic flows; e.g., Sec. 4.5.)

The more general form of the divergence equation is the gradient-wind
balance (3.42). For an axisymmetric state with ∂θ = 0,

1

r

d

dr

[
r
∂φ

∂r

]
=

f0

r

d

dr

[
r
∂ψ

∂r

]
+

1

r

d

dr



(
∂ψ

∂r

)2

 . (3.53)

This can be integrated, −(
∫∞
r · r dr), to obtain

∂φ

∂r
= fV +

1

r
V 2 . (3.54)

This expresses a radial force balance in a vortex among pressure-gradient,
Coriolis, and centrifugal forces, respectively. (By induction it indicates that
the third term in (3.42) is more generally the divergence of a centrifugal force
along curved, but not necessarily circular, trajectories.) Equation (3.54) is a
quadratic algebraic equation for V with solutions,

V (r) = −fr
2

(
1±

√
1 +

4

f 2r

∂φ

∂r

)
. (3.55)

This solution is graphed in Fig. 3.4. Near the origin (the point marked A),

1

f 2r

∂φ

∂r
→ 0 (Ro→ 0) and V ≈ 1

f

∂φ

∂r
. (3.56)

This relation is geostrophic balance. At the point marked B,

V = −fr
2
,

∂φ

∂r
= −f

2r

4
, and f + ζ = 0 . (3.57)

Real-valued solutions in (3.55) do not exist for ∂rφ values that are more
negative than −f 2r/4. If there were such an initial condition, the
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fr/2−

Figure 3.4: Graphical solution of axisymmetric gradient-wind balance (3.55).
The circled point A is the neighborhood of geostrophic balance; the point B is
the location of the largest possible negative pressure gradient; and points C are
the non-rotating limit (Ro → ∞) where V can have either sign. Cyclonic and
anticyclonic solutions are in the upper and lower half plane, respectively. The
dashed line indicates the solution branch that is usually centrifugally unstable
for finite Ro values.
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axisymmetric gradient-wind balance relation could not be satisfied, and the
evolution would be such that ∂t, ∂θ, and/or ∂z are nonzero in some
combination.

The two solution branches extending to the right from point B correspond
to the ± options in (3.55). The lower branch is dashed as an indication that
these solutions are usually centrifugally unstable (Sec. 3.3.2) and so unlikely
to persist.

Finally, at the points marked C,

V ≈ ±
√

r
∂φ

∂r
(Ro→∞) . (3.58)

Thus, vortices of either parity must have low-pressure centers (i.e., with
∂rφ > 0) when rotational influences are negligibly small. This limit for (3.42)
and (3.54) is called the cyclostrophic balance relation, and it occurs in
small-scale vortices with large Ro values (e.g., tornadoes). Property damage
from a passing tornado is as much due to the sudden drop of pressure in the
vortex core (compared to inside an enclosed building or car) as it is to the
drag forces from the extreme wind speed.

Since the gradient-wind balance relation (3.42) is not invariant under the
parity transformation (3.52), φ(r) does not have the the same shape for
cyclones and anticyclones when Ro = O(1) (Fig. 3.5). This disparity is
partially the reason why low-pressure minima for cyclonic storms are typically
stronger than high-pressure maxima in the extra-tropical atmosphere (though
there are also some 3D dynamical reasons for their differences).

3.2 Vortex Movement

A single axisymmetric vortex profile like (3.46) is a stationary solution when
∇∇∇f = F = 0, and it can be stable to small perturbations for certain profile
shapes (Sec. 3.3). The superposition of several such vortices, however, is not a
stationary solution because axisymmetry is no longer true as a global
condition. Multiple vortices induce movement among themselves while more
or less preserving their individual shapes as long as they remain well
separated from each other; this is because the strain rate is much weaker than
the velocity in a vortex far-field. Alternatively, they can cause strong shape
changes (i.e., deformations) in each other if they come close enough together.
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Figure 3.5: Radial profiles of φ and V for axisymmetric cyclones and anticy-
clones with finite Rossby number (f0 > 0). Cyclone pressures are “lows”, and
anticyclone pressures are “highs”.

3.2.1 Point Vortices

An idealized model of the mutually induced movement among neighboring
vortices is a set of point vortices. A point vortex is a singular limit of a stable,
axisymmetric vortex with simultaneously r∗ → 0 and max [ζ]→∞ while C ∼
max [ζ]r2

∗ is held constant. This limit preserves the far-field information about
a vortex in (3.48). The far-field flow is the relevant part for causing mutual
motion among well separated vortices. In the point-vortex model, the spatial
degrees of freedom that represent the shape deformation within a vortex are
neglected (but they sometimes do become significantly excited; see Sec. 3.7).

Mathematical formulas for a point vortex located at x = x are

ζ = Cδ(x− x∗)

V = C/2πr ,

ψ = c0 + C/2π ln r

u = V θ̂θθ = V (−sin θx̂ + cos θŷ)

= V
(
− y − y∗

r
x̂ +

x− x∗
r

ŷ
)
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=
C

2πr2
(− (y − y∗)x̂ + (x− x∗)ŷ ) , (3.59)

where (r, θ) = x− x∗. Without loss of generality, we choose c0 = 0 since only
the gradient of ψ is related to the velocity. There is a singularity at r = 0 for
all quantities, and a weak singularity (i.e., logarithmic) at r =∞ for ψ. By
superposition, a set of N point vortices located at {xα, α = 1, N} has the
expressions,

ζ(x, t) =
N∑

α=1

Cαδ(x− xα)

ψ(x, t) =
1

2π

N∑

α=1

Cα ln |x− xα|

u(x, t) =
1

2π

N∑

α=1

Cα
|x− xα|2

[−(y − yα)x̂ + (x− xα)ŷ)] . (3.60)

To see that these fields satisfy the differential relations in (3.46), use the
differential relation,

∂|a|
∂a

=
a

|a| . (3.61)

By (2.1) the trajectory of a fluid parcel is generated from

dx

dt
(t) = u(x(t), t) , x(0) = x0 . (3.62)

This can be evaluated for any x using the expression for u in (3.59). In
particular, it can be evaluated for the limit, x→ xα, to give

ẋα = − 1

2π

′∑

β

Cβ
|xα − xβ|2

(yα − yβ)

ẏα = +
1

2π

′∑

β

Cβ
|xα − xβ|2

(xα − xβ) , (3.63)

with initial conditions, xα(0) = xα0. Here the dot above the variable indicates
a time derivative, and the prime denotes a sum over all β 6= α. This result is
based on taking the principal-value limit as x→ xα that gives zero
contribution from the right side of u in (3.60) at the vortex locations, xα.
Eqs. (3.63) are the equations of motion for the point-vortex system in
combination with

Ċα = 0 ⇒ Cα(t) = Cα(0) , (3.64)
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which comes from Dζ/Dt = 0, the conservation of vorticity and circulation
following the point-vortex parcels. These equations comprise a well posed
dynamical system that is a temporal ordinary differential equation system of
order N . This system can be written even more concisely using complex
variables: for

Zα ≡ xα + iyα , (3.65)

(3.63) becomes

Ż∗α =
1

2πi

′∑

β

Cβ
Zα − Zβ

. (3.66)

The symbol ·∗ denotes the complex conjugate of a variable.

Yet another way to write (3.63)-(3.66) is as a Hamiltonian dynamical
system. Transformed dependent variables are defined by

pα = C1/2
α xα, qα = C1/2

α yα . (3.67)

Using these variables, the equations of motion (3.63) are written in “canonical
form”, viz.,

ṗα =
∂H

∂qα
, q̇α = −∂H

∂pα
, (3.68)

with the Hamiltonian function for point vortices defined by

H(pα, qα) ≡ − 1

2π

′∑

α,β

CαCβ ln |xα − xβ| . (3.69)

The primed summation again excludes all terms with α = β. As is often true
in Hamiltonian mechanics, H is interpreted as the energy of the system. In
2D dynamics the only type of energy is the kinetic energy, KE (3.2). In this
context H is called the interaction kinetic energy since it does not include the
self-energy contributions to KE associated with the quadratic product of the
internal recirculating flow within each vortex. For point vortices, the internal
recirculation is both time-invariant for each vortex, hence irrelevant to the
dynamics of vortex motion, and infinite in magnitude, due to the spatial
singularity in (3.60). H is an integral invariant of the dynamics:

Ḣ =
∑

α

[
∂H

∂pα
ṗα +

∂H

∂qα
q̇α

]

=
∑

α

[
∂H

∂pα

(
∂H

∂qα

)
+
∂H

∂qα

(
−∂H
∂pα

)]
= 0 . (3.70)
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The time invariance of H is an expression of energy conservation in the
point-vortex approximation to the general expression for 2D fluid dynamics
(3.3). Other integral invariants of (3.63)-(3.69) are

X ≡
∑

α

Cαxα /
∑

α

Cα

Y ≡
∑

α

Cαyα /
∑

α

Cα

I ≡
∑

α

Cα(x2
α + y2

α) . (3.71)

This can be verified by taking the time derivative and substituting the
equations of motion. These quantities are point-vortex counterparts of the
vorticity centroid,

∫ ∫
xζ dx, and angular momentum,

∫ ∫
r2ζ dx, integral

invariants of conservative 2D dynamics (cf., (3.83) below). They arise, as is
usual for the conservation laws in Hamiltonian dynamics, because of the
invariance (i.e., symmetry) of H with respect to translation and rotation. For
example, with the definition of a translated coordinate, x′ = x + d, for
constant d, the form of H(x′) in (3.69) is unchanged from H(x) since
|x′α − x′β| = |xα − xβ|. Thus, there are 4 integrals of the motion and 2N
degrees of freedom (i.e., the (xα, yα)) in the dynamical system, hence 2N − 4
independent degrees of freedom in a point-vortex system.

There are infinitely more integral invariants of conservative, 2D fluid
dynamics which are the counterparts of

∫ ∫ G[q] dx for arbitrary functionals G
and f = f(y); cf., (3.29). For point vortices with f = f0, however, these
invariants are redundant with the relations, Ċα = 0 ∀ α, and thus they do not
further constrain the independent degrees of freedom for the flow evolution.

There is a well developed theory of Hamiltonian dynamical systems that is
therefore applicable to point-vortex dynamics and therefore, approximately, to
geophysical fluid dynamics. (See Salmon (1998) for an extensive treatment.)
Based upon the independent degrees of freedom, it can be demonstrated that
for N ≤ 3, the point-vortex dynamics are integrable. This implies certain
limits on the possible complexity of their trajectories. The most complex
possibility is quasi-periodic trajectories (i.e., expressible as periodic functions
in time, with possibly multiple frequencies as, e.g., in a cos[ω1t] + b sin[ω2t]).
In contrast, for N ≥ 4, point-vortex solutions are not generally integrable, and
they commonly have chaotic trajectories (Fig. 3.6). (The particular value of
N for the onset of chaos depends on the boundary conditions. Here an
unbounded domain is assumed.)

Now analyze some simple examples of point-vortex solutions. If N = 1, the
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Figure 3.6: Trajectories for an individual point vortex initially at (−
√

3,−1).
All vortices in the associated point-vortex system are of equal strength with
C > 0. Initial conditions are the following: (a) Three vortices symmetrically
located at (±

√
3,−1), (0, 2). (b) Three vortices asymmetrically located at

(±
√

3,−1), (1, 1). (c) Four vortices symmetrically located at (±
√

3,−1), (0, 2),
(0, 0). (d) Four vortices asymmetrically located at (±

√
3,−1), (1, 1), (−2, 2.4).

The motion is periodic in time for (a)-(c), but it is chaotic for (d). The trajec-
tories in panels (a)-(c) are time periodic, although the period for (c) includes
many circuits. The trajectory in (d) is chaotic, and if it were continued for a
longer time, the mesh of lines would become much denser.
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vortex is purely stationary, reflecting the fact that any axisymmetric flow is a
stationary state (Sec. 3.1.4). If N = 2, the solution is not stationary but must
be either a periodic rotation (if C1 + C2 6= 0) or else steady propagation (if
C1 = −C2, a dipole vortex).

Example #1 Two vortices of the same parity with C1 ≥ C2 > 0: In this case
the motion is counter-clockwise rotation around a point lying along the line
between the vortex centers (Fig. 3.7, left).

C1 C2

v1

v2d1 d2

v1v2

d2
d1

C1 C2≥  >  0 ≥  

≥  

⇒  

C2

v2

v1v2

d2
d1

C2C1

C1

v1
d1

≥  

≥  

⇒  >  0≥ − 

2d = d  − d1

Figure 3.7: (Left) Co-rotating trajectories for two cyclonic point vortices of un-
equal circulation strength. (Right) Trajectories for a cyclonic and anticyclonic
pair of point vortices of unequal circulation strength. Vortex 1 has stronger
circulation magnitude than vortex 2. × denotes the center of rotation for the
trajectories, and d1 and d2 are the distances from it to the two vortices. The
vortex separation is d = d1 + d2.

Example #2 Two vortices of opposite parity with C1 ≥ −C2 > 0: In this case
the motion is counter-clockwise rotation around a point located along the line
between the vortex centers but on the other side of vortex 1 than the side
nearer vortex 2. As C2 → −C1, that point of rotation moves to ∞, and the
motion becomes an uniform translation perpendicular to the line between the
centers (Fig. 3.7, right).

Example #3: One vortex near a straight boundary (Fig. 3.8): The boundary
condition of u · n̂ = 0 for a bounded half-plane domain can be satisfied by
superimposing the velocity fields of two vortices in an infinite domain. One
vortex is the real one, and the other is an image vortex of the opposite sign at
an equal distance located on the other side of the boundary. Thus, the real
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vortex moves parallel to the boundary at the same speed as this dipole vortex
would in an unbounded fluid.

V V V

+ C + C − C

(a) bounded domain                       (b) unbounded domain

d 2 d

Figure 3.8: (a) Trajectory of a cyclonic vortex with circulation, +C, located
a distance, d, from a straight, free-slip boundary and (b) its equivalent image
vortex system in an unbounded domain that has zero normal velocity at the
location of the virtual boundary. The vortex movement is poleward parallel to
the boundary at a speed, V = C/4πd.

Example #4: A vortex street of uniformly spaced vortices, equal in both parity
and strength (with, e.g., C > 0), lying along an infinite line (Fig. 3.9). This is
a stationary configuration since for each vortex the velocity due to any other
vortex on its right is canceled by the velocity from the equidistant vortex on
the left. However, it is unstable to a vortex pairing instability: if two adjacent
vortices are perturbed to lie slightly closer together and/or above and below
the line, they will tend to move away from the line and/or closer together, as
can be simply verified by calculating the resultant motions in the perturbed
configurations. This is a positive feedback, or instability in the sense that
infinitesimal perturbations will continue to grow to finite displacements away
from the original stationary-state configuration. In the limit of vanishing
vortex separation, the vortex street becomes a vortex sheet, representing a
flow with a velocity discontinuity across the line; i.e., there is infinite
horizontal shear and vorticity at the sheet. Thus, such a shear flow is unstable
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at vanishingly small perturbation length scales (due to the infinitesimal width
of the shear layer). This is an example of barotropic instability (Sec. 3.3) that
sometimes is called Kelvin-Helmholtz instability. A linear, normal-mode
instability analysis for a vortex sheet is presented in Sec. 3.3.3.

Example #5: A Karman vortex street (named after Theodore von Karman:
This is a double vortex street of vortices of equal strengths, opposite parities,
and staggered positions (Fig. 3.10). Each of the vortices moves steadily along
its own row with speed U . This configuration can be shown to be stable to
small perturbations if cosh[bπ/a] =

√
2, with a the along-line vortex

separation and b the between-row separation. Such a configuration often
arises from flow past an obstacle (e.g., a mountain or an island). As a, b→ 0,
this configuration approaches an infinitely thin jet flow. Alternatively it could
be viewed as a double vortex sheet. A finite-separation vortex street is stable,
while a finite-width jet is unstable (Sec. 3.3), indicating that the limit of
vanishing separation and width is a delicate one.

3.2.2 Chaos and Limits of Predictability

An important property of chaotic dynamics is the sensitive dependence of the
solution to perturbations: a microscopic difference in the initial vortex
positions leads to a macroscopic difference in the vortex configuration at a
later time on the order of the advection time scale, T = L/V . This is the
essential reason why the predictability of the weather is only possible for a
finite time (up to about 10-20 days), no matter how accurate the prediction
model.

Insofar as chaotic dynamics thoroughly entangles the trajectories of the
vortices, then all neighboring, initially well separated parcels will come
arbitrarily close together at some later time. This process is called stirring.
The tracer concentrations carried by the parcels may therefore mix together if
there is even a very small tracer diffusivity in the fluid. Mixing is blending by
averaging the tracer concentrations of separate parcels, and it has the effect of
diminishing tracer variations. Trajectories do not mix, because Hamiltonian
dynamics is time reversible, and any set of vortex trajectories that begin from
an orderly configuration, no matter how entangled they later become, can
always be disentangled by reversing the sign of the Cα, hence of the uα, and
integrating forward over an equivalent time since the initialization. (This is
equivalent to reversing the sign of t while keeping the same sign for the Cα.)
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U(y) as a 0

ψ( x, y)y

x
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x

a

vortex street

vortex sheet

X X X X X X

pairing instability

Figure 3.9: (Top) A vortex street of identical cyclonic point vortices (black dots)
lying on a line, with an uniform pair separation distance, a. This is a stationary
state since the advective effect of every neighboring vortex is canceled by the
opposite effect from the neighbor on the other side. The associated streamfunc-
tion contours are shown with arrows indicating the flow direction. (Middle) The
instability mode for a vortex street that occurs when two neighboring vortices
are displaced to be closer to each other than a, after which they move away
from the line and even closer together. “X” denotes the unperturbed street
locations. (Bottom) The discontinuous zonal flow profile, u = U(y) ˆbfx, of a
vortex sheet. This is the limiting flow for a street when a→ 0 (or, equivalently,
when the flow is sampled a distance away from the sheet much larger than a).
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double vortex sheet

double vortex street

0U(y) as a &b

Figure 3.10: (Top) A double vortex street (sometimes called a Karmen vortex
street) with identical cyclonic vortices on the upper line and identical anticy-
clonic vortices on the parallel lower line. The vortices (black dots) are separated
by a distance, a, along the lines, the lines are separated by a distance, b, and the
vortex positions are staggered between the lines. This is a stationary state that
is stable to small displacements if cosh[πb/a] =

√
2. (Bottom) As the vortex

separation distances shrink to zero, the flow approaches an infinitely thin zonal
jet. This is sometimes called a double vortex sheet.

82



Thus, conservative chaotic dynamics stirs parcels but mixes a passive tracer
field with nonzero diffusivity. Equation (3.60) says that parcels other than
from the vortices are also advected by the vortex motion and therefore also
stirred, though the stirring efficiency is weak for parcels far away from all the
vortices. Trajectories of non-vortex parcels can be chaotic even for N = 3
vortices in an unbounded 2D domain.

3.3 Barotropic and Centrifugal Instability

Stationary flows may or may not be stable with respect to small perturbations
(cf., Sec. 2.3.3). This possibility is analyzed here for several types of 2D flow.

3.3.1 Rayleigh’s Criterion for Vortex Stability

An analysis is first made for the linear, normal-mode stability of a stationary,
axisymmetric vortex, (ψ(r), V (r), ζ(r)) with f = f0 and F = 0 (Sec. 3.1.4).
Assume that there is a small-amplitude streamfunction perturbation, ψ ′, such
that

ψ = ψ(r) + ψ′(r, θ, t) , (3.72)

with ψ′ � ψ. Introducing (3.72) into (3.24) and linearizing around the
stationary flow (i.e., neglecting terms of O(ψ′2) because they are small) yields

∇2∂ψ
′

∂t
+ J [ψ,∇2ψ′] + J [ψ′,∇2ψ] ≈ 0, (3.73)

or, recognizing that ψ depends only on r,

∇2∂ψ
′

∂t
+

1

r

∂ψ

∂r
∇2∂ψ

′

∂θ
− 1

r

∂ζ

∂r

∂ψ′

∂θ
≈ 0 . (3.74)

These expressions use the cylindrical-coordinate operators definitions,

J [A,B] ≡ 1

r

[
∂A

∂r

∂B

∂θ
− ∂A

∂θ

∂B

∂r

]

∇2A ≡ 1

r

∂

∂r

[
r
∂A

∂r

]
+

1

r2

∂2A

∂θ2
. (3.75)
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Now seek normal mode solutions to (3.74) with the following space-time
structure:

ψ′(r, θ, t) = Real [g(r)ei(mθ−ωt)]

=
1

2
[g(r)ei(mθ−ωt) + g∗(r)e−i(mθ−ω

∗t)] . (3.76)

Inserting (3.76) into (3.74) leads to the following relation as a factor of
exp[i(mθ − ωt)]:

1

r
∂r[r∂rg]− m2

r2
g = − ∂rζ

ωr
m
− ∂rψ

g . (3.77)

Next operate on this equation by
∫∞

0 rg∗ · dr, noting that

∫ ∞

0
g∗∂r[r∂rg] dr = −

∫ ∞

0
r(∂rg

∗) (r∂rg) dr

if g or ∂rg = 0 at r = 0,∞ (n.b., these are the appropriate boundary
conditions for this eigenmode problem). Also, recall that aa∗ = |a|2 ≥ 0. After
integrating the first term in (3.77) by parts, the result is

∫ ∞

0
r

[
|∂rg|2 +

m2

r2
|g|2

]
dr =

∫ ∞

0

[
∂rζ

ω
m
− 1

r
∂rψ

]
|g|2 dr . (3.78)

The left side is always real. After writing the complex eigenfrequency as

ω = γ + iσ (3.79)

(i.e., admitting the possibility of perturbations growing at an exponential
rate, ψ′ ∝ eσt, called a normal-mode instability), then the imaginary part of
the preceding equation is

σm
∫ ∞

0

[
∂rζ

(γ − m
r
∂rψ)2 + σ2

]
|g|2 dr = 0 . (3.80)

If σ,m 6= 0, then the integral must vanish. But all terms in the integrand are
non-negative except ∂rζ. Therefore, a necessary condition for instability is
that ∂rζ must change sign for at least one value of r so that the integrand can
have both positive and negative contributions that cancel each other. This is
called the Rayleigh’s inflection point criterion (since the point in r where
∂rζ = 0 is an inflection point for the vorticity profile, ζ(r)). This type of
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instability is called barotropic instability since it arises from horizontal shear
and the unstable perturbation flow can lie entirely within the plane of the
shear (i.e., comprise a 2D flow).

With reference to the vortex profiles in Fig. 3.3, a bare monopole vortex
with monotonic ζ(r) is stable by the Rayleigh criterion, but a shielded vortex
may be unstable. More often than not for barotropic dynamics with Re large,
what may be unstable is unstable.

3.3.2 Centrifugal Instability

There is another type of instability that can occur for a barotropic
axisymmetric vortex with constant f . It is different from the one in the
preceding section in two important ways: it can occur with perturbations that
are uniform along the mean flow, i.e., with m = 0 — hence it is sometimes
referred to as symmetric instability even though it can also occur with m 6= 0
— and the flow field of the unstable perturbation has nonzero vertical velocity
and vertical variation, unlike the purely horizontal velocity and structure in
(3.76). Its other common names are inertial instability and centrifugal
instability. The simplest way to demonstrate this type of instability is by a
parcel displacement argument analogous to the one for buoyancy oscillations
and convection (Sec. 2.3.3). Assume there exists an axisymmetric barotropic
mean state, (∂rφ, V (r)), that satisfies the gradient-wind balance (3.54).
Expressed in cylindrical coordinates, parcels displaced from their mean
position, ro, to ro + δr experience a radial acceleration given by the radial
momentum equation,

DU

Dt
=

D2δr

Dt2
=

[
−∂φ
∂r

+ fV +
V 2

r

]

r=ro+δr

. (3.81)

The terms on the right side are evaluated by two principles:

• instantaneous adjustment of the parcel pressure gradient to the local
value,

∂φ

∂r
(ro + δr) =

∂φ

∂r
(ro + δr) ; and (3.82)

• parcel conservation of absolute angular momentum for axisymmetric
flow (cf., , Sec. 4.3),

A (ro + δr) = A (ro) , A(r) ≡ fr2

2
+ rV (r) . (3.83)
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By using these relations to evaluate the right side of (3.81) and making a
Taylor series expansion to express all quantities in terms of their values at
r = ro through O(δr) (cf., (2.67)), the following equation is derived:

D2δr

Dt2
+ γ2δr = 0 , (3.84)

where

γ2 ≡ 1

2
rA

dA

dr

∣∣∣
r=ro

. (3.85)

The angular momentum gradient is

dA

dr
= r

[
f +

1

r

d

dr
[rV ]

]
; (3.86)

i.e., it is proportional to the absolute vorticity, f + ζ. Therefore, if γ2 is
positive everywhere in the domain (as it is certain to be for nearly geostrophic
vortices near point A in Fig. 3.4), the axisymmetric parcel motion will be
oscillatory in time around r = ro. However, if γ2 < 0 anywhere in the vortex,
then parcel displacements in that region can exhibit exponential growth; i.e.,
the vortex is unstable. At point B in Fig. 3.4, A = 0, hence γ2 = 0. This is
therefore a possible marginal point for centrifugal instability. When
centrifugal instability occurs, it involves vertical motions as well as the
horizontal ones that are the primary focus of this chapter. For further analysis
see Holton (1992, p. 297).

3.3.3 Barotropic Instability of Parallel Flows

Free Shear Layer: Lord Kelvin (as he is customarily called in the GFD
community) made a pioneering calculation in the 19th century of the unstable
2D eigenmodes for a vortex sheet (cf., the point-vortex street; Sec. 3.2.1,
Example #4) located at y = 0 in an unbounded domain, with equal and
opposite mean zonal flows of ±U/2 on either side. This step-function velocity
profile is the limiting form for a continuous profile with

u(y) =
Uy

D
, |y| ≤ D

2
,

= +
U

2
, y >

D

2
,

= −U
2
, y < − D

2
, (3.87)
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as D, the width of the shear layer, vanishes. Such a zonal flow is a stationary
state (Sec. 3.1.4). A mean flow with a one-signed velocity change away from
any boundaries is also called a free shear layer or a mixing layer. The latter
term emphasizes the turbulence that develops after the growth of the linear
instability, sometimes called a Kelvin-Helmholtz instability, to a
finite-amplitude state where the linearized, normal-mode dynamics are no
longer valid (Sec. 3.6). Because the mean flow has uniform vorticity (zero
outside the shear layer and −U/D inside) the perturbation vorticity must be
zero in each of these regions since all parcels must conserve their potential
vorticity, hence also their vorticity when f = f0. Analogous to the normal
modes with exponential solution forms in (3.32) and (3.76), the unstable
modes here have a space-time structure (eigensolution) of the form,

ψ′ = Real
(
Ψ(y) eikx+st

)
. (3.88)

k is the zonal wavenumber, and s is the unstable growth rate when its real
part is positive. Since ∇2ψ′ = 0, the meridional structure is a linear
combination of exponential functions of ky consistent with perturbation decay
as |y| → ∞ and continuity of ψ′ at y = ±D/2, viz.,

Ψ(y) = Ψ+ e
−k(y−D/2) , y ≥ D/2 ,

=
(

Ψ+ + Ψ−
2

)
cosh[ky]

cosh[kD/2]
+
(

Ψ+ −Ψ−
2

)
sinh[ky]

sinh[kD/2]
, −D/2 ≤ y ≤ D/2 ,

= Ψ− e
k(y+D/2) , y ≤ −D/2 . (3.89)

The constants, Ψ+ and Ψ−, are determined from continuity of both the
perturbation pressure, φ′, and the linearized zonal momentum balance,

∂u′

∂t
+ u

∂u′

∂x
−
(
f − ∂u

∂y

)
v′ = −∂φ

′

∂x
, (3.90)

across the layer boundaries at y = ±D/2, with u′, v′ evaluated in terms of ψ′

from (3.88)-(3.89). These matching conditions yield an eigenvalue equation:

s2 =

(
kU

2

)2 (
2

1 + (1− [kD]−1) tanh[kD]

kD(1 + [2]−1 tanh[kD])
− 1

)
. (3.91)

In the vortex-sheet limit (i.e., kD → 0), there is an instability with
s→ ±kU/2. Its growth rate increases as the perturbation wavenumber
increases up to a scale comparable to the inverse layer thickness, 1/D →∞.
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Since s has a zero imaginary part, this instability is a standing mode that
amplifies in place without propagation along the mean flow. The instability
behavior is consistent with the paring instability of the finite vortex street
approximation to a vortex sheet (Sec. 3.2.1, Example #4). On the other
hand, for very small-scale perturbations with kD →∞, (3.91) implies that
s2 → −(kU/2)2; i.e., the eigenmodes are stable and zonally propagating in
either direction.

L0+

U0

y

L0−

inflection 
points

U(y)
0

Figure 3.11: Bickley Jet zonal flow profile, u = U(y)x̂, with U(y) from (3.92).
Inflection points where Uyy = 0 occur on the flanks of the jet.

Bickley Jet: In nature shear is spatially distributed rather than singularly
confined to a vortex sheet. A well-studied example of a stationary zonal flow
(Sec. 3.1.4) with distributed shear is the so-called Bickley jet,

U(y) = U0 sech2[y/L0] =
U0

cosh2[y/L0]
, (3.92)
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in an unbounded domain. This flow has its maximum speed at y = 0 and
decays exponentially as y → ±∞ (Fig. 3.11). From (3.27) the linearized,
conservative, f-plane, potential-vorticity equation for perturbations ψ is

(
∂

∂t
+ U

∂

∂x

)
∇2ψ − d2U

dy2

∂ψ

∂x
= 0 . (3.93)

Analogous to Sec. 3.3.1, a Rayleigh necessary condition for instability of a
parallel flow can be derived for normal-mode eigensolutions of the form,

ψ = Real
(
Ψ(y)eik(x−ct)

)
, (3.94)

with the result that ∂yq = −∂2
yU must vanish somewhere in the domain. For

the Bickley Jet this condition is satisfied because there are two inflection
points located at y = ±0.66L0. (With the β-plane approximation, the
Rayleigh criterion for a zonal flow is that

dq

dy
= β0 −

d2U

dy2
= 0

somewhere in the flow. Thus, for a given shear flow, U(y), with inflection
points, β 6= 0 usually has a stabilizing influence.)

The eigenvalue problem that comes from substituting (3.94) into (3.93) is
the following:

Ψyy −
(
k2 +

∂2
yU

U − c

)
Ψ = 0, |Ψ| → 0 as |y| → ∞ . (3.95)

This problem, as most shear-flow instability problems, cannot be solved
analytically. But it is rather easy to solve numerically as a 1D boundary-value
problem as long as there is no singularity in the coefficient in (3.95) associated
with a critical layer at the y location where U(y) = c. Since the imaginary
part, cim, of c = cr + icim is nonzero for unstable modes and since therefore

1

U − c =
(U − cr) + icim

(U − cr)2 + (cim)2

is bounded for all y, these modes do not have critical layers and are easily
calculated numerically.

Results are shown in Fig. 3.12. There are two types of unstable modes, a
more rapidly growing one with Ψ an even function in y (a varicose mode with
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Figure 3.12: Eigenvalues for the barotropic instability of the Bickley jet: (a) the
real part of the zonal phase speed, cr, and (b) the growth rate, kcim. (Drazin
& Reid, 1981, Fig. 4.25).
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perturbed streamlines that bulge and contract about y = 0 while propagating
in x with phase speed, cr, and amplifying with growth rate, kcim > 0) and
another one with Ψ an odd function (a sinuous mode with streamlines that
meander in y) that also propagates in x and amplifies. The unstable growth
rates are a modest fraction of the advective rate for the mean jet, U0/L0.
Both types are unstable for all long-wave perturbations with k < kcr, and the
value of the critical wavenumber, kcr = O(1/L0), is different for the two mode
types. Both mode types propagate in the direction of the mean flow with a
phase speed cr = O(U0). The varicose mode grows more slowly than the
sinuous mode for any specific k. These unstable modes are not consistent with
the stable double vortex street (Sec. 3.2.1, Example #5) as the vortex spacing
vanishes, indicating that both stable and unstable behaviors may occur in a
given situation.

When viscosity effects are included for a Bickley Jet (overlooking the fact
that (3.92) is no longer a stationary state of the governing equations), then
the instability is weakened due to the general damping effect of molecular
diffusion on flow, and it can even be eliminated at large enough ν, hence small
enough Re. Viscosity can also contribute to removing critical-layer
singularities among the otherwise stable eigenmodes by providing c with a
negative imaginary part, cim < 0.

For more extensive discussions of these and other 2D and 3D shear
instabilities, see Drazin & Reid (1981).

3.4 Eddy–Mean Interaction

A normal-mode instability, such as barotropic instability, demonstrates how
the amplitude of a perturbation flow can grow with time. Because kinetic
energy, KE, is conserved when F = 0 (3.3) and KE is a quadratic functional
of u = u + u′ in a barotropic fluid, the sum of “mean” (overbar) and
“fluctuation” (prime) velocity variances must be constant in time:

d

dt

∫ ∫
( u2 + (u′)2 ) dx = 0,

for any perturbation field that is spatially orthogonal to the mean flow,

∫ ∫
u · u′ dx = 0.
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(The orthogonality condition is satisfied for all the normal mode instabilities
discussed in this chapter.) This implies that the kinetic energy associated
with the fluctuations can grow only at the expense of the energy associated
with the mean flow in the absence of any other flow components and that
energy must be exchanged between these two components for this to occur.
That is, there is a dynamical interaction between the mean flow and the
fluctuations (also called eddies) that can be analyzed more generally than just
for linear normal-mode fluctuations.

Again consider the particular situation of a parallel zonal flow (as in Sec.
3.3.3) with

u = U(y, t) x̂ . (3.96)

In the absence of fluctuations or forcing, this is a stationary state (Sec. 3.1.4).
For small Rossby number, U is geostrophically balanced with a geopotential
function,

Φ(y, t) = −
∫ y

f(y′)U(y′, t) dy′ .

Now, more generally, assume that there are fluctuations (designated by
primes) around this background flow,

u = 〈u〉(y, t) x̂ + u′(x, y, t), φ = 〈φ〉(y, t) + φ′(x, y, t) . (3.97)

Here the angle bracket is defined as a zonal average. 〈u〉 is identified with U
and 〈φ〉 with Φ. With this definition for 〈·〉, the average of a fluctuation field
is zero, 〈u′〉 = 0; so the KE orthogonality condition is satisfied. By
substituting (3.97) into the barotropic equations and taking their zonal
averages, the governing equations for (〈u〉, 〈φ〉) are obtained. The mean
continuity relation is satisfied exactly since ∂x 〈u〉 is zero and 〈v〉 = 0. The
mean momentum equations are

∂

∂t
〈u〉 = − ∂

∂y
〈u′v′〉+ 〈F x〉

∂〈φ〉
∂y

= −f〈u〉 − ∂

∂y
〈v′2〉 (3.98)

after integrations by parts and subsitutions of the 2D continuity equation in
(3.1). The possibility of a zonal-mean forcing, 〈F x〉, is retained here, but
〈F y〉 = 0 is assumed, consistent with a forced zonal mean flow. All other
terms from (3.1) vanish by the structure of the mean flow or by an
assumption that the fluctuations are periodic, homogeneous (i.e., statistically
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invariant), or decaying away to zero in the zonal direction. The quadratic
quantities, 〈u′v′〉 and 〈v′2〉 are zonally averaged eddy momentum fluxes due to
products of fluctuation velocity.

The zonal mean flow is generally no longer a stationary state in the presence
of the fluctuations. The first relation in (3.98) shows how the divergence of an
eddy momentum flux, often called a Reynolds stress, can alter the mean flow
or allow it to come to a new steady state by balancing its mean forcing. The
second relation is a diagnostic one for the departure of 〈φ〉 from its mean
geostrophic component, again due to a Reynolds stress divergence. In the
former relation, the indicated Reynolds stress, R ≡ 〈u′v′〉, is the mean
meridional flux of zonal momentum by the fluctuations (eddies). In the latter
relation, 〈v′v′〉 is the mean meridional flux of meridional momentum by eddies.

As above, the kinetic energy can be written as the sum of mean and eddy
energies,

KE = 〈KE〉+KE ′ ≡ 1

2

∫
dy

(
〈u〉2 + 〈u′2〉

)
, (3.99)

since the cross term 〈u〉u′ vanishes by taking the zonal integral or average.
The equation for 〈KE〉 is derived by multiplying the zonal mean equation by
〈u〉 and integrating in y:

d

dt
〈KE〉 = −

∫
dy 〈u〉 ∂

∂y
〈u′v′〉+

∫
dy 〈u〉〈F x〉

=
∫
dy 〈u′v′〉∂〈u〉

∂y
+
∫
dy 〈u〉〈F x〉 , (3.100)

assuming that 〈u′v′〉 and/or 〈u〉 vanish at the y boundaries. An analogous
derivation for the eddy energy equation yields a compensating exchange (or
energy conversion) term,

d

dt
KE ′ = −

∫
dy 〈u′v′〉∂〈u〉

∂y
+
∫
dy 〈u′ · F′〉 , (3.101)

along with another term related to the fluctuating non-conservative force, F′.
Thus, the condition for KE ′ to grow at the expense of 〈KE〉 is that the
Reynolds stress, 〈u′v′〉, be anti-correlated on average (i.e., in a meridional
integral) with the mean shear, ∂y〈u〉. This situation is often referred to as a
down-gradient eddy flux. It is the most common paradigm for how eddies and
mean flows influence each other: mean forcing generates mean flows that are
then weakened or equilibrated by instabilities that generate eddies. If the
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forcing conditions are steady in time and some kind of statistical equilibrium
is achieved for the flow as a whole, the eddies somehow achieve their own
energetic balance between their generation by instability and a turbulent
cascade to viscous dissipation (cf., Sec. 3.7). For example, if F′ represents
molecular viscous diffusion,

F′ = ν∇2u′ ,

then an integration by parts in (3.101) gives an integral relation,
∫
dy 〈u′ · F′〉 = −

∫
dy ν〈(∇∇∇u′)2〉 ≤ 0 ,

which is non-positive definite. The right side here is called the energy
dissipation. It implies a loss of KE ′ whenever ∇∇∇u′ 6= 0, and it at least has the
right sign to balance the energy conversion from the mean flow instability in
the KE ′ budget (3.101).

It can be shown that the barotropic instabilities in Sec. 3.3 all have
down-gradient eddy momentum fluxes associated with the growing normal
modes. (Note that the implied change in 〈u〉 from (3.98) is on the order of the
fluctuation amplitude squared, O(ε2). Thus, for a normal-mode instability
analysis, it is consistent to neglect any evolutionary change in 〈u〉 in the
linearized equations for ψ′ at O(ε) when ε� 1.)

3.5 Eddy Viscosity and Diffusion

The relation between the mean jet profile, 〈u〉(y) and the Reynolds stress,
〈u′v′〉(y) is illustrated in Fig. 3.13. The eddy flux is indeed oppositely
directed to the mean shear (i.e., it is down-gradient). Since a down-gradient
eddy flux has the same sign as a mean viscous diffusion, −ν∂y〈u〉, these eddy
fluxes can be anticipated to act in a way similar to viscosity to smooth,
broaden, and weaken the mean velocity profile, consistent with depleting
〈KE〉 and, in turn, generating KE ′. This is expressed in a formula as

〈u′v′〉 ≈ −νe
∂

∂y
〈u〉 , (3.102)

where νe > 0 is the eddy viscosity coefficient. It can either be used as a
definition of νe(y) as a diagnostic quantity for the eddy–mean interaction, or
it can be defined as a parameterization of the process with some specification
of νe. When this characterization is apt, the eddy–mean flow interaction is
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Figure 3.13: Sketches of the mean zonal flow, U(y) (left), and Reynolds stress
profile, 〈u′v′〉(y) (right), for (a) the mixing layer and (b) the Bickley jet. Thin
arrows on the left panels indicate the mean flow, and fat arrows on the right
panels indicate the meridional flux of eastward zonal momentum. Thus, the
eddy flux acts to broaden both the mixing layer and jet.
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called an eddy diffusion process (also discussed in Chaps. 5-6). Since in the
present context the interaction occurs in the mean horizontal momentum
balance, the process may more specifically be called horizontal eddy viscosity
by analogy with molecular viscosity (Sec. 2.1.2), and the associated eddy
viscosity coefficient is much larger than the molecular diffusivity, νe � ν, if
advection by the velocity fluctuations acts much more rapidly to transport
mean momentum than does the molecular viscous diffusion.

Eddy diffusion can be modeled for material tracers by analogy with a
random walk for parcel trajectories and parcel tracer conservation. A random
walk as a consequence of random velocity fluctuations is a simple but crude
characterization of turbulence. Suppose that there is a large-scale mean tracer
distribution, τ(x), and fluctuations associated with the fluid motion, τ ′.
Further suppose that Lagrangian parcel trajectories have a mean and
fluctuating component,

r = r + r′(t) , (3.103)

and further suppose that an instantaneous tracer value is the same as its
mean value at its mean location,

τ(r) = τ(r) . (3.104)

The left side can be decomposed into mean and fluctuations and a Taylor
series expansion can be made about the mean parcel location,

τ(r) = τ(r + r′) + τ ′(r + r′) ≈ τ(r) + (r′ · ∇∇∇) τ(r) + τ ′(r) + . . . .

Substituting this into (3.104) yields an expression for the tracer fluctuation in
terms of the trajectory fluctuation and the mean tracer gradient,

τ ′ ≈ − (r′ · ∇∇∇) τ , (3.105)

using the property that the average of a fluctuation is zero. Now write an
evolution equation for the large-scale tracer field, averaging over the space and
time scales of the fluctuations,

∂τ

∂t
+ u · τ = −∇∇∇ · (u′τ ′) . (3.106)

The right side is the divergence of the eddy tracer flux. Substituting from
(3.105) and using the trajectory evolution equation for r′,

u′τ ′ ≈ −u′(r′ · ∇∇∇)τ
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= − dr
′

dt
(r′ · ∇∇∇)τ

= −
(
d

dt
r′r′

)
· ∇∇∇)τ . (3.107)

An isotropic, random-walk model for trajectories assumes that the different
coordinate directions are statistically independent and that the variance of
parcel displacements, i.e., the parcel dispersion, (rx ′)2 = (ry ′)2, increases
linearly with time as parcels wander away from their mean location. This
implies that

d

dt
ri ′rj ′ = κe δi,j , (3.108)

where δi,j is the Kroneker delta function (= 1 if i = j and = 0 if i 6= j) and i, j
are coordinate direction indices. Here κe is called the Lagrangian parcel
diffusivity, sometimes also called the Taylor diffusivity (after G. I. Taylor),
which is a constant in space and time for a random walk. Combining
(3.106)-(3.108) gives the final form for the mean tracer evolution equation,

∂τ

∂t
+ u · ∇∇∇τ = κe∇2τ , (3.109)

where the overbar averaging symbols are now implicit. Thus, if the fluctuating
velocity field on small scales is random, then the effect on large-scale tracers is
an eddy diffusion process. This type of turbulence parameterization is widely
used in GFD, especially in General Circulation Models.

3.6 Emergence of Coherent Vortices

When a flow is barotropically unstable, its linearly unstable eigenmodes can
amplify until the small-amplitude assumption of linearized dynamics is no
longer valid. The subsequent evolution is nonlinear due to momentum
advection. It can be correctly called a barotropic form of turbulence, involving
cascade — the systematic transfer of fluctuation variance, such as the kinetic
energy, from one spatial scale to another — dissipation — the removal of
variance after a cascade carries it to a small enough scale so that viscous
diffusion is effective — transport — altering the distributions of large-scale
fields through stirring, mixing, and other forms of material rearrangement by
the turbulent currents — and chaos — sensitive dependence and limited
predictability from uncertain initial conditions or forcing (Sec. 3.2.2).
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Nonlinear barotropic dynamics also often leads to the emergence of coherent
vortices, whose mutually induced movements and other more disruptive
interactions can manifest all the attributes of turbulence.

Since these complex behaviors are difficult to capture with analytic
solutions of (3.1), vortex emergence and evolution are illustrated here with
several experimental and computational examples.

First consider a vortex sheet or free shear layer (Secs. 3.2.1 and 3.3.3) with
a small but finite thickness (Fig. 3.14). It is Kelvin-Helmholtz unstable, and
zonally periodic disturbances amplify as standing waves. Once the amplitude
is large enough, an advective process of axisymmetrization begins to occur
around each significant vorticity extremum in the fluctuation circulations.
The fluctuation circulations all have the same parity, since their vorticity
extrema have to come from the single-signed vorticity distribution of the
parent shear layer. An axisymmetrization process transforms the spatial
pattern of the fluctuations from a wave-like eigenmode (cf., (3.88)) toward a
circular vortex (cf., Sec. 3.1.4). Once the vortices emerge, they move around
under each other’s influences, similar to point vortices (Sec. 3.2.1). As a
result, pairing instabilities begin to occur where the nearest neighboring,
like-sign vortices co-rotate (cf., Fig. 3.7, left) and deform each other. They
move together and become intertwined in each other’s vorticity distribution.
This is called vortex merger. The evolutionary outcome of successive mergers
between pairs of vortices is a vortex population with fewer vortices that have
larger sizes and circulations. Finally, because of the sensitive dependence of
these advective processes, the vortex motions are chaotic, and their spatial
distribution becomes irregular, even when there is considerable regularity in
the initial unstable mode.

For an unstable jet flow (Sec. 3.3.3), a similar evolutionary sequence occurs.
However, since this mean flow has vorticity of both signs (Fig. 3.11), the
vortices emerge with both parities. An experiment for a turbulent wake flow
in a thin soap film that approximately mimics barotropic fluid dynamics is
shown in Fig. 3.15. In this experiment a thin cylinder is dragged through the
film, and this creates an unstable jet in its wake. The ensuing instability and
vortex emergence leads to a population of vortices, many of which appear as
vortex couples (i.e., dipole vortices that move as in Fig. 3.7).
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Figure 3.14: Vortex emergence and evolution for a computational 2D parallel-
flow shear layer with finite but small viscosity and tracer diffusivity. The two
columns are for vorticity (left) and tracer (right), and the rows are successive
times: near initialization (top); during the nearly linear, Kelvin-Helmholtz,
varicose-mode, instability phase (middle); and after emergence of coherent an-
ticyclonic vortices and approximately one cycle of pairing and merging of neigh-
boring vortices (bottom). (Lesieur, 1995).
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Figure 3.15: Vortices after emergence and dipole pairing in an experimental
2D turbulent wake (i.e., jet). The stripes indicate approximate streamfunction
contours. (Couder & Basdevant, 1986).
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3.7 Two-Dimensional Turbulence

Turbulence is an inherently dissipative phenomenon since advectively induced
cascades spread the variance across different spatial scales, reaching down to
arbitrarily small scales where molecular viscosity and diffusion can damp the
fluctuations through mixing. Integral kinetic energy and enstrophy (i.e.,
vorticity variance) budgets can be derived from (3.1) with F = ν∇2u and
spatially periodic boundary conditions (for simplicity):

dKE

dt
= −ν

∫ ∫
dx dy (∇∇∇u)2

dEns

dt
= −ν

∫ ∫
dx dy (∇∇∇ζ)2 . (3.110)

KE is defined in (3.2), and

Ens =
1

2

∫ ∫
dx dy ζ2 . (3.111)

Therefore, due to the viscosity, KE and Ens are non-negative quantities that
are non-increasing with time as long as there is no external forcing of the flow.

The common means of representing the scale distribution of a field is
through its Fourier transform and spectrum. For example, the Fourier integral
for ψ(x) is

ψ(x) =
∫
dk ψ̂(k)eik·x . (3.112)

k is the vector wavenumber, and ψ̂(k) is the complex Fourier transform
coefficient. With this definition the spectrum of ψ is

S(k) = AVG
[
|ψ̂(k)|2

]
. (3.113)

The averaging is over any appropriate symmetries for the physical situation of
interest (e.g., over time in a statistically stationary situation, over the
directional orientation of k in an isotropic situation, or over independent
realizations in a recurrent situation). S(k) can be interpreted as the variance
of ψ associated with a spatial scale, L = 1/k, with k = |k|, such that the total
variance,

∫
dxψ2, is equal to

∫
dkS (sometimes called Parceval’s Theorem).

With a Fourier representation, the energy and enstrophy are integrals over
their corresponding spectra,

KE =
∫
dkKE(k), Ens =

∫
dkEns(k) , (3.114)
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with

KE(k) =
1

2
k2 S, Ens(k) =

1

2
k4 S = k2 KE(k) . (3.115)

The latter relations are a consequence of the fact that a spatial gradient of ψ
has a Fourier transform that is the product of k and ψ̂. The spectra in (3.115)
have different shapes due to their different weighting factors of k, and the
enstrophy spectrum has a relatively larger magnitude at smaller scales than
does the energy spectrum (Fig. 3.16, top).

In the absence of viscosity, or during the time interval after initialization
with smooth, large-scale fields before the cascade carries enough variance to
small scales to make the right-side terms in (3.110) significant, both KE and
Ens are conserved with time. If the cascade process broadens the spectra —
the generic turbulent behavior of transferring variance across different spatial
scales — the only way that both integral quantities can be conserved, given
their different k weights, is for more of the energy to be transferred toward
larger scales (smaller k) and more of the enstrophy to be transferred toward
smaller scales (larger k). This behavior is firmly established by computational
and laboratory studies, and it can at least partly be derived as a necessary
consequence of spectrum broadening by the cascades. Define a centroid
wavenumber, kE (i.e., a characteristic wavenumber averaged across the
spectrum), and a wavenumber bandwidth, ∆kE for the energy spectrum as
follows:

kE =
∫
dk |k|KE(k)

/
KE

∆kE =
(∫

dk (|k| − kE)2 KE(k)
)1/2 /

KE . (3.116)

Both quantities are positive by construction. If the turbulent evolution
broadens the spectrum, then from the constancy of KE and Ens (i.e.,

˙KE = ˙Ens = 0, with the overlying dot again denoting a time derivative), the
energy centroid wavenumber must decrease,

∆̇kE > 0 ⇒ −2kE k̇E > 0 ⇒ k̇E < 0 .

This implies a systematic transfer of the energy toward larger scales. This
tendency is accompanied by an increasing enstrophy centroid wavenumber,
k̇Ens > 0 (with kEns defined analogously to kE). These two, co-existing
tendencies are referred to, respectively, as the inverse energy cascade and the
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Figure 3.16: (Top) Schematic isotropic spectra for energy, KE(k), and enstro-
phy, Ens(k), in 2D turbulence at large Reynolds number. Note that the energy
peak occurs at smaller k than the enstrophy peak. (Middle) Time evolution
of total energy, KE(t), and enstrophy, Ens(t), each normalized by their initial
value. The energy is approximately conserved when Re� 1, but the enstrophy
has significant decay over many eddy advective times, L/V . (Bottom) Evolu-
tion of the energy spectrum, KE(k, t), at three successive times, t1 < t2 < t3.
With time the spectrum spreads, and the peak moves to smaller k.
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forward enstrophy cascade of 2D turbulence. The indicated direction in the
latter case is “forward” to small scales since this is the most common behavior
in different regimes of turbulence (e.g., in 3D, uniform-density turbulence,
Ens is not an inviscid integral invariant, and the energy cascade is in the
forward direction).

In the presence of viscosity, or after the forward enstrophy cascade acts for
long enough to make the dissipation terms become significant, KE will be
much less efficiently dissipated than Ens because so much less of its variance
— and the variance of the integrand in its right-side, dissipative term in
(3.110) — arrives at or resides in the small scales. Thus, for large Reynolds
number (small ν), Ens will decay significantly with time while KE may not
decay much at all (Fig. 3.16, middle). Over the course of time, the energy
spectrum shifts toward smaller wavenumbers and larger scales due to the
inverse cascade, and its dissipation rate further declines (Fig. 3.16, bottom).

The cascade and dissipation in 2D turbulence co-exist with vortex
emergence, movement, and mergers (Fig. 3.17). From smooth initial
conditions, coherent vortices emerge by axisymmetrization, move similar to
point vortices, occasionally couple for brief intervals, and merge when two
vortices of the same parity move close enough together (Fig. 3.18). With time
the vortices become fewer, larger, and sparser in space, and they undergo less
frequent close encounters. Since close encounters are the occasions when the
vortices change through deformation in ways other than simple movement, the
overall evolutionary rates for the spectrum shape and vortex population
become ever slower, even though the kinetic energy does not diminish.
Enstrophy dissipation occurs primarily during emergence and merger events,
as filaments of vorticity are stripped off of vortices. The filamentation is due
to the differential velocity field (i.e., shear, strain rate), due to one vortex
acting on another, that increases rapidly as the vortex separation distance
diminishes. The filaments continue irreversibly to elongate until their
transverse scale shrinks enough to become under the control of viscous
diffusion, and the enstrophy they contain is thereby dissipated. So, the
integral statistical outcomes of cascade and dissipation in two-dimensional
turbulence are the result of a sequence of local dynamical processes of the
elemental coherent vortices, at least during the period after their emergence
from complex initial conditions or forcing. The vortices substantially control
the dynamics of 2D turbulent evolution.

The preceding discussion refers to freely evolving, or decaying, turbulence,
where the ultimate outcome is energy and enstrophy dissipation through the
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Figure 3.17: Vortex emergence and evolution in computational 2D turbulence,
as seen in ζ(x, y) at sequential times, with random, spatially smooth initial
conditions. Solid contours are for positive ζ, and dashed ones are for negative
ζ. The contour interval is twice as large in the first panel as in the others. The
times are non-dimensional based on an advective scaling, L/V . (Adapted from
McWilliams, 1984.)
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Figure 3.18: Computational solution for the merger of two like-sign, bare-
monopole vortices (in non-dimensional time units scaled by L/V ) initially lo-
cated near each other. The exterior strain field from each vortex deforms the
vorticity distribution of the other one so that the ζ fields wrap around each
other, their centers move together along spiral trajectories, and ultimately they
blend together after viscous diffusion smooths the strong gradients. While
this is occurring, vorticity filaments are cast off from the merging vortices,
stretched by the exterior strain field, and dissipated by viscosity. (Adapted
from McWilliams, 1991.)
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inexorable action of viscosity. Alternatively, one can consider forced,
equilibrium turbulence, where a statistically stationary state occurs with the
turbulent generation rate balancing the dissipation rate for energy, enstrophy,
and all other statistical measures. The generation process may either be the
instability of a forced mean flow (e.g., Sec. 3.4) or be an imposed fluctuating
force. For 2D turbulence with fluctuations generated on intermediate spatial
scales (smaller than the domain size and larger than the viscous scale), inverse
energy and forward enstrophy cascades ensue. In order to achieve an
equilibrium energy balance, some dissipation process, beyond viscosity, that
acts to deplete the energy at large scales must be included, or else the energy
will continue to grow. (A common choice is a linear drag force, motivated by
the effect of an Ekman boundary layer; Chaps. 5-6.) The degree of coherent
vortex emergence and dynamical control of the equilibrium turbulence
depends upon the relative rates of forcing and energy dissipation (which
disrupt the vortex dynamics) and of vortex advection (which sustains it).
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Chapter 4

Rotating Shallow-Water and
Wave Dynamics

Many types of wave motions occur in the ocean and atmosphere. They are
characterized by an oscillatory structure in both space and time, as well as by
systematic propagation from one placed to another. Examples of the
distinctive trough and crest patterns of internal gravity waves in the
atmosphere and ocean are shown in Figs. 4.1-4.2.

In Chaps. 2-3 some simple examples were presented for acoustic,
internal-gravity, inertial, and Rossby oscillations. In this chapter a more
extensive examination is made for the latter three wave types plus some
others. This is done using a dynamical system that is more general than 2D
fluid dynamics, because it includes a non-trivial influence of stable buoyancy
stratification, but less general than 3D fluid dynamics. The system is called
the Shallow-Water Equations. In a strict sense, the Shallow-Water Equations
represent the flow in a fluid layer with uniform density, ρ0, when the
horizontal velocity is constant with depth (Fig. 4.3). This is most plausible
for thin motions whose horizontal scale, L, is much greater than the mean
layer depth, H, i.e., H/L� 1. Recall from Sec. 2.3.4 that this relation is the
same assumption that justifies the hydrostatic balance approximation, which
is one of the ingredients in deriving the Shallow-Water Equations. It is also
correct to say that the Shallow-Water Equations are a form of the hydrostatic
Primitive Equations (Sec. 2.3.5) limited to a single degree of freedom in the
vertical flow structure.

The Shallow-Water Equations can therefore be interpreted literally as a
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Figure 4.1: Clouds in the stably stratified upper troposphere showing vapor
condensation lines where an internal gravity wave has lifted air parcels. The
wave crests and troughs are aligned vertically in this photograph from the
ground, and the wave propagation direction is sideways.
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Figure 4.2: Oceanic internal gravity waves on the near-surface pycnocline, as
measured by a satellite’s Synthetic Aperture Radar reflection from the associ-
ated sea-surface disturbances. The waves are generated by tidal flow through
the Straits of Gibraltar. (From NASA.)
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model for barotropic motions in the ocean including effects of its free surface.
It is also representative of barotropic motions in the atmospheric troposphere,
although less obviously so because its upper free surface, the tropopause, may
more readily influence and, in response, be influenced by the flows above it
whose density is closer to the troposphere’s than is true for air above water.
The Shallow-Water Equations mimic baroclinic motions, in a restricted sense
explained below, with only a single degree of freedom in their vertical
structure (hence they are not fully baroclinic because ẑ · ∇∇∇p× ∇∇∇ρ = 0; Sec.
3.1.1). Nevertheless, in GFD there is a long history of accepting the
Shallow-Water Equations as a relevant analog dynamical system for some
baroclinic processes. This view rests on the experience that Shallow-Water
Equations solutions have useful qualitative similarities with some solutions for
3D stably stratified fluid dynamics in, say, the Boussinesq or Primitive
Equations. The obvious advantage of the Shallow-Water Equations, compared
to 3D equations, is their 2D spatial dependence, hence their greater
mathematical and computational simplicity.

4.1 Rotating Shallow-Water Equations

The fluid layer thickness is expressed in terms of the mean layer depth, H,
upper free surface displacement, η(x, y, t), and topographic elevation of the
solid bottom surface, B(x, y):

h = H + η −B. (4.1)

Obviously, h > 0 is a necessary condition for Shallow-Water Equations to have
a meaningful solution. The kinematic boundary conditions (Sec. 2.1.1) at the
layer’s top and bottom surfaces are

w =
D(H + η)

Dt
=

Dη

Dt
at z = H + η

w =
DB

Dt
= u · ∇∇∇B at z = B , (4.2)

respectively, where the vector quantities are purely horizontal. Since
∂z (u, v) = 0 by assumption, the incompressible continuity relation implies
that w is a linear function of z. Fitting this form to (4.2) yields

w =
(
z −B
h

)
Dη

Dt
+

(
h+B − z

h

)
u · ∇∇∇B . (4.3)
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Figure 4.3: Configuration for the Shallow Water Equations. They are valid for a
fluid layer of uniform density, ρ0, with an upper free surface where the pressure
is p∗. The layer has a thickness, h = H+η−B; a depth-independent horizontal
velocity, u; a free surface elevation anomaly, η; and a bottom elevation, B. The
mean positions of the top and bottom are z = H and z = 0, respectively.
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Consequently,

∂w

∂z
=

1

h

Dη

Dt
− 1

h
u · ∇∇∇B

=
1

h

D(η −B)

Dt

=
1

h

Dh

Dt
. (4.4)

Combining this with the continuity equation gives

∂w

∂z
= −∇∇∇ · u =

1

h

Dh

Dt

=⇒ Dh

Dt
+ h∇∇∇ · u = 0

or
∂h

∂t
+ ∇∇∇ · (hu) = 0 . (4.5)

This is called the height or thickness equation for h in the Shallow-Water
Equations. It is a vertically integrated expression of local mass conservation:
the surface elevation goes up and down in response to the depth-integrated
convergence and divergence of fluid motions (cf., integral mass conservation;
Sec. 4.1.1).

The free-surface boundary condition on pressure (Sec. 2.2.3) is p = p∗, a
constant; this is equivalent to saying that any fluid motion above the layer
under consideration is negligible in its conservative dynamical effects on this
layer (n.b., a possible non-conservative effect, also being neglected here, is a
surface viscous stress). Integrate the hydrostatic relation downward from the
surface, assuming uniform density, to obtain the following:

∂p

∂z
= −gρ = −gρ0 (4.6)

=⇒ p(x, y, z, t) = p∗ +
∫ H+η

z
gρ0 dz

′

=⇒ p = p∗ + gρ0(H + η − z) . (4.7)

In the horizontal momentum equations the only aspect of p that matters is its
horizontal gradient. From (4.7),

1

ρ0

∇∇∇p = g∇∇∇η ;
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hence,
Du

Dt
+ f ẑ× u = −g∇∇∇η + F . (4.8)

The equations (4.1), (4.5), and (4.8) comprise the Shallow-Water Equations
and are a closed partial differential equation system for u, h, and η.

ρ = ρ0

z = −(H+b)

x
y

z
f/2 g

u(x,y,t)h(x,y,t) = H+b

p = p (x,y,t)u

p = 0∇h l

u = 0

(x,y,t)

z = 0

z = − H
ρ = ρ > 0ρl

Figure 4.4: Alternative configuration for the Shallow Water Equations with a
rigid lid and a lower free interface above a motionless lower layer. ρ0, u, and
h have the same meaning as in Fig. 4.3. Here pu is the pressure at the lid, −b
is elevation anomaly of the interface, ρl is the density of the lower layer, and
g′ = g(ρl − ρ0)/ρ0 is the reduced gravity. The mean positions of the top and
bottom are z = 0 and z = −H, respectively.

An alternative conceptual basis for the Shallow-Water Equations is the
configuration sketched in Fig. 4.4. It is for a fluid layer beneath a flat, solid,
top boundary and with a deformable lower boundary separating the active
fluid layer above from an inert layer below. For example, this is an
idealization of the oceanic pycnocline (also often called the thermocline), a
region of strongly stable density stratification beneath the weakly stratified
upper ocean region, which contains, in particular, the often well mixed surface
boundary layer (cf., Chap. 6), and above the thick, weakly stratified abyssal
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ocean (Fig. 2.7). Accompanying approximations in this conception are a rigid
lid (Sec. 2.2.3) and negligibly weak abyssal flow at greater depths. Again
integrate the hydrostatic relation down from the upper surface, where
p = pu(x, y, t) at z = 0, through the active layer, across its lower interface at
z = −(H + b) into the inert lower layer, to obtain the following:

p = pu − gρ0z , −(H + b) ≤ z ≤ 0

p ≡ pi = gρ0(H + b) + pu , z = −(H + b)

p = pi − gρl(H + b+ z) , z ≤ −(H + b) (4.9)

(using the symbols defined in Fig. 4.4). For the lower layer (i.e.,
z ≤ −(H + b) ) to be inert, ∇∇∇p must be zero for a consistent force balance
there. Hence,

∇∇∇pi = gρl∇∇∇b , (4.10)

and
∇∇∇pu = g(ρl − ρ0)∇∇∇b = g′ρ0∇∇∇b . (4.11)

In (4.11),

g′ ≡ g
ρl − ρ0

ρ0

(4.12)

is called the reduced gravity appropriate to this configuration, and the
Shallow-Water Equations are sometimes called the reduced-gravity equations.

The Shallow-Water Equations corresponding to Fig. 4.4 are isomorphic to
those above for the configuration in Fig. 4.3 with the following identifications:

(b, g′, 0) ←→ (η, g, B) , (4.13)

i.e., for the special case of a flat bottom in Fig. 4.3. In the following, for
specificity, the Shallow-Water Equations notation used will be the same as in
Fig. 4.3.

4.1.1 Integral and Parcel Invariants

Consider some of the conservative integral invariants for the Shallow-Water
Equations with F = 0.

The total mass of the uniform-density, shallow-water fluid, ρ0M , is related
to the layer thickness by

M =
∫ ∫

dx dy h . (4.14)
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Mass conservation is derived by spatially integrating (4.5) and using the
kinematic boundary condition that the normal velocity vanishes at the side
boundary (denoted by C):

∫ ∫
dx dy

∂h

∂t
= −

∫ ∫
dx dy∇∇∇ · (hu)

=⇒ dM

dt
=

d

dt

∫ ∫
dx dy η = −

∮

C
ds (hu) · n̂ = 0 (4.15)

since both H and B are independent of time. H is defined as the average
depth of the fluid over the domain,

H =
1

Area

∫ ∫
dx dy h

so that η and B represent departures from the average heights of the surface
and bottom.

Energy conservation is derived by the following operation on the
Shallow-Water Equations’ momentum and thickness relations, (4.8) and (4.5):
∫ ∫

dx dy
(
hu · (momentum eqn.) + [gη +

1

2
u2] (thickness eqn.)

)
.

(4.16)
With compatible boundary conditions that preclude advective fluxes through
the side boundaries, this expression can be manipulated to derive

dE

dt
= 0, E ≡

∫ ∫
dx dy

1

2

(
hu2 + gη2

)
. (4.17)

Here the energy, E, is the sum of two terms, kinetic energy and potential
energy. Only the combined energy is conserved, and exchange between the
kinetic and potential components is freely allowed (and frequently occurs
pointwise among the integrands in (4.17) for most Shallow-Water Equations
wave types).

The potential energy in (4.17) can be related to its more fundamental
definition for a Boussinesq fluid,

PE =
1

ρo

∫ ∫ ∫
dx dy dz ρgz . (4.18)

For a shallow water fluid with constant ρ = ρo, the vertical integration can be
performed explicitly to yield

PE =
∫ ∫

dx dy
1

2
gz2

∣∣∣
H+η

B

=
g

2

∫ ∫
dx dy [H2 + 2Hη + η2 −B2] . (4.19)
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Since both H and B are independent of time and
∫ ∫

dx dy η = 0 by (4.15),

d

dt
PE =

d

dt
APE , (4.20)

where

APE =
1

2
g
∫ ∫

dx dy η2 (4.21)

is the same quantity that appears in (4.17). APE is called available potential
energy since it is the only part of the PE that can change with time and thus
is available for conservative dynamical exchanges with the KE. The difference
between PE and APE is called unavailable potential energy, and it does not
change with time for adiabatic dynamics. Since usually H � |η|, the
unavailable part of the PE in (4.19) is much larger than the APE, and this
magnitude discrepancy is potentially confusing in interpreting the energetics
associated with the fluid motion (i.e., the KE). This concept can be
generalized to 3D fluids, and it is the usual way that the energy balances of
the atmospheric and oceanic general circulations are expressed.

There is another class of invariants associated with the potential vorticity, q
(cf., Sec. 3.1.2). The dynamical equation for q is obtained by taking the curl
of (4.8) (as in Sec. 3.1.2):

Dζ

Dt
+ u · ∇∇∇f + (f + ζ)∇∇∇ · u = F , (4.22)

or, by substituting for ∇∇∇ · u from the second relation in (4.5),

D(f + ζ)

Dt
− f + ζ

h

Dh

Dt
= F (4.23)

=⇒ Dq

Dt
=

1

h
F , q ≡ f(y) + ζ

h
. (4.24)

Thus, q is again a parcel invariant for conservative dynamics, though it has a
more general definition in the Shallow-Water Equations than in the 2D
definition (3.28).

In the Shallow-Water Equations, in addition to the relative and planetary
vorticity components present in 2D potential vorticity (ζ and f(y),
respectively), q now also contains the effects of vortex stretching. The latter
can be understood in terms of the Lagrangian conservation of circulation, as
in Kelvin’s Circulation Theorem (Sec. 3.1.1). For a material parcel with the
shape of an infinitesimal cylinder (Fig. 4.5), the local value of absolute
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t∆

1ζf1 +

ζ2f2 +

h1
h2

Figure 4.5: Vortex stretching and potential vorticity conservation. If a material
column is stretched to a greater thickness (h2 > h1 > 0) while conserving its
volume, the potential vorticity conservation, q2 = q1 > 0 implies an increase in
the absolute vorticity, f(y2) + ζ2 > f(y1) + ζ1 > 0.
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vorticity, f + ζ, changes with the cylinder’s thickness, h, while preserving the
cylinder’s volume element, h dArea, so that the ratio of f + ζ and h (i.e., the
potential vorticity, q) is conserved following the flow. For example, stretching
the cylinder (h increasing and dArea decreasing) causes an increase in the
absolute vorticity (f + ζ increasing). This would occur for a parcel that moves
over a bottom depression and thereby develops a more cyclonic circulation as
long as its surface elevation, η, does not decrease as much as B does.

The conservative integral invariants for potential vorticity are derived by the
following operation:

∫ ∫
dx dy

(
nhqn−1 · (potential vorticity eqn.) + qn · (thickness eqn.)

)

for any value of n, or

∫ ∫
dx dy

(
nhqn−1

[
∂q

∂t
+ u · ∇∇∇q

]
+ qn

[
∂h

∂t
+ ∇∇∇ · (hu)

] )
= 0 .

Since ∫ ∫
dx dy∇∇∇ · (Au) =

∫
dsAu · n̂ = 0

if u · n̂ = 0 on the boundary (i.e., the kinematic boundary condition of zero
normal flow at a solid boundary), the result is

d

dt

∫ ∫
dx dy hqn = 0 ∀ n . (4.25)

This is the identical result as for 2D flows (3.29), so again it is true that
integral functionals of q are preserved under conservative evolution. This is
because by (4.24) the fluid motion can only rearrange the locations of the
parcels with their associated q values, but it cannot change the q values. The
same rearrangement principle and integral invariants are true for a passive
scalar field (assuming it has a uniform vertical distribution for consistency
with the Shallow-Water Equations), ignoring any effects from horizontal
diffusion or side-boundary flux.

4.2 Linear Wave Solutions

Now consider the normal-mode wave solutions for the Shallow-Water
Equations with f = f0, B = 0, F = 0, and an unbounded domain. These are
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solutions of the dynamical equations linearized about a state of rest with
u = η = 0, so they are appropriate dynamical approximations for
small-amplitude flows. The linear Shallow-Water Equations from (4.5) and
(4.8) are

∂u

∂t
− fv = −g ∂η

∂x
∂v

∂t
+ fu = −g∂η

∂y

∂η

∂t
+H

(
∂u

∂x
+
∂v

∂y

)
= 0 . (4.26)

These equations can be combined in such a way as to leave η as the only
dependent variable (or, alternatively, u or v): first form the combinations,

∂t(1
st) + f(2nd) −→ (∂tt + f 2)u = −g(∂xtη + f∂yη)

∂t(2
nd)− f(1st) −→ (∂tt + f 2)v = −g(∂ytη − f∂xη)

(∂tt + f 2)(3rd) −→ (∂tt + f 2)∂tη = −H(∂tt + f 2)(∂xu+ ∂yv) ,(4.27)

then substitute the x- and y-derivatives of the first two relations into the last
relation,

[
∂2

∂t2
+ f 2

]
∂η

∂t
= gH

(
∂3η

∂x2∂t
+ f

∂2η

∂y∂x
+

∂3η

∂y2∂t
− f ∂2η

∂y∂x

)

=⇒ ∂

∂t

[
∂2

∂t2
+ f 2 − gH∇2

]
η = 0 . (4.28)

This combination thus results in a partial differential equation for η alone.
The normal modes for (4.26) or (4.28) have the form

[u, v, η] = Real
(

[u0, v0, η0]ei(k·x−ωt)
)
. (4.29)

When (4.29) is inserted into (4.28), the partial differential equation becomes
an algebraic equation:

−iω(−ω2 + f 2 + gHk2)η0 = 0 , (4.30)

or for η0 6= 0, divide by −iη0 to obtain

ω(ω2 − [f 2 + c2k2]) = 0 . (4.31)
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The quantity

c =
√
gH (4.32)

is a gravity wave speed (Secs. 4.2.2 and 4.5). Equation (4.31) is called the
dispersion relation for the linear Shallow-Water Equations (cf., the dispersion
relation for a Rossby wave; Sec. 3.1.2). It has the generic functional form for
waves, ω = ω(k). Here the dispersion relation is a cubic equation for the
eigenvalue (or eigenfrequency) ω; hence there are three different wave
eigenmodes for each k.

Wave Propagation: The dispersion relation determines the propagation
behavior for waves. Any quantity with an exponential space-time dependence
as in (4.29) is spatially uniform in the direction perpendicular to k at any
instant, and its spatial pattern propagates parallel to k at the phase velocity
defined by

cp ≡
ω

k2
k . (4.33)

However, the pattern shape is not necessarily preserved during an extended
propagation interval (i.e., over many wavelengths, λ = 2π/|k|, and/or many
wave periods, P = 2π/|ω|). If the spatial pattern is a superposition of many
different component wavenumbers (e.g., as in a Fourier transform; Sec. 3.7),
and if the different wavenumber components propagate at different speeds,
then their resulting superposition will yield a temporally changing shape. This
process of wavenumber separation by propagation is called wave dispersion. If
the pattern has a dominant wavenumber component, k∗, and its amplitude
(i.e., the coefficient of the exponential function in (4.29)) is spatially localized
within some region large compared to λ∗ = 2π/k∗, then the region that has a
significant wave amplitude will propagate with the group velocity defined by

cg ≡
∂ω

∂k

∣∣∣
k=k∗

. (4.34)

Thus, one can say that the wave energy propagates with cg, not cp. If cp 6= cg,
the pattern shape will evolve within this region through dispersion, but if
these two wave velocities are equal then the pattern shape will be preserved
with propagation. Waves whose dispersion relation implies that cp = cg are
called non-dispersive. There is an extensive scientific literature on the many
types of waves that occur in different media; e.g., Lighthill (1978) and
Pedlosky (2003) are relevant books about waves in GFD.
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4.2.1 Geostrophic Mode

The first eigenenvalue in (4.31) is

ω = 0 ; (4.35)

i.e., it has neither phase nor energy propagation. From (4.29) and (4.26), this
mode satisfies the relations

fv0 = +ikgη0

fu0 = −i`gη0

iku0 + i`v0 = 0 (4.36)

for k ≡ (k, `). Note that this is geostrophic motion that is horizontally
non-divergent, and it has a streamfunction modal amplitude,

ψ0 = g
η0

f

(cf., Sec. 2.4.2). In the linear, conservative Shallow-Water Equations (4.26),
the geostrophic mode is a stationary solution (with ∂t = 0).

4.2.2 Inertia-Gravity Waves

The other two eigenfrequency solutions for (4.31) have ω 6= 0:

ω2 = [f 2 + c2k2]

=⇒ ω = ± [f 2 + c2K2]1/2, K ≡ |k| . (4.37)

First take the long-wave limit (k→ 0):

ω → ± f . (4.38)

These are inertial waves (cf., Sec. 2.4.3). The phase velocity,
cp = ωk/K2 → fk/K2 →∞. Thus, the phase propagation becomes infinitely
fast in this inertial-wave limit.

Alternatively, take the short-wave limit (k→∞):

ω → ± cK → ∞ , (4.39)
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whose phase velocity, cp → c êk remains finite with a speed c in the direction
of the wavenumber vector, êk ≡ k/K. Waves in the limit (4.39) are
non-dispersive. Since any initial condition can be represented as a
superposition of k components by a Fourier transform (Sec. 3.7), it will
preserve its shape during propagation. In contrast, waves near the inertial
limit (4.38) are highly dispersive and do not preserve their shape.

For the linear Shallow-Water Equations, the Brünt-Väisällä frequency (Sec.
2.3.3) is evaluated as

N2 = −g
ρ

∆ρ

∆z
= − g

ρ0

(
0− ρ0

H

)
=

g

H
. (4.40)

Thus, for the short-wave limit,

|ω| = cK =
√
gH K = NKH . (4.41)

Recall that the Shallow-Water Equations are a valid approximation to the
more generally 3D motion in a uniform-density fluid layer only for H/L� 1,
or equivalently KH � 1. Thus,

|ω| → N KH → 1−

in (4.41); this, rather than KH →∞ and the resulting (4.39), is about as far
as the short-wave limit should be taken for the Shallow-Water Equations due
to the derivational assumption of hydrostatic balance and thinness, H/L� 1
(Sec. 4.1). Recall from Sec. 2.3.3 that ω = ±N is the frequency for an
internal gravity oscillation in a stably stratified 3D fluid. (In fact, this is the
largest internal gravity wave frequency in a 3D Boussinesq Equations
normal-mode solution.) The limit (4.39) is identified as the gravity-wave mode
for the Shallow-Water Equations. It can be viewed either as an external or
surface gravity wave for a water layer beneath a vacuum or air (Fig. 4.3) or as
an internal gravity wave on an interface with the appropriately reduced
gravity, g′, and buoyancy frequency, N (Fig. 4.4).

It is typically true that “deep” gravity waves with a relatively large vertical
scale, comparable to the depth of the pycnocline or tropopause, have a faster
phase speed, c, than the parcel velocity, V . Their ratio is called the Froude
number,

Fr =
V

c
=

V√
gH

=
V

NH
. (4.42)

Deep internal gravity wave speeds are typically O(102) m s−1 in the
atmosphere and O(1) m s−1 in the ocean. For the V values characterizing
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large-scale flows (Sec. 2.4.2), the corresponding Froude numbers are Fr ∼ Ro
in both media. Thus, these gravity waves are rapidly propagating compared
to advective parcel displacements, but also recall that sound waves are even
faster than gravity waves, with M � Fr (Sec. 2.2.2).

Based on the short- and long-wave limits (4.38)-(4.39), the second set of
modes (4.37) are called inertia-gravity waves, or, in the terminology of
Pedlosky (Sec. 3.9, 1987), Poincaré waves. Note that these modes are
horizontally isotropic because their frequency and phase speed, |cp|, are
independent of the propagation direction, êk, since (4.37) depends only on the
wavenumber magnitude, K, rather than k itself.

For inertia-gravity waves, the approximate boundary between the
predominantly inertial and gravity wave behaviors occurs for KR = 1, where

R ≡ c

|f | =

√
gH

f
=

NH

f
(4.43)

is the Rossby radius of deformation. R is commonly an important length scale
in rotating, stably stratified fluid motions, and many other examples of its
importance will be presented later. In the context of the rigid-lid
approximation, R was identified with the external deformation radius, Re in
(2.114) associated with the oceanic free surface. R in (4.43) has the same
interpretation for the Shallow-Water Equations configuration with full
gravitational acceleration, g (Fig. 4.3), but it should alternatively be
interpreted as an internal deformation radius with the reduced gravity, g ′,
representing the interior stratification in the configuration in Fig. 4.4, as well
as in 3D stratified fluids (Chap. 5). Internal deformation radii are much
smaller than external ones because g′ � g; typical values are several 100s km
in the troposphere and several 10s km in the ocean.

For the inertia-gravity modes, the modal amplitude for vorticity is

ζ0 = ikv0 − i`u0

= − gfK2

ω2 − f 2
η0 =

gf

c2
η0 , (4.44)

using the relations following (4.26), the modal form (4.29), and the dispersion
relation (4.37). A linearized approximation of q from (4.24) is

q − f

H
=

f + ζ

H + η
− f

H
≈ ζ

H
− fη

H2
. (4.45)
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Hence, the modal amplitude for inertia-gravity waves is

q0 =
ζ0

H
− fη0

H2

=
gf

Hc2
η0 −

f

H2
η0 = 0 , (4.46)

using (4.44) for ζ0. Thus, these modes have no influence on the potential
vorticity, which is entirely carried by the geostrophic modes whose modal q
amplitude is

q0 = − g

fH
[R−2 +K2] η0 6= 0 . (4.47)

4.2.3 Kelvin Waves

There is an additional type of wave mode for the linear Shallow-Water
Equations (4.26) when a side boundary is present. This is illustrated for a
straight wall at x = 0 (Fig. 4.6), where the kinematic boundary condition is
u = 0. The normal-mode solution and dispersion relation are

u = 0

v = − g

fR
η0 e

−x/R sin[`y − ωt]

η = η0 e
−x/R sin[`y − ωt]

ω = − fR` , (4.48)

as can be verified by substitution into (4.26). This eigensolution is called a
Kelvin wave. It is non-dispersive since ω/` is a constant. It stays trapped
against the boundary with the off-shore decay scale, R; it oscillates in time
with frequency, ω; and it propagates along the boundary with the
gravity-wave speed, c (since fR = sign[f ]

√
gH) in the direction with the

boundary located to the right in the northern hemisphere (i.e., it circles
around the bounded domain in a cyclonic sense). The cross-shore momentum
balance is geostrophic,

−fv = −g ∂η
∂x

; (4.49)

whereas the along-shore momentum balance is the same as in a pure gravity
wave,

vt = −g∂η
∂y

. (4.50)
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y

cp
y = cg

y −

R

= − gH
x = 0

~ 1 /

Figure 4.6: A mid-latitude, f -plane Kelvin wave along a western boundary in
the northern hemisphere. ` is the alongshore wavenumber, R is the deformation
radius, and cyp and cyg are the meridional phase and group velocities. The wave
propagates southward at the shallow-water gravity wave speed.
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y

Kelvin

waves

R(y)

El Nino~

Figure 4.7: The generation of poleward-propagating Kelvin waves along an
eastern oceanic boundary by Equatorial variability (e.g., during an El Niño
event). The deformation radius, R(y) =

√
gH/f(y), decreases with latitude

since f increases. So the offshore decay scale of the Kelvin waves decreases
proportionally.
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Thus, the dynamics of a Kelvin wave is a hybrid combination of the influences
of rotation and stratification.

The ocean is full of Kelvin waves near the coasts, generated as part of the
response to changing wind patterns (although their structure and propagation
speed are usually modified from the solution above by the cross-shore
bottom-topographic profile). A particular example of this occurs as a
consequence of the evolution of El Niño (Fig. 4.7). Equatorial fluctuations
near the eastern boundary generate poleward- (i.e., cyclonic-) propagating
Kelvin waves along the eastern boundary within a layer whose width is the
local deformation radius near the Equator,

R(y) =
NH

|f(y)| ≈
N0H0a

2|Ωe||y|

(since f(y) ≈ 2|Ωe|y/a near the Equator at y = 0 by (2.90), and N and H
vary less with latitude than f does). The Kelvin-wave boundary-layer width
shrinks as |y| increases away from the Equator. This Shallow-Water Equations
interpretation is the one sketched in Fig. 4.4 with H the pycnocline depth.

In addition to the extra-tropical modes with f0 6= 0 analyzed in this section,
there are analogous equatorial inertial, gravity, geostrophic and Kelvin wave
modes based on the Equatorial β-plane approximation, f ≈ β0y with y = 0
the Equator (Gill, 1982, Chap. 11). They too have important roles in the El
Niño scenario in both the atmosphere and ocean.

4.3 Geostrophic Adjustment

The process called geostrophic adjustment is how a spatially localized but
otherwise arbitrary initial condition in a rotating, stratified fluid evolves
toward a localized flow that satisfies a diagnostic momentum balance
(geostrophic, if Ro� 1) while radiating inertia-gravity waves away to distant
regions. In general geostrophic adjustment might be investigated by any of
the following approaches:

(1) Solve an initial-value problem for the partial differential equation system,
either analytically or numerically, which will conform to the phenomenological
behavior described above.

(2) For the linear, conservative dynamics in (4.26), expand the initial state in
the complete set of normal modes, and, motivated by the anticipated behavior
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described above, discard all but the geostrophic modes to represent the local
end state of the adjustment process after all the inertia-gravity waves have
propagated away.

(3) For the more general nonlinear, conservative dynamics in (4.5) and (4.8)
with F = 0, calculate the end state directly from the initial state by assuming
Lagrangian conservation for the appropriate parcel invariants, assuming that
the parcels remain in the neighborhood of their initial position (i.e., they are
locally rearranged during geostrophic adjustment and are not carried away
with the waves).

This third approach, originally due to Carl Rossby, is the most general and
least laborious way to determine the end state without having to keep track of
the time evolution toward it. This approach is now illustrated for a simple
situation where both the initial and final states are independent of the y
coordinate and f is a constant. In this case the conservative, flat-bottom,
Shallow-Water Equations are

Du

Dt
− fv = −g ∂η

∂x
Dv

Dt
+ fu = 0

Dη

Dt
+ (H + η)

∂u

∂x
= 0 , (4.51)

with the substantial derivative having only 1D advection,

D

Dt
=

∂

∂t
+ u

∂

∂x
.

By defining X(t) as the x coordinate for a Lagrangian parcel, then the
following parcel invariants can be derived assuming that the velocity vanishes
at x = ±∞:

Mass:

M [X(t)] ≡
∫ X(t)

h dx′ , (4.52)

since

DM

Dt
=

dX

dt
h+

∫ X(t) ∂h

∂t
dx′

= uh+
∫ X(t)

[
− ∂

∂x
(uh)

]
dx′

= uh− uh = 0 . (4.53)
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Absolute Momentum:
A[X(t)] ≡ fX + v , (4.54)

since

DA

Dt
= f

dX

dt
+
Dv

Dt
= fu− fu = 0 . (4.55)

Absolute momentum in a parallel flow (∂y = 0) is the analog of absolute
angular momentum, A = 1

2
fr2 + V r, in an axisymmetric flow (∂θ = 0; see

(3.83)).

Potential Vorticity:

Q[X(t)] ≡ f + ∂xv

H0 + η
, (4.56)

from (4.24).

The other parcel invariants that are functionally related to these primary
ones (e.g., Qn, ∀ n from (4.25)) are redundant with (4.52)-(4.54) and exert no
further constraints on the parcel motion. In fact, this set of three relations
above is internally redundant by one relation since

Q ≡ dA

dX

/dM
dX

, (4.57)

so only two of them are needed to fully determine the end state by the third
approach above. Which two is an option that may be chosen for analytical
convenience.

Define a parcel displacement field by

ξ(t) ≡ X(t)−X(0) . (4.58)

This allows the parcel invariance relations to be expressed as

M [X(t)] = M [X(0)] = M [X(t)− ξ(t)]
A[X(t)] = A[X(0)] = A[X − ξ]
Q[X(t)] = Q[X(0)] = Q[X − ξ] (4.59)

for all t. In particular, make the hypothesis that the end state at t =∞ is a
steady, geostrophically balanced one for all the parcels that both start and
end up in the vicinity of the initial disturbance, satisfying

fv = g
∂η

∂x
. (4.60)
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Together, the relations (4.59)-(4.60) suffice for calculating the end state,
without having to calculate the intervening evolution that usually is quite
complicated as parcels move around and inertia-gravity waves oscillate and
radiate into the far-field.

η0

x

h (x,0)

H0u,v = 0

 0− a0 a 0

Figure 4.8: An unbalanced ridge in the sea level elevation, η(x), at t = 0.

A particular example is a local ridge at rest at t = 0 (Fig. 4.8):

u = (0, 0) η = (η0, 0) for (|x| < a0, |x| > a0) , (4.61)

where the parenthetical notation here and below indicates the inner (i) and
outer (o) regional expressions in the format of (i, o). The symmetry of the
initial condition about x = 0 is preserved under evolution. So only the
half-space, x ≥ 0, needs to be considered. This initial condition has a
particularly simple Q distribution, viz., piecewise constant:

Q =

(
Qi ≡

f

H0 + η0

, Qo ≡
f

H0

)
.

For the end state, the potential-vorticity parcel invariance in (4.59) implies
that

f +
∂v

∂x
= Qi,o(H0 + η) (4.62)
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in the two regions; the subscript indicates the relevant region. In the end
state, the boundary between the inner and outer regions is located at x = a∞,
corresponding to the X(t =∞) value for the parcel with X(0) = a0.
Differentiate (4.62) with respect to x and substitute from (4.60) to obtain

∂2v

∂x2
−R−2

i,o v = 0 , (4.63)

where
Ri,o ≡

√
gHi,o/f

is the local deformation radius. The independent, homogeneous solutions for
(4.63) are exponential functions, e± x/Ri,o . Take the linear combination of the
independent solutions in each region that satisfies the following boundary
conditions:

v → 0 at x → 0,∞; v continuous at x = a∞ . (4.64)

These conditions are based on the odd symmetry of v about x = 0 (i.e.,
v(x) = −v(−x), related by (4.60) to the even symmetry of η); spatial
localization of the end-state flow; and continuity of v and η for all x. The
result is

v = C
(
sinh[x/Ri], sinh[a∞/Ri] e

−(x−a∞)/Ro
)
, (4.65)

and, from (4.62),

η =
Cf

g

(
Ri cosh[x/Ri], −Ro sinh[a∞/Ri] e

−(x−a∞)/Ro
)

+ (η0, 0) . (4.66)

Imposing continuity in η at x = a∞ yields

C = −gη0

f
[ Ri cosh[a∞/Ri] +Ro sinh[a∞/Ri] ]−1 . (4.67)

These expressions are perhaps somewhat complicated to visualize. They
become much simpler for the case of a wide ridge, where a0, a∞ � Ri, Ro.
In this case (4.65)-(4.67) become

v = − gη0

f(Ri +Ro)

(
e(x−a∞)/Ri , e−(x−a∞)/Ro

)

η = η0

(
1− Ri

Ri +Ro

e(x−a∞)/Ri ,
Ro

Ri +Ro

e−(x−a∞)/Ro

)
. (4.68)
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Thus all the flow activity in the end state is in the neighborhood of the
boundary between the inner and outer regions, and it is confined within a
distance O(Ro,i).

The only undetermined quantity in (4.65)-(4.68) is a∞. It is related to ξ by

X(∞) = a∞ = a0 + ξ(a∞) . (4.69)

From (4.54) and (4.59),

fX(∞) + v(X(∞)) = fX(0)

=⇒ fx+ v = f(x− ξ)
=⇒ ξ = − v

f
. (4.70)

Inserting (4.65)-(4.68) into (4.70) and evaluating (4.69) yields an implicit
equation for a∞:

a∞ = a0 +
η0

H0

RoJ1 , (4.71)

where the general expression for J1 is

J1 =

[
1 +

Ri

Ro tanh[a∞/Ri]

]−1

. (4.72)

Eqs. (4.71)-(4.72) are generally somewhat complicated to interpret, but, for
the case of small initial disturbances (i.e., η0/H0 � 1), they are simpler
because Ri ≈ Ro, a∞ ≈ a0, and

J1 ≈ [ 1 + 1/ tanh[a0/Ro] ]−1 . (4.73)

The function J1 ≈ a0/Ro as a0/Ro → 0, and it approaches 1/2 as a0/Ro

becomes large. So

a∞ ≈ a0

(
1 +

η0

H

)

and

a∞ ≈ a0 +
Ro

2

η0

H

in the respective limits. Note that (4.73) does not depend on a∞, so the
implicitness in (4.71) is resolved using the small-disturbance approximation.
Also,

ξ = −C
f

(
sinh[x/Ri], sinh[a∞/Ri] e

−(x−a∞)/Ro
)
, (4.74)
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with

C ≈ η0N0

sinh[a0/Ro]
J1[a0/Ro]

and N0 =
√
g/H0 from (4.40). So, C ≈ η0N0 and C ≈ η0N0 exp[−a0/Ro] in

the respective limits, with the latter value a much smaller one for a wide ridge.

For a wide ridge (as above), but not necessarily a small η0/H value, then

J1 =
Ro

Ri +Ro

, (4.75)

and (4.71)-(4.74) become

a∞ = a0 +
(
η0

H

)(
Ro

Ri +Ro

)
Ro (4.76)

ξ =
gη0

f 2(Ri +Ro)

(
e(x−a∞)/Ri , e−(x−a∞)/Ro

)
. (4.77)

Again the action is centered on the boundary within a distance O(Ro,i).
Equation (4.76) implies that the boundary itself moves a distance O(Ro,i)
under adjustment. This is the reason why Rossby originally called R the
deformation radius.

The end-state shapes for v, η, and ξ from (4.65)-(4.68) and (4.74) are shown
in Fig. 4.9. η(x) monotonically decays from the origin, and thus it remains a
ridge as in the initial condition (n.b., (4.61) and Fig. 4.8). However, its height
is reduced, and its spatial extent is larger (i.e., it has slumped under the
action of gravity). The parcel displacement is zero at the origin — how could
a parcel at the center of the symmetric ridge decide whether to go east or
west? The displacement field reaches a maximum at the potential vorticity
boundary, x = a∞ > a0, and it decays away to infinity on the deformation
radius scale, Ro. The velocity is anticyclonic inside x = a∞. At this location it
reaches a maximum. Outside this boundary location, the vorticity is cyclonic,
and the flow decays to zero at large x.

Now estimate the end-state amplitudes, again by making the
small-disturbance approximation, η0 � H0:

vmin = −η0N0J1, ηmax = η0J2, ξmax =
η0Ro

H0

J1, a∞ = a0+ξmax , (4.78)

where

J2 ≡ 1− J1

sinh[a∞/Ri]
≈ 1− J1

sinh[a0/Ro]
. (4.79)
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a0 a∞

ξmax

vmin

η0
ηmax

0 =   gH   / foR

η

ξ

0
x

0

Figure 4.9: A balanced end state (t = ∞) for the ridge after geostrophic ad-
justment: (top) sea level anomaly, η(x); zonal parcel displacement, ξ(x); and
(bottom) meridional velocity, v(x). a0 and a∞ are the initial and final locations
of the parcel at the ridge edge (cf., Fig. 4.8).
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J2 ≈ a0/Ro and → 1, respectively, for small and large a0/Ro values.

For a wide ridge, J2 = 1, and (4.78) becomes

vmin = −η0N0

(
Ro

Ri +Ro

)
, ηmax = η0,

ξmax =
η0Ro

H0

(
Ro

Ri +Ro

)
, a∞ = a0 + ξmax . (4.80)

The behavior is quite different for wide and narrow ridges, a0 � Ro and
a0 � Ro. For wide ridges, ηmax ≈ η0 — indicating only a small amount of
slumping — vmin ≈ −Rof/2 η0/H0, and ξmax ≈ Roη0/2H0 is only a small
fraction of the initial ridge width. In this case v has adjusted to match η(x, 0).
Alternatively, for small-scale ridges, ηmax ≈ η0a0/Ro � η0,
vmin ≈ −a0f/2 η0/H0, and ξmax ≈ a0η0/H0 — indicating a relatively large
change from the initial shape with a big change in η(x). (In an alternative
problem with an initially unbalanced, small-scale velocity patch, v(x, 0), the
result would be that η changes through geostrophic adjustment to match v.)

Now analyze the energetics for geostrophic adjustment (4.17). The initial
energy is entirely in the form of potential energy. The available potential
energy per unit y length is

E0 =
1

2

∫
dx g η(x, 0)2 =

g

2
η2

0a0 . (4.81)

An order-of-magnitude estimate for the the local end-state energy after the
adjustment is

E∞ =
1

2

∫
dx

(
hu2 + gη2

)
∼ g

2
η2

0a0

(
J 2

1 + J 2
2

)
, (4.82)

using the magnitudes in (4.78) to make the estimate. (The detailed
integration to evaluate E∞ is complicated.) The kinetic and potential energies
for the end state are of the same order, since J1 ∼ J2. The ratio of final to
initial energies is small for narrow ridges (with J1,J2 � 1), consistent with a
large local change in the ridge shape and the radiation away of the majority of
the energy in inertia-gravity waves. However, for wide ridges (with
J1,J2 ∼ 1), the ratio is O(1), due to a relatively small amount of both ridge
shape change and radiated wave energy. In the limit with vanishing ridge size
— a limit where the initial disturbance is too small to be affected by rotation
— the initial disturbance leaves no local residue, and all of its energy has gone
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Figure 4.10: Various examples for geostrophic adjustment. In each case the ini-
tial configuration (left column) has constant density layers with different density
values, separated by the interfaces sketched here. The balanced, end-state, in-
terface configurations are sketched in the right column. (From Cushman-Roisin,
Fig. 13-4, 1994.)
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into waves that propagated away from the disturbance site. (Think of a diver
into a swimming pool.)

To further develop a qualitative understanding of the geostrophic
adjustment process, Fig. 4.10 gives some 3D examples of the end states that
result from motionless initial states with non-horizontal interfaces between
fluid layers with different densities. In each configuration gravitational
slumping and balanced flow development arise in patterns dictated by the
initial density structure.

For more general circumstances, with ∂y 6= 0, F 6= 0, and f 6= f0, an
unbalanced state will not evolve through geostrophic adjustment into an
exactly stationary end state. Nevertheless, insofar as Ro, Fr < 1 and the
non-conservative rates are also slow, geostrophic adjustment will still occur.
On a time scale of the wave radiation, ∼ 1/f or faster, inertia-gravity waves
will radiate away from the initial disturbance, leaving behind a geostrophic or
gradient-wind balanced state. This latter flow pattern will subsequently
evolve at the advective and non-conservative rates, instead of being a
stationary state.

4.4 Gravity Wave Steepening: Bores and

Breakers

Thus far only linear wave dynamics has been considered. In nature the
inertia-gravity wave spectrum is typically broadly distributed in k, and this
breadth is maintained by nonlinear coupling among the different k
components. A common assumption is that this coupling is weak, in the sense
that the time scale for energy exchange among the components is longer than
the time scale for their propagation. This assumption can be expressed either
as V/c� 1 (weak flow), where V is the parcel velocity associated with the
wave and c is the propagation speed, or as ε = ak � 1 (small steepness),
where a is the amplitude for a parcel displacement during a wave cycle and k
is the wavenumber. A theoretical analysis based on an expansion in ε is called
a weak interaction theory.

Yet another nonlinear behavior for gravity and other wave types is a solitary
wave, i.e., a shape-preserving, spatially localized, uniformly propagating,
solution of the conservative nonlinear dynamics, often arising through
canceling tendencies between linear dispersive spreading and nonlinear
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steepening of the wave shape (e.g., as in the progression towards breaking,
discussed in the next paragraph). In instances where a solitary-wave solution
is conspicuously robust to perturbations, it is called a soliton. The
shallow-water equations have no solitary wave solutions for an otherwise
quiescent, uniform environment, but there are many known examples of
solitary waves and solitons when the strict hydrostatic assumption is relaxed
(e.g., for the Korteweg-deVries approximation for long, weakly non-hydrostatic
gravity waves in a uniform density fluid with a free surface; Whitham, 1999).
The internal gravity wave shown in Fig. 4.2 is interpretable as a solitary wave.

Nonlinear dynamical effects in waves are not always weak and slow. This is
most evident in the phenomenon of gravity wave breaking when the wave crest
overtakes the trough and spills downward into it. The spilling phase typically
fragments the interface — either the oceanic surface or an isopycnal surface in
the stably stratified interior — and initiates turbulence, mixing, dissipation,
and transfer (a.k.a., deposition) of the wave momentum into more persistent
winds or currents. For example, surface wave breaking is usually a very
important step in the momentum transfer from the wind to the currents. The
wind stress on the ocean acts primarily to generate surface waves that
subsequently evolve until they break. Wave nonlinearity is also sometimes
manifested in gravity bores that are sharp steps in the interfacial elevation
that approximately maintain their shape as they propagate, usually
accompanied by some amount of local turbulence and mixing. Tidal bores
commonly occur at some special sites, e.g., the Bay of Fundy along the
Atlantic coast of Canada or the northeast corner of Brittany (near Mont St.
Michel). They also occur on the downhill side of a gravity current caused by
heavy fluid flowing downhill on a sloping surface, e.g., as induced by evening
radiative cooling on a mountain slope.

The underlying cause for breakers and bores is the tendency for gravity
waves to steepen on the forward-facing interface slope due to a faster local
propagation speed when the elevation is higher, so that a high-elevation region
will overtake a low-elevation one. In Sec. 4.2.2, the linear gravity wave speed
is c =

√
gH. It is at least heuristically plausible that a locally larger

h = H + η might lead to a locally larger c. The classical analysis for this
steepening behavior comes from compressible gas dynamics where the local
speed of sound increases with the density variations within the wave. The
acoustic outcome from such wave steepening is a shock wave, whereas the
usual gravity wave outcome is breaking.

Assume one-dimensional motions in the conservative, non-rotating,
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dx
dt (ξ+)= V+

t1

t2

t

t = t1

t = t2

x

x

x

h

h

x

Figure 4.11: Nonlinear evolution for an isolated, shallow-water, gravity wave
of elevation. The wave shape at the earlier time (t = t1; top) evolves into the
shape at a later time (t = t2; bottom) that has a shallower slope on its backward
face and a steeper slope on its forward face. This example is for a rightward
propagating wave. The characteristic coordinate, ξ+, remains constant for each
point on the wave, but its associated velocity, V+, is larger where the elevation
is higher (shown by the line slopes in the middle diagram).
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Shallow-Water Equations above a flat bottom (n.b., these assumptions
preclude geostrophic flow and geostrophic adjustment). The governing
equations are

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= 0

∂h

∂t
+
∂

∂x
[uh] = 0 . (4.83)

The momentum and thickness equations can be combined into a first-order
wave equation,

∂γ

∂t
+ V

∂γ

∂x
= 0 , (4.84)

with two separate definitions for the composite variable, γ (called the Reimann
invariant) and propagation velocity, V (called the characteristic velocity):

γ± = u± 2
√
gh, V± = u±

√
gh . (4.85)

This can be verified by substituting (4.85) into (4.84) and using (4.83) to
evaluate the time derivatives of u and h. The characteristic equation (4.84)
has a general solution, γ = Γ(ξ), for the composite coordinate, ξ(x, t) (called
the characteristic coordinate) defined implicitly by

ξ + V (ξ)t = x . (4.86)

The demonstration that this is a solution comes from taking the t and x
derivatives of (4.86),

∂tξ + tdξV ∂tξ + V = 0, ∂xξ + tdξV ∂xξ = 1

(with dξV ≡ dV/dξ); solving for ∂tξ and ∂xξ; substituting them into
expressions for the derivatives of γ,

∂tγ = ∂ξΓ∂tξ = − ∂ξΓ

1 + dξV t
V, γx = ∂ξΓ∂xξ =

∂ξΓ

1 + dξV t
;

and finally inserting the latter into (4.84),

∂tγ + V ∂xγ =
∂ξΓ

1 + dξV t
(−V + V ) = 0 .

The interpretation for this solution is the following. The function Γ is
determined by an initial condition,

ξ(x, 0) = x, Γ(ξ) = γ(x, 0) .
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Going forward in time, γ preserves its initial value, Γ(ξ), but this value moves
to a new location, X(ξ, t) = ξ + V (ξ)t, by propagating at a speed V (ξ). The
speed V is ≈ ±√gH after neglecting the velocity and height departures,
(u, h−H), from the resting state in (4.85); these approximate values for V
are the familiar linear gravity wave speeds for equal and oppositely directed
propagation (Sec. 4.2.2). When the fluctuation amplitudes are not negligible,
then the propagation speeds differ from the linear speeds and are spatially
inhomogeneous.

In general two initial conditions must be specified for the second-order
partial differential equation system (4.83). This is accomplished by specifying
conditions for γ+(x) and γ−(x) that then have independent solutions, γ±(ξ±).
A particular solution for propagation in the +x̂ direction is

Γ− = −2
√
gH, Γ+ = 2

√
gH + δΓ ,

δΓ(ξ+) = 4
(√

gH−
√
gH

)
,

h(X, t) = H(ξ+), u(X, t) = 2
(√

gH−
√
gH

)
,

X(ξ+, t) = ξ+ + V+(ξ+)t, V+ =
(

3
√
gH− 2

√
gH

)
, (4.87)

where H(x) = H + η(x) > 0 is the initial layer thickness shape. Here V+ > 0
whenever H > 4/9H, and both V and u increase with increasing H. When h
is larger, X(t) progresses faster and vice versa. For an isolated wave of
elevation (Fig. 4.11), the characteristics converge on the forward side of the
wave and diverge on the backward side. This leads to a steepening of the front
of the wave form and a reduction of its slope in the back. Since V is constant
on each characteristic, these tendencies are inexorable; therefore, at some time
and place a characteristic on the forward face will catch up with another one
ahead of it. Beyond this point the solution will become multi-valued in γ, h,
and u and thus invalidate the Shallow-Water Equations assumptions. This
situation can be interpreted as the possible onset for a wave breaking event,
whose accurate description requires more general dynamics than the
Shallow-Water Equations.

An alternative interpretation is that a collection of intersecting
characteristics may create a discontinuity in h (i.e., a downward step in the
propagation direction) that can then continue to propagate as a generalized
Shallow-Water Equations solution (Fig. 4.12). In this interpretation the
solution is a bore, analogous to a shock. Jump conditions for the
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dX
dt

u2

h1

h2

u1

x1

U = 

X(t) x 2
x

h

Figure 4.12: A gravity bore, with a discontinuity in (u, h). The bore is at
x = X(t), and it moves with a speed, u = U(t) = dX/dt. Subscripts 1 and 2
refer to locations to the left and right of the bore, respectively.

143



discontinuities in (u, h) across the bore are derived from the governing
equations (4.83) expressed in flux-conservation form, viz.,

∂p

∂t
+
∂q

∂x
= 0

for some “density”, p, and “flux”, q. (The thickness equation is already in this
form with p = h and q = hu. The momentum equation may be combined with
the thickness equation to give a second flux-conservation equation with
p = hu and q = hu2 + gh2/2.) This equation type has the integral
interpretation that the total amount of p between any two points, x1 < x2,
can only change due to the difference in fluxes across these points:

d

dt

∫ x2

x1

p dx = − ( q2 − q1 ) .

Now assume that p and q are continuous on either side of a discontinuity at
x = X(t) that itself moves with speed, U = dX/dt. At any instant define
neighboring points, xl > X > x2. The left side can be evaluated as

d

dt

∫ x2

x1

p dx =
d

dt

(∫ X

x1

p dx+
∫ x2

X
p dx

)

= p(X−)
dX

dt
− p(X+)

dX

dt
+

(∫ X

x1

∂p

∂t
dx+

∫ x2

X

∂p

∂t
dx

)
.

(4.88)

The − and + superscripts for X indicate values on the left and right of the
discontinuity. Now take the limit as x1 → X− and x2 → X+. The final
integrals vanish since |x2 −X|, |X − x1| → 0 and pt is bounded in each of the
sub-intervals. Thus,

U∆[p] = ∆[q] ,

and ∆[a] = a(X+)− a(X−) denotes the difference in values across the
discontinuity. For this bore problem this type of analysis gives the following
jump conditions for the mass and momentum:

U∆h = ∆[uh], U∆[uh] = ∆[hu2 + gh2/2] . (4.89)

For given values of h1 > h2 and u2 (the wave velocity at the overtaken point),
the bore propagation speed is

U = u2 +

√
gh1(h1 + h2)

2h2

> u2 , (4.90)
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and the velocity behind the bore is

u1 = u2 +
h1 − h2

h1

√
gh1(h1 + h2)

2h2

> u2 and < U . (4.91)

The bore propagates faster than the fluid velocity on either side of the
discontinuity.

For further analysis of this and many other nonlinear wave problems, see
Whitham (1999).

4.5 Stokes Drift and Material Transport

From (4.28)-(4.29), the Shallow-Water Equations inertia-gravity wave in
(4.37) has an eigensolution form of

η = η0 cos[Θ]

uh =
gη0

c2K2
(ωk cos[Θ]− f ẑ× k sin[Θ])

w =
ωη0z

H
sin[Θ] , (4.92)

where Θ = k · x− ωt is the wave phase function and η0 is a real constant.

The time or wave-phase average of all these wave quantities is zero, e.g., the
Eulerian mean velocity, u = 0. However, the average Lagrangian velocity is
not zero for a trajectory in (4.92). To demonstrate this, decompose the
trajectory, r, into a “mean” component that uniformly translates and a wave
component that oscillates with the wave phase:

r(t) = r(t) + r′(t) , (4.93)

where
r = uSt t (4.94)

and uSt is called the Stokes drift velocity. By definition any fluctuating
quantity has a zero average over the wave phase. The formula for uSt is
derived by making a Taylor series expansion of the trajectory equation (2.1)
about the evolving mean position, r, and then taking a wave-phase average:

dr

dt
= u(r)
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dr

dt
+
dr′

dt
= u′(r + r′)

= u′(r) + (r′ · ∇∇∇)u′(r) + O(r′2)

=⇒ dr

dt
≈ (r′ · ∇∇∇)u′ = uSt . (4.95)

(Here all vectors are 3D.) Further, a formal integration of the fluctuating
trajectory equation yields the more common expression for Stokes drift, viz.,

uSt =
(

(
∫ t

u′ dt) · ∇∇∇
)

u′ . (4.96)

A nonzero Stokes drift is possible for any kind of fluctuation (cf., Sec.
5.3.5). The Stokes drift for an inertia-gravity wave is evaluated using (4.92) in
(4.96). The fluctuating trajectory is

r′h = − gη0

c2K2

(
k sin[Θ] +

f

ω
ẑ× k cos[Θ]

)
, rz′ =

η0z

H
cos[Θ] . (4.97)

Since the phase averages of cos2[Θ] and sin2[Θ] are both equal to 1/2 and the
average of cos[Θ] sin[Θ] is zero, the Stokes drift is

uSt =
1

2

ω

(HK)2
η2

0 k . (4.98)

The Stokes drift is purely a horizontal velocity, parallel to the wavenumber
vector, k, and the phase velocity, cp. It is small compared to u′h since it has a
quadratic dependence on η0, rather than a linear one, and the wave modes are
derived with the linearization approximation that η0/H � 1. The mechanism
behind Stokes drift is that when a wave-induced parcel displacement, r′, is in
the direction of propagation, the wave pattern movement sustains the interval
when the wave velocity fluctuation, u′ is in that direction, whereas when the
displacement is opposed to the pattern propagation direction, the advecting
wave velocity is more briefly sustained. Averaging over a wave cycle, there is
net motion in the direction of propagation.

The Stokes drift can be interpreted as a wave-induced mean mass flux
(equivalent to a wave-induced fluid volume flux times ρ0 for a uniform density
fluid). Substituting

h = h+ h′
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into the thickness equation (4.5) and averaging yields the following equation
for the evolution of the wave-averaged thickness,

∂h

∂t
+ ∇∇∇h · (huh) = −∇∇∇h · (h′u′h ) , (4.99)

that includes the divergence of eddy mass flux, ρ0h
′u′h. Since h′ = η′ for the

Shallow-Water Equations, the inertia-gravity wave solution (4.92) implies that

h′u′h =
1

2

Hω

(HK)2
η2

0 k = Hust . (4.100)

The depth-integrated Stokes transport,
∫H
0 ust dz, is equal to the eddy mass

flux.

A similar formal averaging of the Shallow-Water Equations tracer equation
for τ(xh, t) yields

∂τ

∂t
+ uh · ∇∇∇hτ = −u′h · ∇∇∇hτ ′ . (4.101)

If there is a large-scale, “mean” tracer field, τ , then the wave motion induces
a tracer fluctuation,

∂τ ′

∂t
≈ −u′h · ∇∇∇hτ

=⇒ τ ′ ≈ −
(∫ t

u′h dt
)
· ∇∇∇hτ , (4.102)

in a linearized approximation. Using this τ ′ plus u′h from (4.92), the
wave-averaged effect in (4.101) is evaluated as

−u′h · ∇∇∇hτ ′ = u′h

(∫ t

u′h dt
)
· ∇∇∇hτ

≈ −
(

(
∫ t

u′h dt) · ∇∇∇h
)

u′h · ∇∇∇hτ

= −uSt · ∇∇∇hτ . (4.103)

The step from the first line to the second involves an integration by parts in
time, viewing the averaging operator as a time integral over the rapidly
varying wave phase, and a neglect of the space and time derivatives of τ(xh, t)
compared to those of the wave fluctuations (i.e., the mean fields vary slowly
compared to the wave fields). Inserting (4.103) into (4.101) yields the final
form for the large-scale tracer evolution equation, viz.,

∂τ

∂t
+ uh · ∇∇∇hτ = −uSt · ∇∇∇hτ , (4.104)
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where the overbar averaging symbols are now implicit. Thus, wave-averaged
material concentrations are advected by the wave-induced Stokes drift in
addition to their more familiar advection by the wave-averaged velocity.

A similar derivation yields a wave-averaged vortex force term ∝ uSt in the
mean momentum equation. This vortex force is believed to be the mechanism
for creating wind rows, or Langmuir circulations, which are convergence-line
patterns in surface debris often observed on lakes or the ocean in the presence
of surface gravity waves.

By comparison with the eddy-diffusion model (3.109), the eddy-induced
advection by Stokes drift is a very different kind of eddy–mean interaction.
The reason for this difference is the distinction between the random velocity
assumed for eddy diffusion and the periodic wave velocity for Stokes drift.

4.6 Quasigeostrophy

The quasigeostrophic approximation for the Shallow-Water Equations is an
asymptotic approximation in the limit

Ro → 0, B ≡ (Ro/Fr)2 = O(1) . (4.105)

B = (NH/fL)2 = (R/L)2 is the Burger number. Now make the
Shallow-Water Equations non-dimensional with a transformation of variables
based on the following geostrophic scaling estimates:

x, y ∼ L, u, v ∼ V ,

h ∼ H0, t ∼ L

V
,

f ∼ f0, p ∼ ρ0V f0L ,

η,B ∼ εH0, β ≡ df

dy
∼ ε

f0

L
,

w ∼ ε
V H0

L
, F ∼ εf0V . (4.106)

ε� 1 is the expansion parameter (e.g., ε = Ro). Estimate the dimensional
magnitude of the terms in the horizontal momentum equation as follows:

Du

Dt
∼ V 2/L = Rof0V

f ẑ× u ∼ f0V
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1

ρ0

∇∇∇p ∼ f0V L/L = f0V

F ∼ εf0V0 . (4.107)

Substitute for non-dimensional variables, e.g.,

xdim = L xnon−dim and udim = V unon−dim , (4.108)

and divide by f0V to obtain the non-dimensional momentum equation,

ε
Du

Dt
+ f ẑ× u = −∇∇∇p+ εF

D

Dt
=

∂

∂t
+ u · ∇∇∇

f = 1 + εβy . (4.109)

These expressions are entirely in terms of non-dimensional variables, where
here and from now on the subscripts in transformation formulae like (4.108)
are deleted for brevity. A β-plane approximation has been made for the
Coriolis frequency in (4.109). The additional non-dimensional relations for the
Shallow-Water Equations are

p = B η, h = 1 + ε(η −B)

ε
∂η

∂t
+ ε∇∇∇ · [(η −B)u] = −∇∇∇ · u . (4.110)

Now investigate the quasigeostrophic limit (4.105) for (4.109)-(4.110) as
ε→ 0 with β, B ∼ 1. The leading order balances are

ẑ× u = −B∇∇∇η, ∇∇∇ · u = 0 . (4.111)

This in turn implies that the geostrophic velocity, u, can be approximately
represented by a streamfunction, ψ = B η. Since the geostrophic velocity is
non-divergent, only at the next order of approximation in ε is there a
horizontally divergent horizontal velocity component. A perturbation
expansion is being made for all the dependent variables, e.g.,

u = ẑ× B∇∇∇η + εua + O(ε2) .

The O(ε) component is called the ageostrophic velocity, ua. The dimensional
scale for ua is therefore εV . It joins with w (whose scale in (4.106) is similarly
reduced by the factor of ε) in a 3D continuity balance at O(εV/L), viz.,

∇∇∇ · ua +
∂w

∂z
= 0 . (4.112)
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The ageostrophic and vertical currents are thus much weaker than the
geostrophic currents.

Eqs. (4.109)-(4.111) comprise an under-determined system, with three
equations for four unknown dependent variables. To complete the
quasigeostrophic system, another relation must be found that is well ordered
in ε. This extra relation is provided by the potential vorticity equation, as in
(4.24) but here non-dimensional and approximated as ε→ 0. The dimensional
potential vorticity is scaled by f0/H0 and has the non-dimensional expansion,

q = 1 + εqQG +O(ε2), qQG ≡ ∇2ψ − B−1ψ + βy +B . (4.113)

Notice that this potential vorticity contains contributions from both the
motion (the relative and stretching vorticity terms) and the environment (the
planetary and topographic terms). Its parcel conservation equation to leading
order is [

∂

∂t
+ J [ψ, ]

]
qQG = F , (4.114)

where only the geostrophic velocity advection contributes to the conservative
parcel rearrangements of qQG. This relation completes the posing for the
quasigeostrophic dynamical system. Furthermore, it can be viewed as a single
equation for ψ only (as was also true for the potential vorticity equation in a
2D flow; Sec. 3.1.2). Alternatively, the derivation of (4.113)-(4.114) can be
performed directly by taking the curl of the horizontal momentum equation
and combining it with the thickness equation, with due attention to the
relevant order in ε for the contributing terms.

The energy equation in the quasigeostrophic limit is somewhat simpler than
the general Shallow-Water Equations relation (4.17). It is obtained by
multiplying (4.114) by −ψ and integrating over space. For conservative
motions (F = 0), the non-dimensional energy principle for quasigeostrophy is

dE

dt
= 0, E ≡

∫ ∫
dx dy

1

2

[
(∇∇∇ψ)2 + B−1ψ2

]
. (4.115)

The ratio of kinetic to available potential energy is on the order of B; for
L� R, most of the energy is potential, and vice versa.

The quasigeostrophic system is a first order partial differential equation in
time, similar to the barotropic vorticity equation (3.30), whereas the
Shallow-Water Equations are third order (cf., (4.28)). This indicates that
quasigeostrophy has only a single type of normal mode, rather than both
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geostrophic and inertia-gravity wave mode types as in the Shallow-Water
Equations (as well as the 3D Primitive and Boussinesq Equations). Under the
conditions β = B = 0, the mode type retained by this approximation is the
geostrophic mode, with ω = 0. Generally, however, this mode has ω 6= 0 when
β and/or B 6= 0. By the scaling estimates (4.106),

ω ∼ V

L
= εf0 . (4.116)

Hence, any quasigeostrophic wave modes have a frequency O(ε) smaller than
the inertia-gravity modes that all have |ω| ≥ f0. This supports the common
characterization that the quasigeostrophic modes are slow modes and the
inertia-gravity modes are fast modes. A related characterization is that
balanced motions (e.g., quasigeostrophic motions) evolve on the slow manifold
that is a sub-space of the possible solutions of the Shallow-Water Equations
(or Primitive and Boussinesq Equations).

The quasigeostrophic Shallow-Water Equations model has analogous
stationary states to the barotropic model (Sec. 3.1.4), viz., axisymmetric
vortices when f = f0 and zonal parallel flows for general f(y) (plus others not
discussed here). The most important difference between barotropic and
Shallow-Water Equations stationary solutions is the more general definition
for q in Shallow-Water Equations. The quasigeostrophic model also has a
(ψ, y)↔ (−ψ,−y) parity symmetry (cf., (3.52) in Sec. 3.1.4), although the
general Shallow-Water Equations do not. Thus, cyclonic and anticyclonic
dynamics are fundamentally equivalent in quasigeostrophy (as in 2D; Sec.
3.1.2), but different in the more general dynamical systems such as the
Shallow-Water Equations.

The non-dimensional Shallow-Water Equations quasigeostrophic dynamical
system (4.109)-(4.114) is alternatively but equivalently expressed in
dimensional variables as follows:

p = gρ0 η, ψ =
g

f0

η, h = H + η −B, f = f0 + β0y,

u = − g

f0

ẑ× ∇∇∇η, qQG = ∇2ψ −R−2ψ + β0y +
f0

H
B,

[
∂

∂t
+ J [ψ, ]

]
qQG = F . (4.117)

These relations can be derived by reversing the non-dimensional
transformation of variables in the preceding relations, or they could be derived
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directly from the dimensional Shallow-Water Equations with appropriate
approximations. The real value of non-dimensionalization in GFD is as a
guide to consistent approximation. The non-dimensionalized derivation in
(4.109)-(4.114) is guided by the perturbation expansion in ε� 1. In contrast,
ε does not appear in either the dimensional Shallow-Water Equations
(4.1)-(4.8) or quasigeostrophic (4.117) systems, so the approximate relation of
the latter to the former is somewhat hidden.

4.7 Rossby Waves

The archetype of an quasigeostrophic wave is a planetary or Rossby wave that
arises from the approximately spherical shape of rotating Earth as manifested
through β 6= 0. Quasigeostrophic wave modes can also arise from bottom
slopes (∇∇∇B 6= 0) and are then called topographic Rossby waves. A planetary
Rossby wave is illustrated by writing the quasigeostrophic system
(4.113)-(4.115) linearized around a resting state:

∂

∂t
[∇2ψ − B−1ψ] + β

∂ψ

∂x
= 0 . (4.118)

For normal mode solutions with

ψ = Real
(
ψ0 e

i(k·x−ωt)
)
, (4.119)

the Rossby wave dispersion relation is
(
−iω[−K2 − B−1] + ikβ

)
ψ0 = 0 (4.120)

=⇒ ω = − βk

K2 + B−1
. (4.121)

(For comparison — in the spirit of the dimensional quasigeostrophic relations
(4.117) — the equivalent dimensional, Rossby-wave dispersion relation is

ω = − β0k

K2 +R−2
,

where all quantities in this relation are dimensional.) The zonal phase speed,
the velocity that its spatial patterns move with (Sec. 4.2), is everywhere
westward since

ωk < 0 , (4.122)
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but its group velocity, the velocity for wave energy propagation, in
non-dimensional form is

cg =
∂ω

∂k
=

(
β[k2 − `2 − B−1]

[K2 + B−1]2
,

2βk`

[K2 + B−1]2

)
. (4.123)

cg can be oriented in any direction, depending upon the signs of ω, k, and `.
The long-wave limit (K → 0) of (4.121) is non-dispersive,

ω → −B βk , (4.124)

and the associated group velocity must also be westward. The distinguishing
wavelength for being within this limit is K−1 = B1/2, or, in dimensional terms,
L = R. (Again notice the significant role of the deformation radius.) For
shorter waves, (4.121) is dispersive. If the wave is short enough and has a
zonal orientation to its propagation, with

k2 > `2 + B−1 ,

the zonal group velocity is eastward even though the phase propagation
remains westward. In other words, only a Rossby wave shorter than the
deformation radius can carry energy eastward.

Due to the scaling assumptions in (4.106) about β and B, the general
Shallow-Water Equations wave analysis could be redone for (4.109)-(4.110)
with the result that only O(ε) corrections to the f -plane inertia-gravity modes
are needed. This more general analysis, however, would be significantly more
complicated because the linear Shallow-Water Equations (4.109)-(4.110) no
longer have constant coefficients, and the normal mode solution forms are no
longer the simple trigonometric functions in (4.29).

Further analyses of Rossby waves are in Pedlosky (1987, Secs. 3.9-26) and
Gill (1982, Secs. 11.2-7).

4.8 Rossby Wave Emission

One of the important purposes of GFD is idealization and abstraction for the
various physical influences causing a given phenomenon (Chap. 1). But an
equally important, but logically subsequent, purpose is to deliberately
combine influences to see what modifications arise in the resultant
phenomena. Here consider two instances where simple f -plane solutions — an
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isolated, axisymmetric vortex (Sec. 3.1.4) and a boundary Kelvin wave (Sec.
4.2.3) — lose their exact validity on the β-plane and consequently behave
somewhat differently. In each case some of the energy in the primary
phenomenon is converted into Rossby wave energy through processes that can
be called wave emission or wave scattering.

4.8.1 Vortex Propagation on the β-Plane

Assume an initial condition with an axisymmetric vortex in an unbounded
domain on the β-plane with no non-conservative influences. Further assume
that Ro� 1 so that the quasigeostrophic approximation (Sec. 4.6) is valid. If
β were zero, the vortex would be a stationary state, and for certain velocity
profiles, V (r), it would be stable to small perturbations. However, for β 6= 0,
no such axisymmetric stationary states can exist.

So what happens to such a vortex? In a general way, it seems plausible that
it might not change much if the vortex is strong enough. A scaling estimate
for the ratio of the β term and vorticity advection in the potential vorticity
equation (4.114) is

R =
βv

u · ∇∇∇ζ ∼
βV

V (1/L)(V/L)
=

βL2

V
; (4.125)

this must be small for the β influence to be weak. The opposite situation
occurs when R is large. In this case the initially axisymmetric ψ pattern
propagates westward and changes its shape by Rossby wave dispersion (when
L/R is not large).

A numerical solution of (4.114) for an anticyclonic vortex with small but
finite R is shown in Fig. 4.13. Over a time interval long enough for the β
effects to become evident, the vortex largely retains its axisymmetric shape
but weakens somewhat while propagating to the westsouthwest as it emits a
train of weak-amplitude Rossby waves mostly in its wake. Because of the
parity symmetry in the quasigeostrophic Shallow-Water Equations, a cyclonic
initial vortex behaves analogously, except that its propagation direction is
westnorthwest.

One way to understand the vortex propagation induced by β is to recognize
that the associated forcing term in (4.114) induces a dipole structure to
develop in ψ(x, y) in a situation with a primarily axisymmetric vortical flow,
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17.3 / L β)

y/L

y/L

x/L

ψ (x,y,t = 
x/L

ψ (x,y,t = 0)

Figure 4.13: Propagation of a strong anticyclonic vortex on the β-plane: (a)
ψ(x, y) at t = 0 and (b) ψ(x, y) at t = 17.3 × 1/Lβ. ψ and x values are made
non-dimensional with the initial vortex amplitude and size scales, V L and L,
respectively, and the deformation radius is slightly smaller than the vortex,
R = 0.7L. The vortex propagates to the westsouthwest, approximately in tack,
while radiating Rossby waves in its wake. (McWilliams & Flierl, 1979).
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ψ ≈ Ψ(r). This is shown by

β
∂ψ

∂x
≈ β

∂

∂x
Ψ(r) = β

x

r

dΨ

dr
= β cos[θ]

dΨ

dr
.

The factor cos[θ] represents a dipole circulation in ψ. A dipole vortex is an
effective advective configuration for spatial propagation (cf., the point-vortex
dipole solution in Sec. 3.2.1). With further evolution the early-time zonal
separation between the dipole centers is rotated by Ψ advection to a more
persistently meridional separation between the centers, and the resulting
advective effect on both itself and the primary vortex component Ψ is
approximately westward. The dipole orientation is not one with a precisely
meridional separation, so the vortex propagation is not precisely westward.

As azimuthal asymmetries develop in the solution, the advective influence
by Ψ acts to suppress them by the axisymmetrization process discussed in
Secs. 3.4-3.5. In the absence of β, the axisymmetrization process would win,
and the associated vortex self-propagation mechanism would be suppressed.
In the presence of β, there is continual regeneration of the asymmetric
component in ψ. Some of this asymmetry in ψ propagates (“leaks”) away from
the region with vortex recirculation, and in the far-field it satisfies the weak
amplitude assumption for Rossby wave dynamics. However, the leakage rate is
much less than it would be without the opposing advective axisymmetrization
effect, so the external Rossby wave field after a comparable evolution period
of O(1/βL) is much weaker when R is small than when R is large. This
efficiency in preserving the vortex pattern even as it propagates is reminiscent
of gravity solitary waves or even solitons. The latter are nonlinear wave
solutions for non-Shallow-Water dynamical systems that propagate without
change of shape due to a balance of opposing tendencies between (weak)
spreading by wave dispersion and (weak) wave steepening (Sec. 4.4). However,
the specific spreading and steepening mechanisms are different for a β-plane
vortex than for gravity waves because here the dominant advective flow
direction is perpendicular to the wave propagation and dispersion directions.

By multiplying (4.114) by x and integrating over the domain, the following
equation can be derived for the centroid motion:

d

dt
X = −βR2 , (4.126)

where X is the ψ-weighted centroid for the flow,

X =

∫ ∫
xψ dx

∫ ∫
ψ dx

. (4.127)
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(The alternatively defined, point-vortex centroids in Sec. 3.2.1 have a ζ
weighting.) Thus, the centroid propagates westward at the speed of a long
Rossby wave. To the extent that a given flow evolution approximately
preserves its pattern, as is true for the vortex solution in Fig. 4.13, then the
pattern as a whole must move westward with speed, βR2. This is
approximately what happens with the vortex. The emitted Rossby wave wake
also enters into determining X, so it is consistent for the vortex motion to
depart somewhat from the centroid motion. For example, the calculated
southward vortex motion requires a meridional asymmetry in the Rossby wave
wake, such that the positive ψ extrema are preferentially found northward of
both the negative extrema and the primary vortex itself. Note that as a
barotropic limit is approached (R� L), the centroid speed (4.126) increases.
Numerical vortex solutions indicate that the Rossby wave emission rate
increases with R/L, the vortex pattern persistence over a (βL)−1 time scale
decreases, and the vortex propagation rate drops well below the centroid rate.
In a strictly barotropic limit (R =∞), however, the relation (4.126) cannot be
derived from the potential vorticity equation and thus is irrelevant.

The ratio, R, approximately characterizes the boundary between wave
propagation and turbulence for barotropic dynamics. The length scale, Lβ,
that makes R = 1 for a given level of kinetic energy, ∼ V 2, is defined by

Lβ =

√
V

β
. (4.128)

The dynamics for flows with a scale of L > Lβ is essentially a Rossby wave
propagation with a weak advective influence, whereas for L < Lβ, it is 2D
turbulence (Sec. 3.7) with weak β effects (or isolated vortex propagation as in
Fig. 4.13). Lβ is sometimes called the Rhines scale in this context. Lβ also is
a relevant scale for the width of the western boundary current in an oceanic
wind gyre (Sec. 6.2).

4.8.2 An Eastern Boundary Kelvin Wave

Another mechanism for Rossby wave emission is when there is poleward
propagation of a Kelvin wave along an eastern boundary (Fig. 4.14). The
Kelvin wave solution in Sec. 4.2.3 is not valid on the β plane, even though it
is reasonable to expect that it will remain approximately valid for waves with
a scale smaller than Earth’s radius (i.e., βL/f ∼ L/a� 1). In particular, as
a Kelvin wave moves poleward, the local value for R =

√
gH/f decreases since
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Figure 4.14: Rossby wave emission from a poleward Kelvin wave along an east-
ern boundary on the β-plane. The meridional and zonal propagation velocities
are Cy

K and Cx
R, respectively.
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f(y) increases (in the absence of a compensating change in H). Since the
off-shore scale for the Kelvin wave is R, the spatial structure must somehow
adjust to its changing environment, R(y), at a rate of O(βL), if it is to remain
approximately a Kelvin wave. While it is certainly an a priori possibility that
the evolution not remain close to local Kelvin wave behavior, both theoretical
solutions and oceanic observations indicate that it often does so. In a linear
Equations wave analysis for this β-adjustment process, any energy lost to the
transmitted Kelvin wave must be scattered into either geostrophic currents,
geostrophically balanced Rossby waves, or unbalanced inertia-gravity waves.
Because the cross-shore momentum balance for a Kelvin wave is geostrophic,
it is perhaps not surprising that most of the scattered energy goes into a
coastally trapped, along-shore, geostrophic current left behind after the
Kelvin wave’s passage and into westward propagating Rossby waves that
move into the domain interior (Fig. 4.14). In the El Niño scenario in Fig. 4.7,
a deepening of the eastern Equatorial pycnocline, in association with a surface
temperature warming, instigates a poleward-propagating Kelvin wave that
lowers the pycnocline all along the eastern boundary. This implies a
thermal-wind balanced, along-shore flow close to the coast with poleward
vertical shear. (Interpreted as a first baroclinic mode (Sec. 5.1), this
along-shore flow has a vertical structure of a poleward surface current and an
Equatorward undercurrent. Currents with this structure, as well as with its
opposite sign, are frequently observed along sub-tropical eastern boundaries.)
β 6= 0 causes both the passing Kelvin wave and its along-shore flow wake to
emit long, reduced-gravity (i.e., baroclinic) Rossby waves westward into the
oceanic interior. Since R(y), hence B(y) decreases away from the Equator, so
do the zonal phase and group velocities in the long wave limit (4.124); as a
consequence the emitted Rossby wave crests bend outward from the coastline
closer to the Equator (Fig. 4.14).

The analogous situation for Kelvin waves propagating Equatorward along a
western boundary does not have an efficient Rossby-wave emission process.
Kelvin waves have an offshore, zonal scale ∼ R, and their scattering is most
efficient into motions with a zonal similar scale. But the zonal group velocity
for Rossby waves (4.123) implies they cannot propagate energy eastward
(cxg > 0) unless their cross-shore scale is much smaller than R. However, for a
given wave amplitude (e.g., V or ψ0 in (4.119)), the nonlinearity measure,
R−1 from (4.125), increases as L decreases, so emitted Rossby waves near a
western boundary are much more likely to evolve in a turbulent rather than
wave-like manner. Furthermore, a western boundary region is usually
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occupied by strong currents due to wind gyres (Chap. 6), and this further
adds to the advective dynamics of any emitted Rossby waves. The net effect is
that most of the Kelvin-wave scattering near a western boundary goes into
along-shore geostrophic currents that remain near the boundary rather than
Rossby waves departing from the boundary region.
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Chapter 5

Baroclinic and Jet Dynamics

The principal mean circulation patterns for the ocean and atmosphere are
unstable to perturbations. Therefore, even with periodic solar forcing,
invariant oceanic and atmospheric chemical compositions, and fixed land and
sea-floor topography — none of which is literally true at any time scale nor
even approximately true over millions of years — the general circulation is
intrinsically variable. The statistics of its variability may be considered
stationary in time under these steady-state external influences; i.e., it has an
unsteady statistical equilibrium dynamics comprised of externally forced but
unstable mean flows and turbulent eddies, waves, and vortices that are
generated by the instabilities. In turn, the mean eddy fluxes of momentum,
heat, potential vorticity, and material tracers provide important transports
that modify the structure of the mean circulation and material distributions
through the mean dynamical balances.

Where the mean circulations have a large spatial scale and are
approximately geostrophic and hydrostatic, the important instabilities are also
somewhat large scale (i.e., synoptic scale or mesoscale), geostrophic, and
hydrostatic. These instabilities are broadly grouped into two classes:

• Barotropic instability: the mean horizontal shear is the principal energy
source for the eddies, and horizontal momentum flux (Reynolds stress) is
the dominant eddy flux (Chap. 3).

• Baroclinic instability: the mean vertical shear and horizontal buoyancy
gradient (related through the thermal wind) is the energy source, and
vertical momentum and horizontal buoyancy fluxes are the dominant
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eddy fluxes, with Reynolds stress playing a secondary role.

Under some circumstances the mean flows are unstable to other, smaller-scale
types of instability (e.g., convective, Kelvin-Helmholtz, or centrifugal), but
these are relatively rare as direct instabilities of the mean flows on the
planetary scale. More often these other instabilities arise either in response to
locally forced flows (e.g., in boundary layers; Chap. 6) or as secondary
instabilities of synoptic and mesoscale flows as part of a general cascade of
variance toward dissipation on very small scales.

Figure 5.1: The mean zonal wind [m s−1]for the atmosphere, averaged over
time and longitude during 2003: (left) January and (right) July. The vertical
axis is labeled both by height [km] and by pressure level [mb = 102 Pa]. Note
the eastward velocity maxima at the tropopause that are stronger in the winter
hemisphere, the wintertime stratospheric polar night jet, the stratospheric trop-
ical easterlies that shift with the seasons, and the weak westward surface winds
in both the tropics (i.e., the trade wind) and near the poles. (From the Na-
tional Centers for Environmental Prediction climatological analysis (Kalnay et
al., 1996), courtesy of Dennis Shea, National Center for Atmospheric Research.)

The mean zonal wind in the troposphere (Fig. 5.1) is a geostrophic flow
with an associated meridional temperature gradient created by tropical
heating and polar cooling. This wind profile is baroclinically unstable to
extra-tropical fluctuations on the synoptic scale of O(103) km. This is the
primary origin of weather, and in turn the weather events collectively cause a
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poleward heat flux that limits the strength of the zonal wind and its
geostrophically balancing meridional temperature gradient.

In this chapter baroclinic instability is analyzed in its simplest configuration
as a 2-layer flow. To illustrate the finite-amplitude, long-time consequences
(i.e., the eddy–mean interaction for a baroclinic flow; cf., Sec. 3.4), an
idealized problem for the statistical equilibrium of a baroclinic zonal jet is
analyzed at the end of the chapter. Of course, there are many other aspects of
baroclinic dynamics (e.g., vortices and waves) that are analogous to their
barotropic and shallow-water counterparts, but these topics will not be
revisited in this chapter.

5.1 A Layered Hydrostatic Model

5.1.1 2-Layer Equations

u1
1

ρ2

x

z

z = H

z = h2
z = H2

z = 0

H1

H2

h1

h2

u2

ρ

= H

= H2 η

1 η
η

= H1+H2

−

 + 
y

Figure 5.2: Sketch of a 2-layer fluid.

Consider the governing equations for two immiscible (i.e., unmixing) fluid
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layers, each with constant density and with the upper layer (n = 1) fluid
lighter than the lower layer (n = 2) fluid, as required for gravitational stability
(Fig. 5.2). When the fluid motions are sufficiently thin (H/L� 1), hence
hydrostatic, each of the layers has a shallow-water dynamics, except they are
also dynamically coupled through the pressure-gradient force. To derive this
coupling, make an integration of the hydrostatic balance relation downward
from the rigid top surface at z = H (i.e., as in Sec. 4.1):

p = pH(x, y, t) at z = H

p1 = pH + ρ1g(H − z) in layer 1

p2 = pH + ρ1g(H − h2) + ρ2g(h2 − z) in layer 2 . (5.1)

Thus,

∇∇∇p1 = ∇∇∇ pH

∇∇∇p2 = ∇∇∇ pH + g′ρ0∇∇∇h2 , (5.2)

and

g′I = g
ρ2 − ρ1

ρ0

> 0 (5.3)

is the reduced gravity associated with the relative density difference across the
interface between the layers (cf., (4.11)). Here ∇∇∇ = ∇∇∇h is the horizontal
gradient operator. Expressed in terms of the interface displacement relative to
its resting position, η, and layer geopotential functions, φn = pn/ρ0 for
n = 1, 2, (5.2)-(5.6) imply that

η = − φ1 − φ2

g′I
, (5.4)

and the layer thicknesses are

h1 = H1 − η , h2 = H2 + η , h1 + h2 = H1 +H2 = H . (5.5)

In each layer the Boussinesq horizontal momentum and mass balances are

Dun
Dtn

+ f ẑ× un = −∇∇∇φn + Fn

∂hn
∂t

+ ∇∇∇ · (hnun) = 0 , (5.6)

for n = 1, 2. The substantial derivative in each layer is

D

Dtn
≡ ∂

∂t
+ un · ∇∇∇ .
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It contains only horizontal advection as a result of the assumption that both
the horizontal velocity, un, and the advected quantity are depth-independent
within each layer (as in the Shallow-Water Equations; Sec. 4.1). This partial
differential equation system is the Primitive Equations in uniform-density
layers.

After applying the curl operator to the momentum equation in (5.6), the
resulting horizontal divergence, ∇∇∇ · u, can be eliminated using the thickness
equation. The result in each layer is the 2-layer potential vorticity equation,

Dqn
Dtn

= Fn ,

qn =
f(y) + ζ

hn
,

ζn = ẑ · ∇∇∇× un ,

Fn = ẑ · ∇∇∇× Fn , (5.7)

with layer potential vorticity, qn, relative vorticity, ζn, and force curl, Fn. This
q definition and its governing equation are essentially similar to the
shallow-water potential vorticity relations (Sec. 4.1.1), except here they hold
for each separate layer.

The vertical velocity at the interface is determined by the kinematic
condition (Sec. 2.2.3),

wI =
Dη

Dt
=

Dh2

Dt
=

D

Dt
(H − h1) = −Dh1

Dt
. (5.8)

There is an ambiguity about which advecting velocity to use in (5.8) since
u1 6= u2. These two choices give different values for wI . Since w = 0 at the
boundaries (z = 0, H) in the absence of boundary stress (cf., Sec. 5.3), the
vertical velocity is determined at all heights as a piecewise linear function that
connects the boundary and interfacial values within each layer, but with a
discontinuity in the value of w at the interface. So a disconcerting feature for
a layered hydrostatic model is that the 3D velocities, as well as the layer
densities by the model’s definition, are discontinuous at the interface,
although the pressure (5.1) is continuous.

The background density profile is given by the ρn in a resting state
configuration with un = η = wI = 0. Because the density is constant within
each layer, there are no density changes following a fluid parcel since the
parcels remain within layers. Nevertheless, an auxiliary interpretation of the
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moving interface is that it induces a density fluctuation, ρ′I , or equivalently a
buoyancy fluctuation, bI = −gρ′I/ρ0, in the vicinity of the interface due to the
distortion of the background density profile by η 6= 0:

bI ≈
g

ρ0

dρ

dz

∣∣∣
I
η = − 2g′I

H
η =

2

H
(φ1 − φ2) . (5.9)

The last relation expresses hydrostatic balance across the layer interface.

Now make a quasigeostrophic approximation for the 2-layer equations,
analogous to that for the Shallow-Water Equations (Sec. 4.6).

ug, n = ẑ× ∇∇∇ψn, ψn =
1

f0

φn ,

D

Dtg,n
[ζn + βy] = f0

∂wn
∂z

+ Fn ,

D

Dtg,n
=

∂

∂t
+ ug,n · ∇∇∇ . (5.10)

ug,n is the geostrophic velocity in layer n, and Dtg,n is its associated
substantial derivative.

Note that

δh2 = − δp1 − δp2

g∆ρ
= − δh1

from (5.1). Hence, using the geostrophic approximation and the linear
dependence of w within the layers,

∂w1

∂z
=

w(H)− wI
h1

≈ −wI
H1

≈ f0

g′IH1

D

Dtg
(ψ1 − ψ2) . (5.11)

Similarly,
∂w2

∂z
≈ − f0

g′IH2

D

Dtg
(ψ1 − ψ2) . (5.12)

There is no ambiguity about which layer’s Dt appears in (5.11)-(5.12) since

D(ψ1 − ψ2)

Dtg,1
=

D(ψ1 − ψ2)

Dtg,2
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using the quasigeostrophic approximations. As with the Shallow-Water
Equations, these 2-layer relations can be combined into the quasigeostrophic
potential vorticity equations for a 2-layer fluid (analogous to the
Primitive-Equation form in (5.7)):

DqQG,n
Dtg,n

= Fn , (5.13)

with the potential vorticities and substantial derivatives defined by

qQG,1 = ∇2ψ1 + βy − f 2
0

g′IH1

(ψ1 − ψ2)

qQG,2 = ∇2ψ2 + βy +
f 2

0

g′IH2

(ψ1 − ψ2)

D

Dtg,n
= ∂t + J [ψn, ] . (5.14)

The energy conservation principle for a 2-layer model is a straightforward
generalization of the rotating shallow-water model, and it is derived by a
similar path (Sec. 4.1.1). The relation for the Primitive Equations is

dE

dt
= 0 ,

E ≡
∫ ∫

dx dy
1

2

(
h1u

2
1 + h2u

2
2 + g′Iη

2
)

(5.15)

(cf., (4.17)). Its integrand is comprised of depth-integrated horizontal kinetic
energy and available potential energy. In the quasigeostrophic approximation,
the principle simplifies to

dE

dt
= 0 ,

E ≡
∫ ∫

dx dy
1

2

(
H1(∇∇∇ψ1)2 +H2(∇∇∇ψ2)2 +

f 2

g′I
(ψ1 − ψ2)2

)
(5.16)

(cf., (4.115)).

5.1.2 N-Layer Equations

From the preceding derivation it is easy to imagine the generalization to N
layers with a monotonically increasing density profile with depth, ρn+1 > ρn ∀
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n ≤ N − 1, while continuing to make the hydrostatic assumption and assume
that the layers neither mix nor overturn. The result can be expressed as the
following horizontal momentum and mass balances:

Dun
Dtn

+ f ẑ× un = −∇∇∇φn + Fn

∂hn
∂t

+ ∇∇∇ · (hnun) = 0 (5.17)

for n = 1, . . . , N . This is isomorphic to (5.6) except that there is an expanded
range for n. Thus, the N -layer potential vorticity equation is also isomorphic
to (5.7). Accompanying these equations are several auxiliary relations. The
layer thicknesses are

h1 = H1 − η1.5

hn = Hn + ηn−.5 − ηn+.5, 2 ≤ n ≤ N − 1

hN = HN + ηN−.5 (5.18)

Hn is the resting layer depth and ηn+.5 is the interfacial displacement between
layers n and n+ 1. The hydrostatic geopotential function is

g′n+.5ηn+.5 = φn+1 − φn, n = 1, . . . , N − 1 , (5.19)

and

g′n+.5 = g
ρn+1 − ρn

ρ0

(5.20)

is the reduced gravity for the interface n+ .5. The vertical velocity at the
interfaces is

wn+.5 =
Dηn+.5

Dt
, n = 1, . . . , N − 1 . (5.21)

And the buoyancy field is

bn+.5 = − 2g′n+.5

Hn +Hn+1

ηn+.5, n = 1, . . . , N − 1 . (5.22)

Because of the evident similarity among the governing equations, this
N -layer model is often called the stacked shallow-water model. It represents a
particular vertical discretization of the adiabatic Primitive Equations
expressed in a transformed isentropic coordinate system (i.e., (x, y, ρ, t),
analogous to the pressure coordinates, (x, y, F (p), t), in Sec. 2.3.5). As
N →∞, (5.17)-(5.22) converge to the continuously stratified, 3D Primitive
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Equations in isentropic coordinates for solutions that are sufficiently vertically
smooth. An interpretive attractiveness of the isentropic Primitive Equations
is the disappearance of any explicit vertical velocity in the advection operator;
this occurs as a result of the parcel conservation of (potential) density.
Another interpretive advantage is the relative simplicity of the definition for
the potential vorticity for the isentropic Primitive Equations (another parcel
invariant for conservative dynamics), viz.,

qIPE =
f + ζ

∂Z/∂ρ
, (5.23)

with Z(x, y, ρ, t) the height for an isentropic surface and ζ determined from
horizontal derivatives of uh at constant ρ, i.e., in the isentropic coordinates.
Equation (5.23) is to be compared to its equivalent but more complicated
expression in Cartesian coordinates, known as Ertel potential vorticity in a
hydrostatic approximation,

qE = (f + ζ)
∂ρ

∂z
+
∂u

∂z

∂ρ

∂y
− ∂v

∂z

∂ρ

∂x
(5.24)

with ζ determined from horizontal derivatives of uh at constant z.

Similarly there is a straightforward generalization for the quasigeostrophic
potential vorticity equations and streamfunction, ψn, in a N -layer model:

DqQG,n
Dtg,n

= Fn . (5.25)

The layer potential vorticities are defined by

qQG,1 = ∇2ψ1 + βy − f 2
0

g′1.5H1

(ψ1 − ψ2) ,

qQG,n = ∇2ψn + βy − f 2
0

g′n+.5Hn

(ψn − ψn+1) +
f 2

0

g′n−.5Hn

(ψn−1 − ψn) ,

1 < n < N

qQG,N = ∇2ψN + βy +
f 2

0

g′N−.5HN

(ψN−1 − ψN ) , (5.26)

and the quasigeostrophic substantial derivative is

D

Dtg,n
= ∂t + J [ψn, ] .
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The layer potential vorticity is a vertical-layer discretization for the
vertically continuous, 3D quasigeostrophic potential vorticity defined by

qQG(x, y, z, t) = ∇2ψ + βy +
∂

∂z

(
f 2

0

N 2

∂ψ

∂z

)
. (5.27)

N (z) is the continuous buoyancy or Brünt-Väisällä frequency defined in (2.68)
(n.b., a different symbol is used here to avoid confusion with the discrete layer

number, N). N is the limiting form for
√
g′/∆H as the layer thickness, ∆H,

becomes vanishingly small. The finite-difference operations among the ψn in
(5.26) are a finite-difference approximation to the vertical derivatives in (5.27).

5.1.3 Vertical Modes

In a baroclinic fluid — whether in a N -layer or a continuously stratified model
and whether in the full Boussinesq or approximate Primitive or
quasigeostrophic dynamics — it is a common practice to decompose the fields
into vertical modes. This is analogous to making a Fourier transform with
respect to the vertical height or density coordinate. Formally each dependent
variable (e.g., streamfunction, ψ(x, y, z, t)) can be written as a discrete
summation over the vertical modal contributions (e.g., ψ̃(x, y,m, t)). The
vertical modes, Gm, are discrete functions in a discrete layered model,

ψn(x, y, t) = ΣN−1
m=0 ψ̃m(x, y, t)Gm(n) , (5.28)

and they are continuous functions in continuous height coordinates,

ψ(x, y, z, t) = Σ∞m=0 ψ̃m(x, y, t)Gm(z) . (5.29)

Each Gm is determined in order to “diagonalize” the dynamical coupling
among different vertical layers or levels for the linear terms in the governing
equations above, e.g., in (5.25)-(5.26) for quasigeostrophic dynamics. The
transformation converts the coupling among layer variables to uncoupled
modal variables by the technique described in the next paragraph. The modal
transformation is analogous to using a Fourier transform to convert a spatial
derivative, ∇∇∇, that couples ψ(x) in neighboring locations, into a simple
algebraic factor, ik, that only multiplies the local modal amplitude, ψ̃(k) (Sec.
3.7). The vertical scale of the Gm decreases with increasing m, as with a
Fourier transform where the spatial scale decreases with increasing |k|, . The
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prescription for determining Gm given below also makes the modes
orthonormal, e.g., , for a layered model,

ΣN
n=1

Hn

H
Gp(n)Gq(n) = δp,q , (5.30)

or for continuous height modes,

1

H

∫ H

0
dz Gp(z)Gq(z) = δp,q , (5.31)

with δp,q = 1 if p = q, and δp,q = 0 if p 6= q (i.e., δ is a discrete delta function).
This is a mathematically desirable property for a set of vertical basis functions
because it assures that the inverse transformation for (5.29) is well defined as

ψ̃m = ΣN
n=1

Hn

H
ψnGm(n) (5.32)

or

ψ̃m =
1

H

∫ H

0
dz ψ(z)Gm(z) . (5.33)

The physical motivation for making this transformation comes from
measurements of large-scale atmospheric and oceanic flows that show that
most of the energy is associated with only a few of the gravest vertical modes
(i.e., ones with the smallest m values and correspondingly largest vertical
scales). So it is more efficient to analyze the behavior of ψ̃m(x, y, t) for a few
m values than of ψ(x, y, z, t) at all z values with significant energy. A more
theoretical motivation is the vertical modes can be chosen, as explained in the
rest of this section, so that each decoupled mode has a linear dynamics
analogous to a single fluid layer (barotropic or shallow-water). In general a
full dynamical decoupling between the vertical modes cannot be achieved, but
it can be done for some important behaviors, e.g., the Rossby wave
propagation in Sec. 5.2.1.

For specificity, consider the 2-layer quasigeostrophic equations (N = 2) in
illustrating how the Gm can be calculated. The two vertical modes are referred
to as barotropic (m = 0) and baroclinic (m = 1). (For a N -layer model, each
mode with m ≥ 1 is referred to as the mth baroclinic mode.) To achieve the
linear-dynamical decoupling between layers, it is sufficient to ”diagonalize”
the relationship between the potential vorticity and streamfunction. That is,
determine the 2x2 matrix Gm(n) such that each modal potential vorticity
contribution (apart from the planetary vorticity term), i.e.,

q̃QG,m − βy =
1

H
Σ2
n=1Hn (qQG,n − βy)Gm(n) ,
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depends only on its own modal streamfunction field,

ψ̃m =
1

H
Σ2
n=1HnψnGm(n) ,

and not on any other ψ̃m′ with m′ 6= m. This is accomplished by the following
choice:

G0(1) = 1 G0(2) = 1 (barotropic mode)

G1(1) =

√
H2

H1

G1(2) = −
√
H1

H2

(baroclinic mode) , (5.34)

as can be verified by applying the operator H−1 Σ2
n=1HnGm(n) to (5.14) and

substituting these Gm values. The barotropic mode is independent of height,
while the baroclinic mode reverses its sign with height and has a larger
amplitude in the thinner layer. Both modes are normalized as in (5.30).

With this choice for the vertical modes, the modal streamfunction fields are
related to the layer streamfunctions by

ψ̃0 =
H1

H
ψ1 +

H2

H
ψ2

ψ̃1 =

√
H1H2

H
(ψ1 − ψ2) , (5.35)

and the inverse relations for the layer streamfunctions are

ψ1 = ψ̃0 +
H2

H1

ψ̃1

ψ2 = ψ̃0 −
H1

H2

ψ̃1 . (5.36)

The barotropic mode is therefore the depth average of the layer quantities,
and the baroclinic mode is proportional to the deviation from the depth
average. The various factors involving Hn assure the orthonormality property
(5.31). Identical linear combinations relate the modal and layer potential
vorticities, and after substituting from (5.14), the latter are evaluated to be

q̃QG,0 = βy +∇2ψ̃0

q̃QG,1 = βy +∇2ψ̃1 −
1

R2
1

ψ̃1 . (5.37)
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These relations exhibit the desired decoupling among the modal
streamfunction fields. Here the quantity,

R2
1 =

g′H1H2

f 2
0H

, (5.38)

defines the deformation radius for the baroclinic mode, R1. By analogy, since
the final term in q̃QG,1 has no counterpart in q̃QG,0, the two modal q̃QG,m can
be said to have an identical definition in terms of ψ̃m if the barotropic
deformation radius is defined to be

R0 = ∞ . (5.39)

The form of (5.37) is the same as the quasigeostrophic potential vorticity for
barotropic and shallow-water fluids, (3.28) and (4.113), with the
corresponding deformation radii, R =∞ and R =

√
gH/f0, respectively.

This procedure for deriving the vertical modes, Gm, can be expressed in
matrix notation for arbitrary N . The layer potential vorticity and
streamfunction vectors,

qQG = {qQG,n; n = 1, . . . , N} and ψψψ = {ψn; n = 1, . . . , N} ,

are related by (5.26) re-expressed as

qQG = Pψψψ + Iβy . (5.40)

Here I is the identity vector (i.e., equal to one for every element), and P is
the matrix operator that represents the contribution of ψψψ derivatives to
qQG − Iβy, viz.,

P = I∇2 − S , (5.41)

where I is the identity matrix, I∇2 is the relative vorticity matrix operator,
and S, the stretching vorticity matrix operator, represents the cross-layer
coupling. The modal transformations (5.29) and (5.32) are expressed in
matrix notation as

ψψψ = Gψ̃ψψ , ψ̃ψψ = G−1ψψψ , (5.42)

with analogous expressions relating qQG − Iβy and q̃QG − Iβy. The matrix G
is related to the functions in (5.28) by Gnm ≡ Gm(n). Thus,

q̃QG = G−1PGψ̃ψψ + Ĩ0βy =
[
I∇2 −G−1SG

]
ψ̃ψψ + Ĩβy , (5.43)

using G−1G = I.
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Therefore, the goal of eliminating cross-modal coupling in (5.43) is
accomplished by making G−1SG a diagonal matrix, i.e., by choosing the
vertical modes, G = Gm(n), as eigenmodes of S with corresponding
eigenvalues, R−2

m ≥ 0, such that

SG+R−2G = 0 (5.44)

for the diagonal matrix, R−2 = δn,mR
−2
m . As in (5.38)-(5.39), Rm is called the

deformation radius for the mth eigenmode. From (5.26), S is defined by

S11 =
f 2

0

g′1.5H1

, S12 =
− f 2

0

g′1.5H1

, S1n = 0, n > 2

S21 =
− f 2

0

g′1.5H2

, S22 =
f 2

0

H2

(
1

g′1.5
+

1

g′2.5

)
, S23 =

− f 2
0

g′2.5H2

, S2n = 0, n > 3

. . .

SNn = 0, n < N − 1, SN N−1 =
− f 2

0

g′N−5HN

, SNN =
f 2

0

g′N−.5HN

. (5.45)

For N = 2 in particular,

S11 =
f 2

0

g′IH1

, S12 =
− f 2

0

g′IH1

,

S21 =
− f 2

0

g′IH2

, S22 =
f 2

0

g′IH2

. (5.46)

It can readily be shown that (5.34) and (5.38)-(5.39) are the correct
eigenmodes and eigenvalues for this S matrix.

S can be recognized as a layer-discretized form of a second vertical
derivative with unequal layer thicknesses. Thus, just as (5.27) is the
continuous limit for the discrete layer potential vorticity in (5.26), the
continuous limit for the vertical modal problem (5.44) is

d

dz

(
f 2

0

N 2

dG

dz

)
+R−2 G = 0 . (5.47)

Vertical boundary conditions are required to make this a well posed
boundary-eigenvalue problem for Gm(z) and Rm. From (5.19)-(5.21) the
vertically continuous formula for the quasigeostrophic vertical velocity is

wQG =
f0

N 2

D

Dtg

(
∂ψ

∂z

)
. (5.48)
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Zero vertical velocity at the boundaries is assured by ∂ψ/∂z = 0, so an
appropriate boundary condition for (5.47) is

dG

dz
= 0 at z = 0, H . (5.49)

Gm(z)2(z)N

z

0 0

HH

m=0

m=1

m=2

z

(a) (b)

Figure 5.3: Dynamically determined vertical modes for a continuously stratified
fluid: (a) stratification profile, N 2(z); (b) vertical modes, Gm(z) for m = 0, 1, 2.

When N 2(z) > 0 at all heights, the eigenvalues from (5.47) and (5.49) are
countably infinite in number, positive in sign, and ordered by magnitude:
R0 > R1 > R2 > . . . > 0. The eigenmodes satisfy the orthonormality
condition (5.31). Fig. 5.3 illustrates the shapes of the Gm(z) for the first few
m with a stratification profile, N (z), that is upward-intensified. For m = 0
(barotropic mode), G0(z) = 1, corresponding to R0 =∞. For m ≥ 1
(baroclinic modes), Gm(z) has precisely m zero-crossings in z, so larger m
corresponds to smaller vertical scales and smaller deformation radii, Rm. Note
that the discrete modes in (5.34) for N = 2 have the same character as in Fig.
5.3, except, of course, for a finite truncation level, M = N − 1. (The relation,
H1 > H2, in (5.34) is analogous to an upward-intensified N (z) profile.)
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5.2 Baroclinic Instability

The 2-layer quasigeostrophic model is now used to examine the stability
problem for a mean zonal current with vertical shear (Fig. 5.4). This is the
simplest flow configuration exhibiting baroclinic instability. Even though the
Shallow-Water Equations (Chap. 4) have some combined effects of rotation
and stratification, they do not admit baroclinic instability because they
cannot represent vertical shear.

u2 = − U

z

x u1 = + U

Figure 5.4: Mean zonal baroclinic flow in a 2-layer fluid.

In this analysis, for simplicity, assume that H1 = H2 = H/2; hence the
baroclinic deformation radius (5.38) is

R =
√
g′IH

1

2f
.

This choice is a conventional idealization for the stratification in the
mid-latitude troposphere, whose stability profile, N (z), is approximately
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uniform with height above the planetary boundary layer (Chap. 6) and below
the tropopause. Further assume that there is no horizontal shear (thereby
precluding any barotropic instability) and no barotropic component to the
mean flow:

un = (−1)(n+1) U x̂ , (5.50)

with U a constant. Geostrophically and hydrostatically related mean fields are

ψn = (−1)n+1Uy

h2 = −f0

g′
(ψ1 − ψ2) +

H

2
=

2f0Uy

g′I
+
H

2

h1 = H − h2

qQG,n = βy + (−1)n+1 Uy

R2
. (5.51)

In this configuration there is more light fluid to the south (in the northern
hemisphere), since h2 −H2 < 0 for y < 0, and more heavy fluid to the north.
Making an association between light density and warm temperature, then the
south is also warmer and more buoyant (cf., (5.9)). This is similar to the
mid-latitude, northern-hemisphere atmosphere, with stronger westerly winds
aloft (Fig. 5.1) and warmer air to the south.

Note that (5.50)-(5.51) is a conservative stationary state; i.e., ∂t = 0 in (5.7)
if Fn = 0. The qQG,n are functions only of y, as are the ψn. So they are

functionals of each other. Therefore, J [ψn, qQG,n] = 0, and ∂tqQG,n = 0. The
fluctuation dynamics are linearized around this stationary state. Define

ψn = ψn + ψ′n
qQG,n = qQG,n + q′QG,n , (5.52)

and insert these into (5.13)-(5.14), neglecting purely mean terms, perturbation
nonlinear terms (assuming weak perturbations), and non-conservative terms:

∂q′QG,n
∂t

+ un
∂q′QG,n
∂x

+ v′n
∂qQG,n
∂y

= 0 , (5.53)

or, evaluating the mean quantities explicitly,

∂q′QG,1
∂t

+ U
∂q′QG,1
∂x

+ v′1

[
β +

U

R2

]
= 0

∂q′QG,2
∂t

− U ∂q
′
QG,2

∂x
+ v′2

[
β − U

R2

]
= 0 . (5.54)
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5.2.1 Unstable Modes

One can expect there to be normal-mode solutions in the form of

ψ′n = Real
(
Ψne

i(kx+`y−ωt)
)
, (5.55)

with analogous expressions for the other dependent variables, because the
linear partial differential equations in (5.54) have constant coefficients.
Inserting (5.55) into (5.54) and factoring out the exponential function gives

(C − U)
[
K2Ψ1 +

1

2R2
(Ψ1 −Ψ2)

]
+
[
β +

U

R2

]
Ψ1 = 0

(C + U)
[
K2Ψ2 −

1

2R2
(Ψ1 −Ψ2)

]
+
[
β − U

R2

]
Ψ2 = 0 (5.56)

for C = ω/k and K2 = k2 + `2. Redefine the variables by transforming the
layer amplitudes into vertical modal amplitudes by (5.35):

Ψ̃0 ≡
1

2
(Ψ1 + Ψ2)

Ψ̃1 ≡
1

2
(Ψ1 −Ψ2) . (5.57)

These are the barotropic and baroclinic vertical modes, respectively. The
linear combinations of layer coefficients are the vertical eigenfunctions
associated with R0 =∞ and R1 = R from (5.38). Now take the sum and
difference of the equations in (5.56) and substitute (5.57) to obtain the
following modal amplitude equations:

[
CK2 + β

]
Ψ̃0 − UK2Ψ̃1 = 0

[
C(K2 +R−2) + β

]
Ψ̃1 − U(K2 −R−2)Ψ̃0 = 0 . (5.58)

For the special case with no mean flow, U = 0, the first equation in (5.58) is
satisfied for Ψ̃0 6= 0 only if

C = C0 ≡ −
β

K2
. (5.59)

Ψ̃0 is the barotropic vertical modal amplitude, and this relation is identical to
the dispersion relation for barotropic Rossby waves with an infinite
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deformation radius (Sec. 3.1.2). The second equation in (5.58) with Ψ̃1 6= 0
implies that if

C = C1 ≡ −
β

K2 +R−2
. (5.60)

Ψ̃1 is the baroclinic vertical modal amplitude, and the expression for C is the
same as the dispersion relation for baroclinic Rossby waves with finite
deformation radius, R (Sec. 4.7).

When U 6= 0, (5.58) has non-trivial modal amplitudes, Ψ̃0 and Ψ̃1, only if
the determinant for their second-order system of linear algebraic equations
vanishes, viz.,

[CK2 + β] [C(K2 +R−2) + β] − U 2K2 [K2 −R−2] = 0 . (5.61)

This is the general dispersion relation for this normal-mode problem.

To understand the implications of (5.61) with U 6= 0, first consider the case
of β = 0. Then the dispersion relation can be rewritten as

C2 = U2 K
2 −R−2

K2 +R−2
. (5.62)

For all KR < 1 (i.e., the long waves), C2 < 0. This implies that C is purely
imaginary with an exponentially growing modal solution (i.e., an instability)
and a decaying one, proportional to

e−ikCt = ek Imag[C]t .

This behavior is a baroclinic instability for a mean flow with shear only in the
vertical direction.

For U, β 6= 0, the analogous condition for C having a nonzero imaginary
part is when the discriminant of the quadratic dispersion relation (5.61) is
negative, i.e., P < 0 for

P ≡ β2(2K2 +R−2)2 − 4(β2K2 − U 2K4(K2 −R−2)) (K2 +R−2)

= β2R−4 + 4U2K4(K4 −R−4) . (5.63)

Note that β tends to stabilize the flow because it acts to make P more
positive and thus reduces the magnitude of Imag [C] when P is negative. Also
note in both (5.62) and (5.63) that the instability is equally strong for either
sign of U , (i.e., eastward and westward vertical shear).
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The smallest value for P(K) occurs when

0 =
∂P
∂K4

= 4U2(K4 −R−4) + 4U 2K4 , (5.64)

or

K =
1

21/4R
. (5.65)

At this K value, the value for P is

P = β2R−4 − U 2R−8 . (5.66)

Therefore, a necessary condition for instability is

U > βR2 . (5.67)

From (5.51) this condition is equivalent to the mean potential vorticity
gradients, dyqQG,n, having opposite signs in the two layers,

dqQG,1
dy

· dqQG,2
dy

< 0 .

The instability requirement for a sign change in the mean (potential) vorticity
gradient is similar to the Rayleigh criterion for barotropic vortex instability
(Sec. 3.3.1), and, not surprisingly, a Rayleigh criterion may also be derived for
quasigeostrophic baroclinic instability.

One can further analyze P(K) to see that other conditions for instability are

• KR < 1 is necessary (whereas it is also a sufficient condition when
β = 0).

• U > 1
2
β(R−4 −K4)−1/2 →∞ as K → R−1 from below.

• U > 1
2
βK−2 →∞ as K → 0 from above.

These relations support the regime diagram in Fig. 5.5 for baroclinic
instability. For any U > βR2, there is a perturbation length scale for the most
unstable mode that is somewhat greater than the baroclinic deformation
radius. Short waves (K−1 < R) are stable, and very long waves (K−1 →∞)
are stable through the influence of β.

When P < 0, the solution to (5.61) is

C = − β(2K2 +R−2)

2K2(K2 +R−2)
± i

√
−P

2K2(K2 +R−2)
. (5.68)
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Figure 5.5: Regime diagram for baroclinic instability. The solid line indicates
the marginal stability curve as a function of the mean vertical shear amplitude,
U , and perturbation wavenumber, K, for β 6= 0. The vertical dashed line is the
marginal stability curve for β = 0.
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Thus the zonal phase propagation for unstable modes (i.e., the real part of C)
is to the west. From (5.68),

− β

K2
< Real [C] < − β

K2 +R−2
. (5.69)

The unstable-mode phase speed lies in between the barotropic and baroclinic
Rossby wave speeds in (5.59)-(5.60). This result is demonstrated by
substituting the first term in (5.68) for Real [C] and factoring −β/K 2 from all
three expressions in (5.69). These steps yield

1 ≥ 1 + µ/2

1 + µ
≥ 1

1 + µ
(5.70)

for µ = (KR)−2. These inequalities are obviously true for all µ ≥ 0.

5.2.2 Upshear Phase Tilt

From (5.58),

Ψ̃1 =
C + βK−2

U
Ψ̃0

=
∣∣∣
C + βK−2

U

∣∣∣ eiθΨ̃0 , (5.71)

where θ is the phase angle for (C + βK−2)/U in the complex plane. Since

Real

[
C + βK−2

U

]
> 0 (5.72)

from (5.69), and

Imag

[
C + βK−2

U

]
=

Imag [C]

U
> 0 (5.73)

for growing modes (with Real [−ikC] > 0, hence Imag [C] > 0), then
0 < θ < π/2 in westerly wind shear (U > 0). As shown in Fig. 5.6, this
implies that ψ̃1 has its pattern shifted to the west relative to ψ̃0, by an
amount less than a quarter wavelength. A graphical addition and subtraction
of ψ̃1 and ψ̃0 according to (5.57) is shown in Fig. 5.6. It indicates that the
layer ψ1 has its pattern shifted to the west relative to ψ2, by an amount less
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Figure 5.6: Modal and layer phase relations for the perturbation streamfunc-
tion, ψ′(x, t), in baroclinic instability for a 2-layer fluid. In each column the
modal plots in the top two rows are added together to obtain the respective
layer plots in the bottom row.
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than a half wavelength. Therefore, upper-layer disturbances are shifted to the
west relative to lower-layer ones; i.e., they are tilted upstream with respect to
the mean shear direction (Fig. 5.7). This feature is usually evident on weather
maps during the amplifying phase for mid-latitude cyclonic synoptic storms,
and it is often used as a synoptic analyst’s rule of thumb.

ψ ’ (x,z)u(z)
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+

+ +
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−

+−
− −

−

−

Figure 5.7: Up-shear phase tilting for the perturbation streamfunction, ψ ′(x, t),
in baroclinic instability for a continuously stratified fluid.

5.2.3 Eddy Heat Flux

Now calculate the poleward eddy heat flux, v′T ′ (disregarding the conversion
factor, ρocp, between temperature and heat; Sec. 2.1.2). The heat flux is
analogous to a Reynolds stress (Sec. 3.4) as a contributor to the dynamical
balance relations for the equilibrium state, except it appears in the mean heat
equation rather than the mean momentum equation. Here v ′ = ∂xψ

′, and the
temperature fluctuation is associated with the interfacial displacement as in
(5.9),

T ′ =
b′

αg
=

1

αg

∂φ′

∂z
=

f

αg

∂ψ′

∂z
=

2f

αgH
(ψ′1 − ψ′2) =

4f

αgH
ψ̃′1 ,
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with all the proportionality constants positive in the northern hemisphere.
Suppose that at some time the modal fields have the (x, z) structure,

ψ̃′1 = A1 sin[kx+ θ]

ψ̃′0 = A0 sin[kx] (5.74)

for A0, A1 > 0 and 0 < θ < π/2 (Fig. 5.6). Then

ṽ′1 = A1k cos[kx+ θ]

ṽ′0 = A0k cos[kx] . (5.75)

The layer v′n are proportional to the sum of ṽ′0 and ± ṽ′1 in the upper and
lower layers, respectively, as in (5.36). Therefore the modal heat fluxes are

ṽ′1T ′ ≡
k

2π

∫ 2π

0
dx ṽ′1T

′ ∝
∫ 2π

0
dx sin[kx+ θ] cos[kx+ θ] = 0

ṽ′0T ′ ≡
k

2π

∫ 2π

0
dx ṽ′0T

′ ∝ k

2π

∫ 2π

0
dx sin[kx+ θ] cos[kx] =

sin[θ]

2
(5.76)

with positive proportionality constants. Since each v ′n has a positive
contribution from ṽ′0, the interfacial heat flux, v′T ′, is proportional to ṽ′0T ′,
and it is therefore positive, v′T ′ > 0. The sign of v′T ′ is directly related to the
range of values for θ, i.e., to the upshear vertical phase tilt (Sec. 5.2.2).

5.2.4 Effects on the Mean Flow

The nonzero eddy heat flux for baroclinic instability implies there is an
eddy–mean interaction. A mean energy balance is derived similarly to the
energy conservation relation (5.15) by manipulation of the mean momentum
and thickness equations. The result in the present context has the following
form:

d

dt
E = . . . +

∫ ∫
dx dy g′I v

′η′
dη

dy
, (5.77)

where the dots refer to any non-conservative processes (here unspecified) and
the mean-flow energy is defined by

E =
∫ ∫

dx dy
1

2

(
h1u

2
1 + h2u

2
2 + g′Iη

2
)
. (5.78)

Analogous to (3.100) for barotropic instability, there is a baroclinic energy
conversion term here that generates fluctuation energy by removing it from
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the mean energy when the eddy flux, v′η′, has the opposite sign to the mean
gradient, dyη. Since η is proportional to T in a layered model, this kind of
conversion occurs when v′T ′ > 0 and dyT < 0 (as shown in Sec. 5.2.3).

The poleward heat flux in baroclinic instability tends to weaken the mean
state by transporting warm air fluctuations into the region on the poleward
side of the jet with its associated mean-state cold air (n.b., Fig. 5.1).
Equation (5.77) shows that the mean circulation loses energy as the unstable
fluctuations grow in amplitude: the mean meridional temperature gradient
(hence the mean geostrophic shear) is diminished by the eddy heat flux, and
part of the mean available potential energy associated with the meridional
temperature gradient is converted into eddy energy. The mid-latitude
atmospheric climate is established as a balance between the acceleration of
the westerly Jet Stream by Equator-to-pole differential radiative heating and
the limitation of the jet’s vertical shear strength by the unstable eddies that
transport heat between the Equatorial heating and polar cooling zones.

A similar interpretation can be made for the zonally directed Antarctic
Circumpolar Current (ACC) in the ocean (Fig. 6.11). In the wind-driven
ACC, the more natural dynamical characterization is in terms of the mean
momentum balance rather than the mean heat balance, although these two
balances must be closely related because of thermal wind balance. A mean
eastward wind stress beneath the westerly winds drives a surface-intensified,
eastward mean current that is baroclinically unstable and generates eddies
that transfer momentum vertically, to be balanced against a bottom turbulent
drag and/or topographic form stress (a pressure force against the solid bottom
topography; Sec. 5.3.3). The eddies also transport heat southward (poleward
in the Southern Hemisphere), balanced by the advective heat flux by the
mean, ageostrophic, secondary circulation in the meridional (y, z) plane, such
that there is no net heat flux by their combined effects.

In these descriptions for the baroclinically unstable westerly winds and
ACC, notice two important ideas about the dynamical maintenance of a mean
zonal flow:

• An equivalence between horizontal heat flux and vertical momentum
flux for quasigeostrophic flows. The latter process is referred to as
isopycnal form stress. It is analogous to topographic form stress except
that the relevant material surface is an isopycnal in the fluid interior
instead of the solid bottom. Isopycnal form stress is not the vertical
Reynolds stress, < u′w′ >, which is much weaker than the isopycnal
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form stress for quasigeostrophic flows because w′ is so weak (Sec. 4.6).

• The existence of a mean secondary circulation in the (y, z) plane,
perpendicular to the main zonal flow, associated with the eddy heat and
momentum fluxes whose mean meridional advection of heat may partly
balance the poleward eddy heat flux. This is called the Deacon Cell for
the ACC and the Ferrel Cell for the westerly winds. It also is referred to
as the meridional overturning circulation.

In the next section these behaviors are illustrated in an idealized problem
for the statistical equilibrium state of a zonal jet, and the structures of the
eddy fluxes and secondary circulation are examined.

5.3 A Turbulent Baroclinic Zonal Jet

5.3.1 Posing the Problem

Consider a computational solution for a N -layer quasigeostrophic model (Sec.
5.1.2) that demonstrates the phenomena discussed at the end of the previous
section. The problem could be formulated for a zonal jet forced either by a
meridional heating gradient (e.g., the mid-latitude westerly winds in the
atmosphere) or by a zonal surface stress (e.g., the ACC in the ocean). The
latter is adopted because it embodies the essentially adiabatic dynamics in
baroclinic instability and its associated eddy–mean interactions. It is an
idealized model for the ACC, neglecting both the actual wind and basin
geographies and the diabatic surface fluxes and interior mixing. For historical
reasons (McWilliams & Chow, 1981), a solution is presented here with N set
to 3; this is a N value larger by one than the minimum vertical resolution,
N = 2, needed to represent baroclinic instability (Sec. 5.2).

This idealization for the ACC is as an adiabatic, quasigeostrophic, zonally
periodic jet driven by a broad, steady, zonal surface wind stress. The flow
environment is a Southern-hemisphere, β-plane approximation to the Coriolis
frequency and an irregular bottom topography (which can be included in the
bottom layer of a N -layer model analogous to its inclusion in a shallow-water
model; Sec. 4.1). The mean stratification is specified so that the baroclinic
deformation radii, the Rm from (5.45), are much smaller than both the
meridional wind scale, Lτ , and the ACC meridional velocity scale, L; the
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Figure 5.8: Posing the zonal jet problem for a N -layer model for a rotating,
stratified fluid on the β plane with surface wind stress and bottom topography.
The black dots indicate deleted intermediate layers for n = 3 to N − 1.
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latter are also specified to be comparable to the domain width, Ly (i.e.,
Rm � L, Lτ , Ly ∀ m ≥ 1). This problem configuration is sketched in Fig.

5.8. Another important scale is Lβ =
√
V/β, with V a typical velocity

associated with either the mean or eddy currents. This is the Rhines scale
(Sec. 4.8.1). In both the ACC and this idealized solution, Lβ is somewhat
smaller than Ly, although not by much. The domain is a meridionally
bounded, zonally periodic channel with solid side boundary conditions of no
normal flow and zero lateral stress. However, since the wind stress decays in
amplitude away from the channel center toward the walls, as do both the
mean zonal jet and its eddies, the meridional boundaries do not play a
significant role in the solution behavior here (cf., the essential role of a
western boundary current in a wind gyre; Sec. 6.2). The resting layer depths
are chosen to have the values, Hn = [500, 1250, 3250] m. They are unequal
in size, as is commonly done to represent the fact that mean stratification,
N (z), increases in the upper ocean. The reduced gravity values, g ′n+.5, are
then chosen so that the associated baroclinic deformation radii are Rm = [32,
15] km after solving the eigenvalue problem in Sec. 5.1.3, and these values are
similar to those the real ACC. Both of these Rm values are small compared to
the chosen channel width of Ly = 1000 km.

The wind stress accelerates a zonal flow. To have any chance of arriving at
an equilibrium state, the problem must be posed with non-conservative terms
included, e.g., with horizontal and vertical eddy viscosities (Sec. 3.5), νh and
νv [m2 s−1], and/or a bottom-drag damping coefficient, εbot [m s−1].
Non-conservative terms have not been discussed very much so far, and they
will merely be stated here in advance of the more extensive discussion in
Chap. 6. In combination with the imposed zonal surface wind stress, τ xs (y),
these non-conservative quantities are expressed in the non-conservative
horizontal force as

F1 =
τxs
ρoH1

x̂ + νh∇2u1 +
2νv
H1

(
u2 − u1

H1 +H2

)

Fn = νh∇2un +
2νv
Hn

(
un+1 − un
Hn +Hn+1

+
un−1 − un
Hn +Hn−1

)
, 2 ≤ n ≤ N − 1 ,

FN = νh∇2uN +
2νv
HN

(
uN−1 − uN
HN +HN−1

)
− εbot
HN

uN . (5.79)

The wind stress is a forcing term in the upper layer (n = 1); the bottom drag
is a damping term in the bottom layer (n = N); the horizontal eddy viscosity
multiplies a second-order horizontal Laplacian operator on un, analogous to
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molecular viscosity (Sec. 2.1.2); and the vertical eddy viscosity multiplies a
finite-difference approximation to the analogous second-order vertical
derivative operating on u(z). In the quasigeostrophic potential-vorticity
equations (5.25)-(5.26), these non-conservative terms enter as the force curl,
Fn. The potential-vorticity equations are solved for the geostrophic layer
streamfunctions, ψn, and the velocities in (5.79) are evaluated geostrophically.

The underlying concept for the top and bottom boundary stress terms
appearing as equivalent body forces in the layers adjacent to the boundaries is
that these stresses are conveyed to the fluid interior through turbulent
boundary layers, called Ekman layers, whose thickness is much smaller than
the model’s layer thickness. So the vertical flow structure within the Ekman
layers cannot be explicitly resolved in the layered model. Instead they are
conceived of as thin sub-layers embedded within the n = 1 and N resolved
layers that cause near-boundary vertical velocities, called Ekman pumping, at
the interior interfaces closest to the boundaries. In turn the Ekman pumping
causes vortex stretching in the rest of the resolved layer and thereby acts to
modify the layer’s thickness and potential vorticity. The boundary stress
terms in (5.79) have the net effects summarized here, and the details about
how this works in the turbulent boundary layers are more fully explained in
Chap. 6.

If the eddy diffusion parameters are large enough (i.e., the effective
Reynolds number, Re, is small enough), they can viscously support a steady,
stable jet in equilibrium against the acceleration by the wind stress. However,
for smaller diffusivity values — as certainly required for geophysical
plausibility — the accelerating jet will become unstable before it reaches a
viscous stationary state. A bifurcation sequence of successive instabilities with
increasing Re values can be mapped out, but most geophysical jets are well
past this transition regime in Re. The jets can reach an equilibrium state only
through coexistence with a state of fully developed turbulence comprised by
the geostrophic, mesoscale eddies generated by the mean jet instabilities.
Accordingly, the values for νh and νv in the computational solution are chosen
to be small in order to yield fully developed turbulence. The most important
type of jet instability for broad baroclinic jets, with Ly � R1, is baroclinic
instability (Sec. 5.2). In fully developed turbulence, the eddies grow by
instability of the mean currents, and they cascade the variance of the
fluctuations from their generation scale to the dissipation scale. In equilibrium
the average rates for these processes must be equal. In turn, the turbulent
eddies limit and reshape the mean circulation (as described at the end of Sec.
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5.2.4) in an eddy–mean interaction.

5.3.2 Equilibrium Velocity and Buoyancy Structure

First consider the flow patterns and the geostrophically balanced buoyancy
field for the fully developed turbulence in the statistical equilibrium state that
develops during a long-time integration of the 3-layer quasigeostrophic model.
The instantaneous ψn(x, y) and qQG,n(x, y) fields are shown in Fig. 5.9, and
the T (x, y) = b(x, y)/αg and w fields are shown in Fig. 5.10 (n.b., f < 0 since
this is for the southern hemisphere). Note the strong, narrow, meandering jet
in the upper ocean and the weaker, broader flow in the abyssal ocean. The
instantaneous centerline for the jet is associated with a continuous front in b,
a broken front in q, and extrema in w alternating in sign within the eddies
and along the meandering jet axis.

The mean state is identified by an overbar defined as an average over (x, t).
The domain for each of these coordinates is taken to be infinite, consistent
with our interpretive assumptions of zonal homogeneity and stationarity for
the problem posed in Sec. 5.3.1, even though they necessarily have finite but
large extent in the computational solution. (The combination of periodicity
and translational symmetry (literal or statistical) for the basin shape, wind
stress, and topography is a common finite-extent approximation to
homogeneity.) The mean geostrophic flow is a surface intensified zonal jet,
un(y), sketched in Fig. 5.11. This jet is in hydrostatic, geostrophic balance
with the dynamic pressure, φm; the streamfunction, ψn; the layer thickness,
hn; the anomalous interfacial elevation, ηn+.5; and the anomalous interfacial
buoyancy, bn+.5 — each defined in Sec. 5.2 and sketched in Fig. 5.12.

The 3D mean circulation is (u, va, w). Only the zonal component is in
geostrophic balance. The meridional flow cannot be in geostrophic balance
because there can be no mean zonal pressure gradient in a zonally periodic
channel, and vertical velocity is never geostrophic by definition (Sec. 2.4.2).
Thus both components of the mean velocity in the meridional plane (i.e., the
meridional overturning circulation that is an idealized form of the Deacon
Cell; Sec. 5.2.4) is ageostrophic and thus weaker than u by O(Ro). The
overturning circulation is sketched in Fig. 5.13. Its component velocities
satisfy a 2D continuity relation pointwise (cf., (4.112)):

∂va
∂y

+
∂w

∂z
= 0 (5.80)
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Figure 5.9: Instantaneous horizontal patterns for streamfunction, ψn, and quasi-
geostrophic potential vorticity, qQG,n (excluding its βy term), in the upper- and
lower-most layers in a zonal-jet solution with N = 3. The ψ contour interval is
1.5× 10−4 m2 s−1, and the q contour intervals are 2.5 (n = 1) and 0.25 (n = 3)
×10−4 s−1. (McWilliams & Chow, 1981).
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Figure 5.10: Instantaneous horizontal patterns for temperature, Tn+.5, and
vertical velocity, wn+.5, at the upper and lower interior interfaces in a quasi-
geostrophic zonal-jet solution with N = 3. The T and w contour intervals are
0.4 and 0.1 K and 10−4 m s−1 and 0.5 × 10−4 m s−1 at the upper and lower
interfaces, respectively. (McWilliams & Chow, 1981).
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Figure 5.11: Sketch of the time-mean zonal flow, u(y, z), in the equilibrium jet
problem with N = 3: (left) vertical profile in the middle of the channel and
(right) meridional profiles in different layers. Note the intensification of the
mean jet toward the surface and the middle of the channel.
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Figure 5.12: Sketch of a meridional cross-section for the time-mean zonal jet,
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because of the zonal periodicity. (A 2D zonally averaged continuity equation
also occurs for the meridional overturning circulation with solid boundaries in
x.) This relation will be further examined in the context of the layer mass
balance (Sec. 5.3.5).
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v v

v
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2

N

n =

n =
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Figure 5.13: Sketch of the time-mean, meridional overturning circulation (i.e.,
Deacon Cell) for the zonal jet, overlaid on the mean zonal jet and layer thickness.

The meridional profiles of mean and eddy-variance quantities in Figs.
5.14-5.15 show the following features:

• an eastward jet that increases its strength with height (cf., the
atmospheric westerly winds);

• geostrophically balancing temperature gradients (with cold water on the
poleward side of the jet);

• opposing potential vorticity gradients in the top and bottom layers (i.e.,
satisfying a Rayleigh necessary condition for baroclinic instability; Sec.
5.2.1);

• a nearly uniform qQG,2(y) in the middle layer (n.b., this is a consequence
of the eddy mixing of qQG, sometimes called potential-vorticity
homogenization, in a layer without significant non-conservative force; see
Sec. 5.3.4 below);
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• mean upwelling on the poleward side of the jet and downwelling on the
Equatorward side (i.e., a Deacon Cell that is the overturning secondary
circulation in the meridional plane, whose surface branch with
Equatorward flow is the surface Ekman-layer transport caused by the
eastward wind stress in the southern hemisphere; Chap. 6);

• eddy variance profiles for ψ′, u′, v′, and T ′ = b′/αg that decay both
meridionally and vertically away from the jet core.

To understand how this equilibrium is dynamically maintained, the mean
dynamical balances for various quantities will be analyzed in Secs. 5.3.3-6. In
each case the eddy flux makes an essential contribution (cf., Sec. 3.4).

5.3.3 Zonal Momentum Balance

What is the mean zonal momentum balance for the statistical equilibrium
state? Its most important part (i.e., neglecting mean eddy diffusion) is

∂un
∂t

[ = 0 ] ≈ τxs
ρoH1

− D1.5

H1

− ∂R1

∂y
, n = 1

≈
(Dn−.5 −Dn+.5

Hn

)
− ∂Rn

∂y
, 2 ≤ n ≤ N − 1

≈ − εbot
HN

uN +
(DN−.5 −Dbot

HN

)
− ∂RN

∂y
, n = N (5.81)

with eddy fluxes, R and D, defined in (5.83) and (5.86), respectively. All
contributions to the mean momentum balance from mean-advective,
geostrophic-Coriolis, and pressure-gradient forces are absent at leading order
in Ro due to the (x, t)-averaging. Also, a substitution has been made for the
ageostrophic Coriolis force,

fva, n = − f0

Hn

(hn −Hn)vn , (5.82)

in favor of the eddy mass fluxes, (hn −Hn)vn, that are comprised of the
interfacial quantities, Dn+.5. (This substitution relation comes from the mean
layer thickness equation (5.94) in Sec. 5.3.5.) The reason for making this
substitution here for the mean quantity, va, n, in favor of the eddy flux, D, is
to emphasize the central role for the turbulent eddies in maintaining a force
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balance in the statistical equilibrium dynamics. In (5.81) the mean wind and
bottom stress are readily identifiable. The remaining terms are eddy flux
divergences of two different types. The more important type — because
baroclinic instability is the more important eddy generation process for a
broad, baroclinic jet — is the vertical divergence of D, an eddy form stress
defined in (5.86). The eddy-flux type of secondary importance here is the
horizontal divergence of the horizontal Reynolds stress,

Rn = ug,nvg,n (5.83)

(cf., Sec. 3.4, where R is the important eddy flux for a barotropic flow).
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Figure 5.16: Topographic form stress (cf., (5.85) in the zonal direction. The
difference of pressure on either side of an extremum in the bottom elevation, B,
contributes to a zonally averaged force, D, that can be expressed either as the
product of the pressure anomaly and the zonal bottom slope or, for geostrophic
flow, as minus the product of the meridional velocity and the bottom elevation.

First focus on the momentum balance within a single vertical column. If the
contributions from R are temporarily neglected, a vertical integral of (5.81),
symbolically expressed here in a continuous vertical coordinate, is

∂

∂t

∫ top

bot
u dz [ = 0 ] ≈ τxs

ρo
− [Dbot + εbotubot] . (5.84)

For τxs > 0 (eastward wind stress on the ocean due to westerly surface winds),
opposing bottom contributions are necessary from ubot > 0 and/or Dbot > 0.
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The latter, the zonal topographic form stress, generally dominates over the
bottom drag due to the turbulent bottom boundary layer (Chap. 6) in both
the westerly winds and the ACC. Without topographic form stress, the
turbulent drag over a flat surface is so inefficient with realistic values for εbot
(representing the effect of bottom boundary layer turbulence) that an
unnaturally large bottom velocity and zonal transport are required to reach
equilibrium in the zonal momentum balance.

The definition for Dbot is

Dbot = φN
∂B

∂x
= − f0 vg,NB . (5.85)

B(x, y) is the anomalous bottom height relative to its mean depth. The
second relation in (5.85) involves a zonal integration by parts and the use of
geostrophic balance. Dbot has an obvious interpretation (Fig. 5.16) as the
integrated horizontal pressure force pushing against the bottom slopes. z = B
is a material surface, so it separates the fluid above from the land below. If
the pressure differs on different sides of a bump, then a force acts to push the
bump sideways, and in turn the bump pushes back on the fluid. This force is
analogous to the lift (vertical) and drag (horizontal) forces exerted by an
inviscid flow past an airplane wing. Notice that va does not contribute to Dbot
both because it is weak (i.e., ageostrophic) and because it is the same on
either side of a bottom slope. Similarly the v ′ from transient eddies does not
contribute to bottom form stress because B is time-independent and the time
average of their product is zero. The only part of the flow contributing to the
mean bottom form stress is the standing eddies, the time-mean deviation from
the (x, t)-mean flow.

In order to sustain the situation with equal and opposite surface and
bottom zonal stresses, there must also be a mechanism that transmits zonal
stress downward through the interior layers and across the layer interfaces.
This process is represented by Dn+.5, defined by

Dn+.5 = φn+.5
∂ηn+.5

∂x
= −f0 vg,n+.5ηn+.5 . (5.86)

There is an obvious isomorphism with Dbot, except the relevant material
surface is now the moving interface rather than the stationary bottom. For
the layer n above the interface n+ .5, Dn+.5 is the force exerted by the layer
on the interface, and for the layer n+ 1 below it is the reverse. Furthermore,
if vn+.5 is defined as a simple average, (vn + vn+1)/2, and (5.19) is used to
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replace η by ψ, then

Dn+.5 = − f 2
0

g′n+.5

vg, nψn+1 . (5.87)

Note that both transient and standing eddies can contribute to the isopycnal
form stress.

If R is truly negligible in (5.81), then all the interior Dn+.5 are equal to τxs .
More generally, in the jet center in each interior layer, the mean zonal flow is
accelerated by the difference between the isopycnal form stress at the
interfaces (isopycnal surfaces) above and below the layer, and it is decelerated
by the divergence of the horizontal Reynolds stress.

The mean zonal momentum balance from the computational solution is
shown in Fig. 5.17. In the upper layer, the eastward surface wind stress is
balanced primarily by eddy isopycnal form stress (i.e., associated with the
first interior interface between layers, −D1.5); the Reynolds stress, R,
divergence redistributes the zonal momentum in y, increasing the eastward
momentum in the jet core and decreasing it at the jet edges (a.k.a. negative
eddy viscosity, since the Reynolds stress is up-gradient relative to the mean
horizontal shear), but it cannot have any integrated effect since

∫ Ly

0
dy

∂R
∂y

= R
∣∣∣
Ly

0
= 0 (5.88)

due to the meridional boundary conditions (cf., Sec. 5.4). In the bottom
layer, eastward momentum is transmitted downward by the isopycnal form
stress (i.e., +D2.5), and it is balanced almost entirely by the topographic and
turbulent bottom stress because the abyssal RN is quite weak. The shape for
R(y) can be interpreted either in terms of radiating Rossby waves (Sec. 5.4)
or as a property of the linearly unstable eigenmodes for un(y) (not shown
here; cf., Sec. 3.3.3 for barotropic eigenmodes). When Ly, Lτ � Lβ � R,
multiple jet cores can occur through the up-gradient fluxes by R, each with a
meridional scale near Lβ. The scale relation, Ly � Lβ, is only marginally
satisfied for the westerly winds, but it is more likely true for the ACC, and
some observational evidence indicates persistent multiple jet cores there.
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5.3.4 Potential Vorticity Homogenization

From (5.26), (5.83), and (5.87), the mean zonal momentum balance (5.81) can
be rewritten more concisely as

∂un
∂t

[ = 0 ] = v′nq
′
QG,n + x̂ · Fn , (5.89)

after doing zonal integrations by parts. This shows that the eddy–mean
interaction for a baroclinic zonal-channel flow is entirely captured by the
meridional eddy potential vorticity flux that combines the Reynolds stress and
isopycnal form stress divergences:

v′nq
′
QG,n = −D1.5

H1

− ∂R1

∂y
, n = 1

=
(Dn−.5 −Dn+.5

Hn

)
− ∂Rn

∂y
, 2 ≤ n ≤ N − 1

=
(DN−.5 −Dbot

HN

)
− ∂RN

∂y
, n = N . (5.90)

In the vertical interior where Fn is small, (5.89) indicates that v′nq
′
QG,n is

also small. Since qQG is approximately conserved following parcels in (5.25), a
fluctuating Lagrangian meridional parcel displacement, ry′, generates a
potential vorticity fluctuation,

q′QG ≈ − ry′
dqQG
dy

, (5.91)

since potential vorticity is approximately conserved along trajectories (cf.,
Sec. 3.5). For nonzero ry′, due to nonzero v′, the required smallness of the
eddy potential vorticity flux can be accomplished if q ′QG is small as a
consequence of dyqQG being small. This is an explanation for the homogenized
structure for the mid-depth potential vorticity profile, qQG,2(y), seen in the
second-row plots in Fig. 5.14. Furthermore, the variance for q ′QG,2 (not shown)
is also small even though the variances of other interior quantities are not
small (Fig. 5.15).

Any other material tracer, τ , that is without either significant interior
source or diffusion terms, S (τ) in (2.7), or boundary fluxes that maintain a
mean gradient, τ(y), will be similarly homogenized by eddy mixing in a
statistical equilibrium state.
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5.3.5 Meridional Overturning Circulation and Mass
Balance

The relation (5.21), which expresses the movement of the interfaces as
material surfaces, is single-valued in w at each interface because of the
quasigeostrophic approximation (Sec. 5.1.2). In combination with the Ekman
pumping at the interior edges of the embedded turbulent boundary sub-layers
(Secs. 5.3.1 and 6.1), w is a vertically continuous, piecewise linear function of
depth within each layer. The time and zonal mean vertical velocity at the
interior interfaces is

wn+.5 =
∂

∂y
vg, n+.5ηn+.5 = − 1

f0

∂

∂y
Dn+.5, 1 ≤ n ≤ N − 1 , (5.92)

(i.e., , w is forced by the isopycnal form stress in the interior). The vertical
velocities at the vertical boundaries are determined from the kinematic
conditions. At the rigid lid (Sec. 2.2.3), w = 0, and at the bottom,

w = uN · ∇∇∇B ≈
∂

∂y
vg,NB = − 1

f0

∂

∂y
Dbot ,

from (5.85). Substituting the mean vertical velocity into the mean continuity
relation (5.80) and integrating in y yields

va, 1 = − D1.5

f0H1

va, n =
Dn−.5 −Dn+.5

f0Hn

, 2 ≤ n ≤ N − 1

va,N =
DN−.5 −Dbot

f0HN

. (5.93)

From the structure of the Dn+.5(y) in Fig. 5.17, the meridional overturning
circulation can be deduced. Because D(y) has a positive extremum at the jet
center, (5.92) implies that w(y) is upward on the southern side of the jet and
downward on the northern side. Mass conservation for the meridional
overturning circulation is closed in the surface layer with a strong northward
flow. In (5.93) this flow, va, 1 > 0, is related to the downward isopycnal form
stress, but in the zonal momentum balance for the surface layer (5.81), in
combination with (5.82) and (5.98), it is closely tied to the eastward surface
stress as a surface Ekman transport (Sec. 6.1). Depending upon whether D(z)
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decreases or increases with depth, then (5.93) implies that va is southward or
northward in the interior. In the particular solution in Fig. 5.17, D weakly
increases between interfaces n+ .5 = 1.5 and 2.5 because Rn decreases with
depth in the middle of the jet. So va, 2 is weakly northward in the jet center.
Because DN−1 > 0, the bottom layer flow is southward, va,N < 0.
Furthermore, since the bottom-layer zonal flow is eastward, uN > 0, the
associated bottom stress in (5.93) provides an augmentation to the southward
va,N (n.b., this contribution is called the bottom Ekman transport; Sec. 6.1).
Collectively, this structure accounts for the clockwise Deacon Cell depicted in
Figs. 5.13-5.14.

In a layered model the pointwise continuity equation is embodied in the
layer thickness equation (5.17) that also embodies the parcel conservation of
density. Its time and zonal mean reduces to

∂

∂y
hnvn = 0 =⇒ hnvn = 0 , (5.94)

using a boundary condition for no flux at some (remote) latitude to determine
the meridional integration constant. In equilibrium there is no meridional
mass flux within each isopycnal layer in an adiabatic fluid because the layer
boundaries (bottom, interfaces, and lid) are material surfaces. This relation
can be rewritten as

hnvn = Hnva, n + (hn −Hn) vg,n = 0 (5.95)

(cf., (5.82)). There is an exact cancellation between the mean advective mass
flux (the first term) and the eddy-induced mass transport (the second term)
within each isopycnal layer. The same conclusion about cancellation between
the mean and eddy transports could be drawn for any non-diffusing tracer
that does not cross the material interfaces.

Re-expressing the eddy mass flux in terms of a meridional eddy-induced
transport velocity or bolus velocity defined by

V ∗n ≡
1

Hn

(hn −Hn) vg,n , (5.96)

the cancellation relation (5.95) becomes simply

va, n = −V ∗n .

There is a companion vertical component to the eddy-induced velocity, W ∗
n+.5,

that satisfies a continuity equation with the horizontal component, analogous
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to the 2D mean continuity balance (5.80). In a zonally symmetric channel
flow, the eddy-induced velocity is 2D, as therefore is its continuity balance:

∂V ∗n
∂y

+
1

Hn

(
W ∗
n−.5 −W ∗

n+.5

)
= 0 . (5.97)

U∗ ≡ (0, V ∗, W ∗) has zero normal flow at the domain boundaries (e.g.,
W ∗
.5 = 0 at the top surface). Together these components of the eddy-induced

meridional overturning circulation cancel exactly the Eulerian mean Deacon
Cell circulation, (0, va, w). One can interpret U∗ as a Lagrangian mean
circulation induced by the eddies that themselves have a zero Eulerian mean
velocity. It is therefore like a Stokes drift (Sec. 4.5), but one caused by the
mesoscale eddy velocity field rather than the surface or inertia-gravity waves.
The mean fields for both mass and other material concentrations move with
(i.e., are advected by) the sum of the Eulerian mean and eddy-induced
Lagrangian mean velocities. Here the fact that their sum is zero in the
meridional plane is due to the adiabatic assumption.

Expressing h in terms of the interface displacements, η, from (5.18) and D
from (5.86), the mass balance (5.95) can be rewritten as

(hn −Hn) vg,n = − Hnva, n =
1

f0

D1.5, n = 1

= − 1

f0

(Dn−.5 −Dn+.5) , 2 ≤ n ≤ N − 1

= − 1

f0

(DN−.5 −Dbot) , n = N . (5.98)

This demonstrates an equivalence between the vertical isopycnal form stress
divergence and the lateral eddy mass flux within an isopycnal layer.

5.3.6 Meridional Heat Balance

The buoyancy field, b, is proportional to η in (5.22). If the buoyancy is
controlled by the temperature, T (e.g., as in the simple equation of state used
here, b = αgT ), then the interfacial temperature fluctuation is defined by

Tn+.5 = − 2g′n+.5

αg(Hn +Hn+1)
ηn+.5 . (5.99)

With this definition the meridional eddy heat flux is equivalent to the
interfacial form stress (5.86), hence layer mass flux (5.98), by the following
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relation:

vT n+.5 =
f0N 2

n+.5

αg
Dn+.5 . (5.100)

The mean buoyancy frequency is defined by

N 2
n+.5 ≡

2g′n+.5

Hn +Hn+1

analogous to (4.17). Since D > 0 in the jet (Fig. 5.17), vT < 0; i.e., the eddy
heat flux is poleward in the ACC (cf., Sec. 5.2.3). The profile for T n+.5(y)
(Fig. 5.14) indicates that this is a down-gradient eddy heat fluxdown-gradient
eddy flux associated with release of mean available potential energy. These
behaviors are hallmarks of baroclinic instability (Sec. 5.2).

The equilibrium heat balance at the layer interfaces is obtained by a
reinterpretation of (5.92), replacing η by T from (5.99):

∂

∂t
T n+.5 [ = 0 ] = − ∂

∂y
[ vT n+.5 ]− wn+.5 ∂zT n+.5 . (5.101)

The background vertical temperature gradient, ∂zT n+.5, z = N 2
n+.5/αg, is the

mean stratification expressed in terms of temperature. Thus, the horizontal
eddy heat-flux divergence is balanced by the mean vertical advection of the
background temperature stratification in the equilibrium state.

5.3.7 Summary Remarks

In summary, the eddy fluxes for momentum, mass, and heat play essential
roles in the equilibrium dynamical balances for the jet. In particular, D is the
most important eddy flux, accomplishing the essential transport to balance
the mean forcing. For the ACC, the mean forcing is a surface stress, and D is
most relevantly identified as the interfacial form stress that transfers the
surface stress downward to push against the bottom (cf., 5.84). For the
atmospheric westerly winds, the mean forcing is the differential heating with
latitude, and D plays the necessary role as the balancing poleward heat flux.
Of course, both roles for D are played simultaneously in each case. The
outcome in each case is an upward-intensified, meridionally sheared zonal
mean flow, with associated sloping isopycnal and isothermal surfaces in
thermal wind balance. It is also true that the horizontal Reynolds stress, R,
contributes to the zonal mean momentum balance and thereby influences the
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shape of un(y) and its geostrophically balancing geopotential and buoyancy
fields, most importantly by sharpening the core jet profile. But R does not
provide the essential equilibrating balance to the overall forcing (i.e., in the
meridional integral of (5.81)) in the absence of meridional boundary stresses
(cf., (5.88) and Sec. 5.4).

Much of the preceding dynamical analysis is a picture first drawn in the
1950s and 1960s to describe the maintenance of the atmospheric jet stream
(e.g., Lorenz, 1967). Nevertheless, even for many years afterward it remained
a serious challenge to obtain computational solutions that exhibit this
behavior. This GFD problem has such central importance, however, that its
interpretation continues to be further refined. For example, it has rather
recently become a common practice to diagnose the eddy effects in terms of
the Eliassen-Palm flux defined by

E ≡ Rŷ + Dẑ . (5.102)

(Nb., E has a 3D generalization beyond the zonally symmetric channel flow
considered here.) The ingredients of E are the eddy Reynolds stress, R, and
isopycnal form stress, D (as well as their combination in the eddy potential
vorticity flux, v′q′QG), whose dynamical roles in the maintenance of the
turbulent equilibrium jet have been described throughout this section.

5.4 Rectification by Rossby Wave Radiation

A mechanistic interpretation for the shape of Rn(y) in Fig. 5.17 can be made
in terms of the eddy–mean interaction associated with Rossby waves radiating
meridionally away from a source in the core region for the mean jet and
dissipating after propagating some distance away from the core. For simplicity
this analysis will be made with a barotropic model (cf., Sec. 3.4), since
barotropic, shallow-water, and baroclinic Rossby waves are all essentially
similar in their dynamics. The process of generating a mean circulation from
transiently forced fluctuating currents is called rectification. In coastal oceans
tidal rectification is common.

A non-conservative, barotropic, potential vorticity equation on the β-plane is

Dq

Dt
= F ′ − r∇2ψ

q = ∇2ψ + βy
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D

Dt
=

∂

∂t
+ ẑ · ∇∇∇ψ × ∇∇∇ (5.103)

(cf., (3.27)). For the purpose of illustrating rectification behavior, F ′ is a
transient forcing term with zero time mean (e.g., caused by Ekman pumping
from fluctuating winds), and r is a damping coefficient (e.g., Ekman drag; cf.,
(5.79) and (6.53) with r = εbot/H)). For specificity choose

F ′ = F∗(x, y) sin [ωt] ,

with a localized F∗ that is nonzero only in a central region in y (Fig. 5.18).

Rossby waves with frequency ω will be excited and propagate away from the
source region. Their dispersion relation is

ω = − βk

k2 + `2
, (5.104)

with (k, `) the horizontal wavenumber vector. The associated meridional
phase and group speeds are

cyp = ω/` = − βk

`(k2 + `2)

cyg =
∂ω

∂`
=

2βk`

(k2 + `2)2
(5.105)

(Sec. 4.7). To the north of the source region, the group speed must be
positive for outward energy radiation. Since without loss of generality k > 0,
the northern waves must have ` > 0. This implies c(y)

p < 0 and a NW-SE
alignment of the constant-phase lines, hence u′v′ < 0 since motion is parallel
to the constant-phase lines. In the south, the constant-phase lines have a
NE-SW alignment, and u′v′ > 0. This leads to the u′v′(y) profile in Fig. 5.18.
Note the decay as |y| → ∞, due to damping by r. In the vicinity of the source
region the flow can be complicated, depending upon the form of F∗, and here
the far-field relations are connected smoothly across it without too much
concern about local details.

This Reynolds stress enters in the time-mean, zonal momentum balance
consistent with (5.103):

ru = − ∂

∂y

(
u′v′

)
(5.106)

since F = 0 (cf., Sec. 3.4). The mean zonal flow generated by wave
rectification has the pattern sketched in Fig. 5.18, eastward in the vicinity of
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Figure 5.18: Sketch of radiating Rossby waves from a zonal strip of transient
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the source and westward to the north and south. This a simple model for the
known behavior of eastward acceleration by the eddy horizontal momentum
flux in an baroclinically unstable eastward jet (e.g., in the Jet Stream and
ACC; Sec. 5.3.3), where the eddy generation process by baroclinic instability
has been replaced heuristically by the transient forcing F ′. The mean flow
profile in Fig. 5.18 is proportional to −∂yR, and it has a shape very much like
the one in Fig. 5.17. Note that this rectification process does not act like an
eddy diffusion process in the generation region since u′v′ generally has the
same sign as uy (and here it could, misleadingly, be called a negative
eddy-viscosity process), although these quantities do have opposite signs in
the far-field where the waves are being dissipated. So the rectification is not
behaving like eddy mixing in the source region, in contrast to the barotropic
instability problems discussed in Secs. 3.3-3.4. The reason is that the eddy
process here is highly non-local, with the eddy generation site (within the jet)
distant from the dissipation site (outside the jet). Since

∫ ∞

−∞
u(y) dy = 0 (5.107)

from (5.106), the rectification process can be viewed as a conservative
redistribution of the ambient zonal-mean zonal momentum, initially zero
everywhere, through wave radiation stresses.

There are many other important examples of it non-local transport of
momentum by waves in nature. The momentum is taken away from where the
waves are generated and deposited where they are dissipated. For example,
this is happens for internal gravity lee waves generated by a persistent flow
(even by tides; Fig. 4.2) over a bottom topography on which they exert a
mean form stress. The gravity lee waves propagate upward away from the
solid boundary with a dominant wavenumber vector, k∗, determined from
their dispersion relation and the mean wind speed in order to be stationary
relative to solid Earth. The waves finally break and dissipate mostly at
critical layers (i.e., , where cp(k∗) = u(z)), and the associated Reynolds stress
divergence, −∂z u′w′, acts to retard the mean flow aloft. This process is an
important influence on the strength of the tropopause Jet Stream, as well as
mean zonal flows at higher altitudes. Perhaps it may be similarly important
for the Antarctic Circumpolar Current as well, but the present observational
data do not allow a meaningful test of this hypothesis.
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Chapter 6

Boundary-Layer and Wind-Gyre
Dynamics

Boundary layers arise in many situations in fluid dynamics. They occur where
there is an incompatibility between the interior dynamics and the boundary
conditions, and a relatively thin transition layer develops with its own
distinctive dynamics in order to resolve the incompatibility. For example,
nonzero fluxes of momentum, tracers, or buoyancy across a fluid boundary
almost always instigate an adjacent boundary layer with large normal
gradients of the fluid properties. Boundary-layer motions typically have
smaller spatial scales than the dominant interior flows. If their Re value is
large, they have stronger fluctuations (i.e., eddy kinetic energy) than in the
interior because they almost always are turbulent. Alternatively, in a laminar
flow with a smaller Re value, but still with interior dynamical balances that
are nearly conservative, boundary layers develop where non-conservative
viscous or diffusive effects are significant because the boundary-normal spatial
gradients are larger than in the interior.

In this chapter two different types of boundary layers are examined. The
first type is a planetary boundary layer that occurs near the solid surface at
the bottoms of the atmosphere and ocean and on either side of the
ocean-atmosphere interface. The instigating vertical boundary fluxes are a
momentum flux — the drag of a faster moving fluid against slower (or
stationary) material at the boundary — or a buoyancy flux — heat and water
exchanges across the boundary. The second type is a lateral boundary layer
that occurs, most importantly, at the western side of an oceanic wind gyre in
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an extra-tropical basin with solid boundaries in the zonal direction. It occurs
in order to satisfy the constraint of zonally integrated mass conservation (i.e.,
zero total meridional transport in steady state) that the interior meridional
currents by themselves do not.

6.1 Planetary Boundary Layer

The planetary boundary layer is a region of strong, 3D, nearly isotropic
turbulence associated with motions of relatively small scale (1-103 m) that,
nevertheless, are often importantly influenced by Earth’s rotation. Planetary
boundary layers are found near all solid-surface, air-sea, air-ice, and ice-sea
boundaries. The primary source of the turbulence is the instability of the ρ(z)
and u(z) profiles that develop strong vertical gradients in response to the
boundary fluxes. For example, either a negative buoyancy flux (e.g., cooling)
at the top of a fluid layer or a positive buoyancy flux at the bottom generates
a gravitationally unstable density profile and induces convective turbulence
(cf., Sec. 2.3.3). Similarly, a boundary stress caused by drag on the adjacent
flow generates a strongly sheared, unstable velocity profile, inducing shear
turbulence (cf., Sec. 3.3.3). In either case the strong turbulence leads to an
efficient buoyancy and momentum mixing that has the effect of reducing the
gradients in the near-boundary profiles. This sometimes happens to such a
high degree that the planetary boundary layer is also called a mixed layer,
especially with respect to the weakness in material tracer gradients.

A typical vertical thickness, h, for the planetary boundary layer is 50 m in
the ocean and 500 m in the atmosphere, although the ranges of h are wide
even on a daily or hourly basis (Fig. 6.1) as well as climatologically. The
largest h values occur for a strongly destabilizing boundary buoyancy flux,
instigating convective turbulence, where h can penetrate through most or all
of either the ocean or the troposphere. Examples are deep subpolar oceanic
convection in the Labrador and Greenland Seas and deep tropical atmospheric
convection above the Western Pacific Warm Pool. More often convective
boundary layers do not penetrate throughout the fluid because their depth is
limited by stable stratification in the interior (e.g., 6.1), which is sometimes
called a capping inversion or inversion layer in the atmosphere or a
pycnocline in the ocean.
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Figure 6.1: Example of reflectivities (bottom) observed in the cloud-free con-
vective boundary layer in central Illinois on 23 Sep 1995: (top left) virtual
temperature profiles and (top right) vertical profiles of water vapor mixing ra-
tio. Note the progressive deepening of the layer through the middle of the day
as the ground warms. (From Gage & Gossard, 2003.)
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6.1.1 Boundary Layer Approximations

The simplest example of a shear planetary boundary layer is a uniform-density
fluid that is generated in response to the stress (i.e., momentum flux through
the boundary) on an underlying flat surface at z = 0. The incompressible,
rotating, momentum and continuity equations with ρ = ρ0 are

Du

Dt
− fv = − ∂φ

∂x
+ F x

Dv

Dt
+ fu = − ∂φ

∂y
+ F y

Dw

Dt
+ g = − ∂φ

∂z
+ F z

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (6.1)

This partial differential equation system has solutions with both turbulent
fluctuations and a mean velocity component, where the mean is distinguished
by an average over the fluctuations. So the planetary boundary layer is yet
another geophysically important example of eddy–mean interaction.

Often, especially from a large-scale perspective, the mean boundary-layer
flow and tracer profiles are the quantities of primary interest, and the
turbulence is viewed as a distracting complexity, interesting only as a
necessary ingredient for determining the mean velocity profile. From this
perspective the averaged equations that express the mean-field balances are
the most important ones. In the context of, e.g., a General Circulation Model,
the mean-field balances are part of the model formulation with an appropriate
parameterization for the averaged transport effects by the turbulent eddies. In
the shear planetary boundary layer, the transport is expressed as the averaged
eddy momentum flux, i.e., the Reynolds stress (Sec. 3.4).

To derive the mean-field balances for (6.1), all fields are decomposed into
mean and fluctuating components,

u = u+ u′, etc. (6.2)

For a boundary layer in the z direction, the overbar denotes an average in
x, y, t over the scales of the fluctuations, so that, e.g.,

u′ = 0. (6.3)
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This technique presumes a degree of statistical symmetry in these averaging
coordinates, at least on the typical space and time scales of the fluctuations.
No average is taken in the z direction since both fluctuation and mean
variables will have strong z gradients and not be translationally symmetric in
z. Alternatively, the average may be viewed as taken over an ensemble of
many planetary boundary layer realizations with the same mean stress and
different initial conditions for the fluctuations, counting on the sensitive
dependence of the solutions to (6.1) to span the range of possible fluctuation
behaviors. If there is a separation of space and/or time scales between the
mean and fluctuating components (e.g., as assumed in Sec. 3.5), and if there
is a meaningful typical statistical equilibrium state for all members of the
ensemble, then it usually is presumed that the symmetry-coordinate and
ensemble averages give equivalent answers. This presumption is called
ergodicity. For highly turbulent flows in GFD, the ergodicity assumption is
usually valid.

The momentum advection term can be rewritten as a momentum flux
divergence, viz.,

(u · ∇∇∇)u = ∇∇∇ · (u u) . (6.4)

This is permissible since the difference between the two sides of the equation,
u(∇∇∇ · u), vanishes by the incompressible continuity relation. (Note that the
vector notation here is fully 3D.) An average of the quadratic momentum flux
yields two types of contributions,

∇∇∇ · (u u) = ∇∇∇ · (u u) + ∇∇∇ · (u′u′) , (6.5)

since the terms that are linear in the fluctuations vanish by (6.3) while those
that are quadratic do not. (6.5) is an expression for the divergence of the mean
momentum flux. The averaged advective flux thus has contributions both
from the mean motions (the first term, the mean momentum flux) and the
fluctuations (the second term, the eddy momentum flux or Reynolds stress).

Insert (6.2) into (6.1) and take the average. The result is

∂u

∂t
+ ∇∇∇ · (uu)− fv = −∂φ

∂x
− ∇∇∇ · (u′u′) + F x

∂v

∂t
+ ∇∇∇ · (u v) + fu = −∂φ

∂y
− ∇∇∇ · (u′v′) + F y

∂w

∂t
+ ∇∇∇ · (u w) + g = −∂φ

∂z
− ∇∇∇ · (u′w′) + F z

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (6.6)
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The mean linear terms simply match those in the unaveraged equations (6.1),
and the quadratic terms additionally contain the Reynolds stress.

Now make assumptions about the dynamical balances in (6.6) that comprise
the boundary layer approximation. Assume that (x, y, t) derivatives are small
when applied to mean fields (including the eddy flux, which is a “mean” field
since it is an averaged quantity) compared to vertical derivatives. No
difference is supposed for the vertical scales of the turbulence and mean flow
because both components are assumed to vary on the scale of h, the
boundary-layer thickness. Further assume that the mean and turbulent
horizontal velocity magnitudes are comparable in size,

u, v ∼ u′, v′ . (6.7)

These assumptions imply that

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
� ∂u′

∂x
,
∂u′

∂y
,
∂v′

∂x
,
∂v′

∂y
, (6.8)

and
w � w′ . (6.9)

These conclusions follow from the premises that both the mean and
fluctuations satisfy a fully 3D continuity balance and that the flow is
approximately horizontally isotropic (i.e., the x and y scales and u′ and v′

amplitudes are similar on average). If the horizontal scale of u′, v′ is
comparable to h, the vertical scale, then the same consideration implies that
w′ is of comparable intensity to the horizontal velocities, and the turbulent
motions are 3D isotropic. For dynamical consistency, the mean horizontal
pressure gradient, ∇∇∇φ, is assumed to be of the same size as the leading-order
terms in the mean momentum balance, e.g., the Coriolis force, fuh. In the
boundary-layer approximation, the fluctuations are assumed to be statistically
invariant in their horizontal and time dependences on the scales over which
the mean flow varies. These approximations are called homogeneity (in the
horizontal) and stationarity (in time), referring to the respective statistical
properties of the fluctuations.

Next make a further approximation that the eddy flux divergences are much
larger than the mean non-conservative force, F. Since

F = ν∇2u (6.10)
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for Newtonian viscous diffusion (with ν the viscosity), then a scale estimate
for the ratio of the eddy terms to the viscous diffusion terms in (6.6) is

Re ≡ V L

ν
, (6.11)

the Reynolds number previously defined in (2.4). It can be estimated for
atmospheric/oceanic planetary boundary layers with the characteristic scales,
V ∼ 10 / 0.1 m s−1, L ∼ h = 103 / 102 m, and ν = 10−5 / 10−6 m2 s−1,
yielding the quite large values of Re = 109 / 107. Thus, the mean viscous
diffusion, F, can be neglected in the mean-field balance (6.6).

Of course, F′ = ν∇2u′ cannot be neglected in (6.1) since a characteristic of
turbulence is that the advective cascade of variance dynamically connects the
large-scale fluctuations on the scale of h with small-scale fluctuations and
molecular dissipation (cf., Secs. 3.7 and 5.3). In the case of three-dimensional
turbulence in general, and boundary-layer turbulence in particular, the
fluctuation kinetic energy and enstrophy are both cascaded in the forward
direction to the small, viscously controlled scales where it is dissipated — like
the enstrophy cascade but unlike the energy cascade in 2D turbulence (Sec.
3.7).

The consequence of this boundary-layer approximation is a simplified form
of the mean-field balances compared to (6.6), viz.,

−fv +
∂φ

∂x
+
∂

∂z
(w′u′) = 0

fu+
∂φ

∂y
+
∂

∂z
(w′v′) = 0

∂φ

∂z
+ g +

∂

∂z
(w′2) = 0

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (6.12)

The equilibrium shear planetary boundary layer has a mean geostrophic,
hydrostatic balance augmented by vertical eddy momentum flux divergences.
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6.1.2 The Shear Boundary Layer

For a shear planetary boundary layer next to a solid lower boundary, the
following boundary conditions for the eddy fluxes are assumed:

w′u′ = − 1

ρo
τxs , w′v′ = − 1

ρo
τ ys , w′2 = 0, z = 0 , (6.13)

and
w′u′, w′v′, w′2 → 0, z →∞ . (6.14)

These are statements that the mean boundary stress, τττ s, is conveyed into the
fluid interior by the eddy flux that varies smoothly through the boundary
layer thickness but decays away further into the interior. Of course, the eddy
flux cannot truly carry the stress very near the boundary since the velocity
fluctuations and the Reynolds stress must vanish there by the condition of
no-slip. In reality a very thin viscous sub-layer lies next to the boundary, and
within it the value of Re, expressed in terms of the local velocity and
sub-layer thickness, is not large. In this sub-layer the important averaged
momentum flux is the viscous one, ν∂zu. So (6.13) represents a simplification
by not resolving the sub-layer’s viscous stress contribution. Thus, the more
general expression for the averaged vertical flux of horizontal momentum is

−w′u′h + ν
∂u

∂z
.

Here τττs is defined as the boundary stress exerted by the fluid on the
underlying boundary or, equivalently, as minus the stress exerted by the solid
boundary on the fluid.

Real boundary layers often have rather sharp vertical transitions in the
fluctuation intensity and mean shear across their interior edge at z ≈ h as a
consequence of the stable stratification there (e.g., a capping inversion). In
(6.14) without stratification effects, the transition between the planetary
boundary layer and interior regions is more gradual, and this interior edge has
been identified with z →∞ for mathematical convenience.

Next decompose the solution of (6.12) into boundary-layer (with superscript
b) and interior (with i) parts. The interior solutions satisfy geostrophic and
hydrostatic balances since the eddy fluxes vanish by (6.14). Since the
horizontal density gradients are zero here, the resulting thermal-wind balance
(2.106) implies that the horizontal velocities are independent of depth,

∂uih
∂z

= 0 . (6.15)
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This result is sometimes called the Taylor-Proudman Theorem. The associated
interior geopotential function and vertical velocity in the interior are therefore
linear functions of z. So the structure of the mean flow solution is

u = ub(z) + ui

v = vb(z) + vi

w = wb(z) + wi(z)

φ = xX i
+ y Y i + φo − gz + φ

b
(z) , (6.16)

making the z dependences explicit. (X i
, Y i) is the mean horizontal

pressure-gradient force, and φo is a reference constant for φ equal to its surface
value. All of these mean-flow quantities can be viewed as having “slow”
(x, y, t) variations on scales much larger than the scales of the boundary layer
fluctuations, although here this dependence is notationally suppressed.

The interior horizontal momentum balance is particularly simple:

fvi ≈ fvig = X i

fui ≈ fuig = −Y i . (6.17)

The associated mean interior continuity balance implies that wi is trivial with
this geostrophic flow if we neglect the spatial variation in f (i.e., make a
f -plane approximation). wi’s nontrivial balance occurs at a higher order of
approximation and involves β and the horizontal ageostrophic interior flow,
uia. The vertical integral of the continuity equation for the interior variables
yields

wi =
∫ z


∂x


Y

i

f


− ∂y


X

i

f


− ∇∇∇h · uia


 dz′

=
β

f 2
X i

z −
∫ z

0
∇∇∇h · uia dz′ , (6.18)

with use of the surface boundary condition, wi(0) = 0, in the second line.
Since uia is undetermined at the level of approximation used in (6.12), this
formula for wi cannot be explicitly evaluated at this point, but it is not our
focus in this discussion of boundary layer dynamics.

Subtracting (6.17) from (6.12) yields the shear boundary-layer problem,

fvb(z) =
∂

∂z
(w′u′)
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fub(z) = − ∂

∂z
(w′v′)

φ
b
(z) = − w′2

∂wb

∂z
= −∂u

b

∂x
− ∂vb

∂y
, (6.19)

with the vertical boundary conditions,

ub = −ui , wb = 0 , z = 0

ub, vb → 0 , z →∞ , (6.20)

appropriate for no slip and no normal flow at z = 0 and for vanishing
horizontal boundary-layer velocities outside the layer. The third equation in
(6.19) can be viewed as a auxiliary, diagnostic relation for the boundary-layer

pressure correction to hydrostatic balance, since φ
b

does not influence the
horizontal mean flow in these equations. Similarly, wb is diagnostically
determined from ub using the fourth equation in (6.19). So the central
problem for the boundary layer is solving for ubh from the first and second
equations.

w differs from (u, v) in its interior and boundary-layer decomposition
because wb does not vanish as z →∞ and because the vertical boundary
condition, w(0) = 0, has, without loss of generality, been presumed to apply
to each of wb and wi separately. The dynamical consistency of the latter
presumption requires consistency with the boundary condition on w at the
top of the fluid, z = H. From (6.18) this in turn is controlled by a consistent
prescription for uia, not considered explicitly here.

The quantity w′u′(z) is called the vertical Reynolds stress because of its
vertical flux direction for vector momentum (i.e., its first velocity component
is w′). If it were known, then (6.19)-(6.20) could be solved to evaluate ub, vb,

wbz, and φ
b
. However, the Reynolds stress is not known a priori, and at a

fundamental dynamical level, the eddy fluxes must be solved for
simultaneously with the mean profiles, and this requires looking beyond the
mean-field balances (6.6). Seeking a means of avoiding the full burden of
meeting this requirement by solving (6.1) completely is referred to as the
turbulence closure problem, which if solved allows a solution of (6.6) or
(6.19)-(6.20) only.

Even without specifying the closure, however, the horizontal momentum
equations in (6.19)-(6.20) can be integrated across the boundary layer,
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eliminating the unknown Reynolds stress in place of the boundary stress using
(6.13):

T x ≡
∫ ∞

0
ub dz = − 1

ρof
τ ys

T y ≡
∫ ∞

0
vb dz =

1

ρof
τxs . (6.21)

This says that the bottom boundary-layer, horizontal transport (i.e.,
depth-integrated velocity increment from the interior flow), T, is 90o to the
left (right) of the stress exerted by the fluid on the boundary in the northern
(southern) hemisphere. The term transport is used both for depth-integrated
horizontal velocity (i.e., a vertical-column area transport with units of m2

s−1) and for the normal component of horizontal velocity integrated over a
vertical plane (i.e., a cross-section volume transport with units of m3 s−1, or
when multiplied by ρ, a mass transport with units of kg s−1).

The preceding boundary-layer analysis has neglected the horizontal
derivatives of averaged quantities. The boundary layer problem for (ub, vb) in
(6.19)-(6.20) and its associated transport (6.21) can be viewed as locally valid
at each horizontal location. But by looking across different locations, the
continuity equation in (6.19) can be integrated vertically with the kinematic
condition in (6.20) to yield

wb(z →∞) = −
∫ ∞

0

(
∂ub

∂x
+
∂vb

∂y

)
dz

=⇒ wb(∞) ≡ wek, bot = ẑ · ∇∇∇×
[
τττs
ρof

]
. (6.22)

Since ubh → 0 going into the interior, wb approaches a value independent of
height, which is how wek should be understood. Notice that wek, like T in
(6.21), depends only on the surface stress and is independent of the Reynolds
stress profile, hence its closure.

Planetary boundary layer flows that satisfy (6.19)-(6.22) are called Ekman
layers. The vertical velocity that reaches into the interior, wek in (6.22), is
called Ekman pumping, and it is caused by the horizontal gradients in τττ s and
f(y) on a spatial scale much larger than h (i.e., the boundary layer
approximation in Sec. 6.1.1).

The surface boundary conditions on w′u′ and ub in (6.13) and (6.20) are
generally redundant for general ui, although this viewpoint is based on the
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resolution of the closure problem alluded to above so that w ′u
′
h and τττs are

mutually consistent.

• For the oceanic or atmospheric bottom planetary boundary layers in both
the ocean and atmosphere, ui is locally viewed (i.e., from the
perspective of the slowly varying (x, y, t) values) as being determined
from the outcome of the interior dynamics independently from the
boundary layer flow, and the planetary boundary layer dynamics occurs
in order to resolve the incompatibility between ui(z) and the surface
no-slip boundary condition, u(0) = 0. In accomplishing this resolution,
the boundary-layer Reynolds stress profile is determined, and the surface
stress, τττs, is diagnostically calculated using (6.20) (Sec. 6.1.4).

• In contrast, for the oceanic surface planetary boundary layer (with z = 0
the top surface and z → −∞ going into the oceanic interior), the
overlying wind locally determines the surface stress, τττ s, and the surface
oceanic velocity, ub(0) + ui(0), is not constrained to be zero; in fact, the
approximation is often made that the oceanic planetary boundary layer
dynamics are independent of the oceanic interior flow. Thus, (6.13) is
the controlling boundary condition in the oceanic surface planetary
boundary layer (Sec. 6.1.5).

For simplicity in this Ekman layer analysis, the assumptions ρ = ρ0 and
∂zu

i = 0 have been made. In general the lower atmosphere and ocean are
stratified, so these assumptions are not correct. However, they need not be
precisely true to have planetary boundary layer behavior very much like an
Ekman layer, if the density variations and interior-flow baroclinicity (i.e.,
vertical shear) are weak enough near z = 0 on the scale ∼ h of both the
turbulent motions and the mean boundary-layer shear profile. Frequently the
largest effect of stable stratification on a shear boundary layer is a
compression of its vertical extent (i.e., reduction in h) by a strong pycnocline
or inversion layer at its interior edge (cf., Fig. 6.1b).

6.1.3 Eddy Viscosity Closure

The preceding analysis is incomplete because the turbulence closure problem
has not been resolved yet. One way to proceed is to adopt what is probably
the most widely used closure hypothesis of eddy viscosity. It states that the
Reynolds stress acts to transport momentum the same way that molecular
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viscosity does in (6.10), albeit with an enhanced eddy viscosity magnitude,
νe � ν, whenever Re� 1 (Sec. 3.5). Specifically, in order to close
(6.19)-(6.20), assume the following relation between the eddy momentum flux
and the mean shear,

w′u′ = −νe
∂u

∂z
. (6.23)

νe > 0 implies that the flux is acting in a down-gradient direction. Using the
closure (6.23), the laminar Ekman layer equations are obtained from
(6.19)-(6.20) for a boundary layer above a solid level surface:

fv = −νe
∂2u

∂z2

fu = νe
∂2v

∂z2

w = −
∫ z

0

[
∂u

∂x
+
∂v

∂y

]
dz′

uh = −uih, z = 0

uh → 0, z →∞ . (6.24)

For brevity the superscript on ubh has now been deleted, and the

accompanying diagnostic relation for φ
b

is ignored.

This laminar boundary layer problem is called a parameterized planetary
boundary layer in the sense that there is no explicitly turbulent component in
its solution, as long as νe is large enough that its corresponding eddy
Reynolds number, Ree = V L/νe, is below some critical threshold value for
instability of the mean boundary layer velocity profile. (This reflects a general
view that Re is a control parameter that regulates the transition from stable,
laminar flow when Re is small, through transitional instabilities as Re
increases, to fully developed turbulence when Re is large enough; cf., Sec.
5.3.1.) Nevertheless, the parameterized planetary boundary layer is implicitly
a representation of (or model for) the intrinsically turbulent boundary layer
dynamics. The transport and Ekman pumping relations (6.21) and (6.22) are
fully applicable to (6.24) since they do not depend on the Reynolds stress
profile or closure choice.

It is quite feasible to use a closure relation like (6.23) in a General
Circulation Model and implicitly solve for ubh and wb as part of the model’s
time integration procedure, and broadly speaking this approach is the
common practice for incorporating planetary boundary layer processes in
General Circulation Models.
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6.1.4 Bottom Ekman Layer

Now solve the problem (6.24) analytically. The simplest way to do so is to
define a complex horizontal velocity combination of the real velocity
components,

U ≡ u+ iv. (6.25)

In terms of U , (6.24) becomes

νe
∂2U

∂z2
= ifU

U(0) = −U i

U(∞) = 0 . (6.26)

This is a complex, second-order, ordinary differential equation boundary-value
problem (rather than the equivalent, coupled pair of second-order equations,
or a fourth-order system, for (u, v)). This homogeneous problem has elemental
solutions,

U ∝ ekz for k2 = i
f

νe
,

or

k = (iSf)1/2

√
|f |
νe

, (6.27)

where Sf = f/|f | is equal to +1 in the northern hemisphere and −1 in the
southern hemisphere. To satisfy U(∞) = 0, the real part of k must be
negative. This occurs for the k root,

(iSf)1/2 = − 1 + iSf√
2

, (6.28)

and the other root,

(iSf)1/2 = +
1 + iSf√

2
,

is excluded. The fact the k has an imaginary part implies an oscillation of U
with z, in addition to the decay in z. Thus,

U(z) = −U ie−λ(1+iSf )z , (6.29)

with a vertical decay rate, λ, that can be identified with the inverse boundary
layer depth by the relation,

hek = λ−1 ≡
√

2νe
f

. (6.30)
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This solution can be rewritten in terms of its real-valued velocity
components from (6.25) as

u = Real(U) = e−λz
(
−ui cos [λz] − Sfvi sin [λz]

)

v = Imag(U) = e−λz
(
Sfui sin [λz] − vi cos [λz]

)
. (6.31)

z=∞

z=0

v

u

u

u

i

b (z)

Figure 6.2: Bottom Ekman layer hodograph in the northern hemisphere: ui is
the interior flow, and ub(z) is the boundary layer anomaly that brings the total
flow to zero at the surface, z = 0.

The Ekman spiral is the curved plot of (6.31) that is evident on its
hodograph, which is a plot of u(z) in a (u, v) plane (Fig. 6.2). In the northern
hemisphere the boundary layer velocity weakens and turns in a clockwise
manner ascending from the surface, and the total velocity, ui + ub, increases
from zero and also turns clockwise as it approaches the interior velocity. In
the southern hemisphere the direction of the ascending Ekman spiral is
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counterclockwise. The hodograph’s spiral pattern is equivalent to the vertical
decay and oscillation implied by k in (6.27)-(6.28).

Next evaluate the surface stress by differentiation of (6.31) using the
eddy-viscosity closure relation (6.23) evaluated at the bottom boundary:

1

ρo
τxs = νe

∂u

∂z
(0) = εek, bot

(
ui − Sfvi

)

1

ρo
τ ys = νe

∂v

∂z
(0) = εek, bot

(
Sfui + vi

)
, (6.32)

with a bottom damping coefficient defined by

εek, bot ≡
√
|f |νe

2
=

fhek
2

(6.33)

that has units of m s−1 (cf., (5.79) and Sec. 6.2.1). These relations indicate
that the stress of the fluid on the boundary is rotated by 45o relative to the
interior flow, and the rotation is to the left (right) in the northern (southern)
hemisphere.

The transport (6.21) is evaluated by a direct vertical integration of (6.31)
(with a result that necessarily must be consistent the general relation (6.32)):

T x = −εek, bot
f

(
Sfui + vi

)
= − 1

ρof
τ ys

T y =
εek, bot
f

(
ui − Sfvi

)
= +

1

ρof
τxs . (6.34)

In doing this integration, use was made of the definite integrals,

∫ ∞

0
e−z cos [z] dz =

∫ ∞

0
e−z sin [z] dz =

1

2
. (6.35)

The boundary-layer transport is 135o to the left (right) of the interior flow,
and the drag of the fluid on the boundary, τττ s, is oriented 45o to the left (right)
in the northern (southern) hemisphere (Fig. 6.3). The Ekman pumping (6.22)
is

wb(z →∞) = ẑ · ∇∇∇× τττs
ρof

=
∂

∂x

[
εek, bot
f

(Sfui + vi)

]
− ∂

∂y

[
εek, bot
f

(ui − Sfvi)
]
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Figure 6.3: Total velocity, u(z), boundary-layer transport, T, and boundary
drag stress on the overlying fluid, τττ s, for a bottom Ekman layer in the northern
hemisphere.
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=
εek, bot
f

(
Sf
∂ui

∂x
+
∂vi

∂x
− ∂ui

∂y
+ Sf

∂vi

∂y

)
+
βεek, bot
f 2

(
ui − Sfvi

)

=
εek, bot
f

ζ
i
+
βεek, bot
f 2

(
ui − Sfvi

)
. (6.36)

In obtaining the third line here, the meridional derivative of εek, bot is ignored
for simplicity. (Because νe is a sufficiently uncertain closure parameter, its
horizontal derivative should be considered even more uncertain, and when in
doubt leave it out; cf., Occam’s Razor.) In the final line the horizontal
divergence of ui is neglected relative to its vorticity, ζ i, based on an
assumption that Ro� 1 for the interior flow, consistent with its geostrophic
balance in (6.17) (Sec. 2.4.2).

6.1.5 Oceanic Surface Ekman Layer

The preceding analysis (6.6)-(6.36) has been for a fluid above a solid
boundary, appropriate to the bottom of the ocean and atmosphere. Even for
winds over the fluid ocean, the surface currents are usually so much slower
than the winds that the no-slip condition is a good approximation for the
atmospheric dynamics. However, as mentioned near the end of Sec. 6.1.1., an
analogous analysis can be made for the boundary on top of the fluid,
appropriate to the top of the ocean forced by a surface wind stress with
ρou′w′ = −τττs at the boundary. In particular, the surface stress (6.32) that
results from the atmospheric boundary layer beneath the atmospheric interior
wind, ui, is used to force the oceanic planetary boundary layer. Now,
however, τττs must be interpreted as the drag of the boundary on the
underlying fluid, rather than vice versa in (6.13)-(6.14), due to the reversal in
the sign of z relative to the boundary location. Since the oceanic derivation
parallels Sec. 6.1.4, the primary relations for an oceanic laminar surface
Ekman layer can be briefly summarized as the following:

νe
∂2U

∂z2
= ifU

νeUz(0) =
1

ρo
(τxs + iτ ys )

U(−∞) = 0 , (6.37)

and

U(z) = (1− iSf)
τxs + iτ ys
ρo
√

2fνe
eλ(1+iSf )z
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u(z) =
1

ρo
√

2|f |νe
eλz ( (τxs + Sfτ ys ) cos [λz]

+ (τxs − Sfτ ys ) sin [λz] )

v(z) =
1

ρo
√

2|f |νe
eλz ( (−Sfτxs + τ ys ) sin [λz]

+ (Sfτxs + τ ys ) cos [λz] ) , (6.38)

and

T x ≡
∫ 0

−∞
ub dz =

τ ys
ρof

T y ≡
∫ 0

−∞
vb dz = − τxs

ρof
, (6.39)

and
wb(−∞) ≡ wek, top = ẑ · ∇∇∇× τττs

ρof
. (6.40)

The oceanic boundary-layer transport is rotated 90o to the right (left) of the
surface wind stress exerted at the boundary on the ocean for f > 0 (f < 0) in
the northern (southern) hemisphere. The stress is parallel to the wind
direction just above the air-sea interface. The Ekman spiral in the ocean
starts with a surface velocity 45o to the right (left) of the surface stress, and it
decreases in magnitude and rotates clockwise (counterclockwise) in direction
with increasing depth until it vanishes to zero in the deep interior. The
oceanic surface current is therefore in the same direction as the atmospheric
interior wind in these solutions using the eddy-viscosity closure (6.23). These
relations are illustrated in Fig. 6.4.

A spatially broader view of the relations among the local wind, surface
stress, current, boundary-layer transports, and Ekman pumping is sketched in
Fig. 6.5 for the situation of a tropospheric cyclone above the ocean
(neglecting the β term in (6.36) for simplicity). Note that the atmospheric
Ekman pumping acts to flux fluid from the planetary boundary layer upward
into the central interior of the cyclone, supported by an inward radial Ekman
transport. This has the effect of increasing its hydrostatic pressure there and,
since a cyclone has a low central geostrophic pressure (Sec. 3.1.4), this
provides a tendency for weakening the cyclone and spinning down its
circulation (a further analysis is made in Sec. 6.1.6). Conversely, the upward
Ekman pumping in the oceanic planetary boundary layer, supported by its
outward radial Ekman transport, acts through vortex stretching (analogous to
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Figure 6.4: Oceanic and atmospheric surface Ekman layers in the northern
hemisphere. The atmospheric layer (left) has a left-turning spiral in ua(z)
approaching the boundary and a boundary-layer transport anomaly, Tatm., di-
rected 135o to the left of the interior wind. The oceanic layer (right) has a
surface current, uo(z), directed 45o to the right of the surface stress, τττ s (which
itself is 45o to the left of the interior wind), a right-turning spiral in uo(z) going
away from the boundary and a transport, Toce., directed 90o to the right of the
surface stress. Note the equal and opposite transports in the atmospheric and
oceanic layers.
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the shallow-water example in Sec. 4.1.1) to reduce its central pressure by
spinning up an oceanic geostrophic cyclonic circulation underneath the
tropospheric one. This is an example of dynamical coupling between the
atmosphere and ocean through the turbulent surface drag stress.

Since the oceanic surface Ekman layer problem (6.37) is independent of the
total surface velocity, because the current’s contribution to determining the
surface stress is neglected, its Ekman current can be superimposed on any
interior geostrophic current profile. (This property is further exploited in Sec.
6.2 for an oceanic wind gyre.) Alternatively expressed, the shear instability
that drives the oceanic planetary boundary layer turbulence is usually due to
the mean boundary-layer shear not the interior geostrophic shear, even when
the latter is baroclinic in a stratified ocean.

Coastal Upwelling and Downwelling: Although the climatological winds
over the ocean are primarily zonal (Sec. 6.2), there are some locations where
they are directed more meridionally, and in particular parallel to the coastline
(which is more often meridionally aligned than zonally). This happens for the
major atmospheric extra-tropical standing eddies over the oceans, anticyclonic
subtropical highs and cyclonic subpolar lows (referring to their surface pressure
extrema). On their eastern sides, adjacent to the eastern boundary of the
ocean basins, the surface winds are mostly Equatorward in the subtropics and
poleward in the subpolar zone. The associated surface Ekman transports
(6.39) are offshore and onshore, respectively. Since seawater cannot come out
of the land lying further east and since the alongshore scale of the wind is
quite large, the only way the mass balance can be closed is for seawater to
come up from below or to go down, respectively, near the coast. This
circulation pattern is called coastal upwelling or downwelling, respectively. It
is a prominent element in the oceanic general circulation (Figs. 1.1-1.2). It
also has the important biogeochemical consequence of fueling high plankton
productivity where upwelling brings chemical nutrients (e.g., nitrate) to the
surface layer with abundant sunlight; examples are the Benguela Current off
South Africa and the California Current off North America. Analogous
behaviors can occur adjacent to other oceanic basin boundaries, but most of
them have winds typically less parallel to the coastline.
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Figure 6.5: Sketch of the boundary layer depths (hatm. and hoce.), horizontal
transports (Tatm. and Toce.), Ekman pumping (watm. and woce.), and interior
ageostrophic flows (curved arrows) for an atmospheric cyclone, uatm., over the
ocean (northern hemisphere). The interior and boundary-layer velocity compo-
nents perpendicular to the plotted cross-sectional plane are indicated by dots
(flow out of the plane) and crosses (flow into the plane).
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6.1.6 Vortex Spin Down

The bottom Ekman pumping relation in (6.36) implies a spin down (i.e., decay
in strength) for the overlying interior flow. Continuing with the assumptions
that the interior has uniform density and its flow is approximately geostrophic
and hydrostatic, then the Taylor-Proudman Theorem (6.15) implies that the
horizontal velocity and vertical vorticity are independent of height, while the
interior vertical velocity is a linear function of depth. Assume the interior
layer spans 0h ≤ z ≤ H, where w = wi + wb has attained its Ekman pumping
value (6.36) by h and it vanishes at the top height, H. wi from (6.18) is small
compared to wb = wek at z = h since h� H and wi(H) = −wek.

An axisymmetric vortex on the f -plane (Sec. 3.1.4) has no evolutionary
tendency associated with its azimuthal advective nonlinearity (Sec. 3.1.4), but
the vertical velocity does cause the vortex to change with time according to
the barotropic vorticity equation for the interior layer:

∂ζ i

∂t
= − f∇∇∇h · uih

= f
∂w

∂z

= f

(
w(H)− w(h)

H − h

)
= −

(
f

H − h

)
wb

=
(
εek, bot
H − h

)
ζ i . (6.41)

This equation is readily integrated in time to give

ζ i(r, t) = ζ i(r, 0) e− t/td . (6.42)

This shows that the vortex preserves its radial shape while decaying in
strength with a spin-down time defined by

td =
H − h
εek, bot

=

√√√√2(H − h)2

|f |νe
≈ 1

f
√
E
. (6.43)

In the last relation in (6.43), a non-dimensional Ekman number is defined by

E ≡ 2νe
f0H2

. (6.44)
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E is implicitly assumed to be small since

hek =

√
2νe
f0

=
√
EH � H ⇐⇒ E � 1

is a necessary condition for this kind of vertical boundary layer analysis to be
valid (Sec. 6.1.1). Therefore, the vortex spin down time is much longer than
the Ekman-layer set-up time, ∼ 1/f . Consequently the Ekman layer evolves
in a quasi-steady balance, keeping up with the interior flow as the vortex
decays in strength.

For strong vortices such as a hurricane, a generalization of this type of
analysis for a quasi-steady Ekman layer and its overlying axisymmetric vortex
evolution in approximate gradient-wind balance (rather than geostrophic, as
above) shows that the vortex spins down with a changing radial shape (rather
than an invariant one), a decay time, td, that additionally depends upon the
strength of the vortex, and an algebraic (rather than exponential) functional
form for the temporal decay law (Eliassen and Lystad, 1977). Nevertheless,
the essential phenomenon of vortex decay is captured in the linear model
(6.41).

6.1.7 Turbulent Ekman Layer

The preceding Ekman layer solutions are all based on the boundary-layer
approximation and eddy-viscosity closure, whose accuracies need to be
assessed. The most constructive way to make this assessment is by direct
numerical simulation of the governing equations (6.1), with uniform f = f0; a
Newtonian viscous diffusion (6.10) with large Re; an interior barotropic,
geostrophic velocity, ui; a no-slip bottom boundary condition at z = 0; an
upper boundary located much higher than z = h; a horizontal boundary
condition of periodicity over a spatial scale, L, again much larger than h; and
a long enough time of integration to achieve a statistical equilibrium state.
This simulation provides a uniform-density, homogeneous, stationary truth
standard for assessing the Ekman boundary-layer and closure approximations.

A numerical simulation requires a discretization of the governing equations
onto a spatial grid. The grid dimension, N , is then chosen to be as large as
possible on the available computer in order to have Re be as large as possible.
The grid spacing, e.g., ∆x = L/N , is determined by the requirement that the
viscous term — with the highest order of spatial differentiation, hence the
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finest scales of spatial variability (Sec. 3.7) — be well resolved. This requires
that the solution is everywhere spatially smooth between neighboring grid
points, and in practice this occurs only if a grid-scale Reynolds number,

Reg =
∆V∆x

ν
= O(1) ,

where ∆ denotes differences on the grid scale. For a planetary boundary layer
flow, this is equivalent to the requirement that the near-surface, viscous
sub-layer be well resolved by the grid. The value of the macro-scale
Re = V L/ν is then chosen to be as large as possible, by making
(V/∆V ) · (L/∆x) as large as possible. Present computers allow calculations
with Re = O(103) for isotropic, 3D turbulence. Although this is nowhere near
the true geophysical values for the planetary boundary layer, it is large enough
to lie within what is believed to be the regime of fully developed turbulence.
With the hypothesis that Re dependences for fully developed turbulence are
merely quantitative rather than qualitative, and associated more with changes
on the smaller scales than with the energy-containing scale, ∼ h, that controls
the Reynolds stress and velocity variance, then the results of these feasible
numerical simulations are relevant to the natural planetary boundary layers.

The u(z) profile calculated from the solution of such a direct numerical
simulation with f > 0 is shown in Fig. 6.6. It has a shape qualitatively
similar to the laminar Ekman layer profile (Sec. 6.1.3). The surface current is
rotated to the left of the interior current, though by less than the 45o of the
laminar profile (Fig. 6.7), and the currents spiral with height, though less
strongly so than in the laminar Ekman layer. Of course, the transport, T, still
must satisfy (6.21). The vertical decay scale, h∗, for u(z) is approximately

h∗ = 0.25
u∗
f
, (6.45)

where

u∗ =

√
|τs|
ρo

(6.46)

is the friction velocity based on the surface stress. In a gross way this can be

compared to the laminar decay scale, λ−1 =
√

2νe/f , from (6.29). The two
length scales are equivalent for an eddy viscosity value of

νe = .03
u2
∗
f

= 0.13 u∗h∗ . (6.47)
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Figure 6.6: Mean boundary-layer velocity for a turbulent Ekman layer at Re =
103. Axes are aligned with ui. (a) profiles with height; (b) hodograph. The solid
lines are for the numerical simulation, and the dashed lines are for a comparable
laminar solution with a constant eddy viscosity, νe. (From Coleman, 1999.)
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Figure 6.7: Sketch of clockwise rotated angle, β, of the surface velocity relative
to ui as a function of Re within the regime of fully developed turbulence, based
on 3D computational solutions. For comparison, the laminar Ekman layer value
is β = 45o. (Adapted from Coleman, 1999.)

238



The second relation is consistent with widespread experience that eddy
viscosity magnitudes diagnosed from minus the ratio of eddy flux and the
mean gradient (6.23) are typically a small fraction of the product of an eddy
speed, V ′, and an eddy length scale, L′. An eddy viscosity relation of this
form, with

νe ∼ V ′L′, (6.48)

is called a mixing-length estimate. Only after measurements or turbulent
simulations have been made are u∗ and h∗ (or V ′ and L′) known, so that an
equivalent eddy viscosity (6.47) can be diagnosed.

The turbulent and viscous stress profiles (Fig. 6.8) show a rotation and
decay with height on the same boundary-layer scale, h∗. The viscous stress is
negligible compared to the Reynolds stress except very near the surface. Near
the surface within the viscous sub-layer, the Reynolds stress decays to zero, as
it must because of the no-slip boundary condition, and the viscous stress
balances the Coriolis force in equilibrium, allowing the interior mean velocity
profile to smoothly continue to its boundary value. By evaluating (6.23)
locally at any height, the ratio of turbulent stress and mean shear is equal to
the diagnostic eddy viscosity, νe(z). Its characteristic profile is sketched in Fig.
6.9. It has a convex shape. Its peak value is in the middle of the planetary
boundary layer and is several times larger than the gross estimate (6.47). It
decreases toward both the interior and the solid surface. It is everywhere
positive, implying a down-gradient momentum flux by the turbulence. Thus,
the diagnosed eddy viscosity is certainly not the constant value assumed in the
laminar Ekman layer (Sec. 6.1.4), but neither does it wildly deviate from it.

The diagnosed νe(z) indicates that the largest discrepancies between
laminar and turbulent Ekman layers occur near the solid-boundary and
interior edges. The boundary edge is particularly different. In addition to the
thin viscous sub-layer, in which all velocities smoothly go to zero as z → 0,
there is an intermediate turbulent layer called the log layer or similarity layer.
Here the important turbulent length scale is not the boundary-layer thickness,
h∗, but the distance from the boundary, z. In this layer the mean velocity
profile has a large shear with a profile shape governed by the boundary stress
(u∗) and the near-boundary turbulent eddy size (z) in the following way:

∂u

∂z
= K

u∗
z

ŝ

=⇒ u(z) = K u∗ ln
[
z

zo

]
ŝ . (6.49)
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Figure 6.8: Momentum flux (or stress) profiles for a turbulent Ekman layer at
Re = 103. Axes are aligned with ui. (a) −u′w′(z); (b) Reynolds plus viscous
stress. The solid line is for the streamwise component, and the dashed line is for
the cross-stream component. Note that the Reynolds stress vanishes very near
the surface within the viscous sub-layer, while the total stress is finite there.
(From Coleman, 1999.)

240



u* h*
νe

h*
z  

.1 .2 .3 .40
0

.1

.2

.3

.4

.5

Figure 6.9: Sketch of eddy viscosity profile, νe(z), for a turbulent Ekman layer.
Note the convex shape with smaller νe near the boundary and approaching the
interior.
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This is derived by dimensional analysis, a variant of the scaling analyses so
frequently used above, as the only dimensionally consistent combination of
only u∗ and z, with the implicit assumption that Re is irrelevant for the log
layer (as Re→∞). In (6.49) K ≈ 0.4 is the empirically determined von
Karmén constant; zo is an integration constant called the roughness length
that characterizes the irregularity of the underlying solid surface; and ŝ is a
unit vector in the direction of the surface stress. Measurements show that K
does not greatly vary from one natural situation to another, but zo does. The
logarithmic shape for u(z) in (6.49) is the basis for the name of this
intermediate layer. The log layer quantities have no dependence on f , hence
they are not a part of the laminar Ekman layer paradigm (Secs. 6.1.3-5),
which is thus more germane to the rest of the boundary layer above the log
layer.

/ u*ν~

0.1 h*~

similarity or
surface layer

log or 

viscous sub−layer

Ekman layer
interior

u (z)

z

Figure 6.10: Sketch of mean velocity profile near the surface for a turbulent
Ekman layer. Note the viscous sub-layer and the logarithmic (a.k.a. surface or
similarity) layer that occur closer to the boundary than the Ekman spiral in
the boundary layer interior region.

242



In a geophysical planetary boundary layer context, the log layer is also called
the surface layer, and it occupies only a small fraction of the boundary-layer
height, h (e.g., typically 10-15%). (This is quite different from non-rotating
shear layers where the profile (6.49) extends throughout most of the turbulent
boundary layer.) Figure 6.10 is a sketch of the near-surface mean velocity
profile, and it shows the three different vertical layers in the turbulent shear
planetary boundary layer: viscous sub-layer, surface layer, and Ekman
boundary layer. In natural planetary boundary layers with stratification, the
surface similarity layer profile (6.49) also occurs but in a somewhat modified
form (often called Monin-Obukhov similarity). Over very rough lower
boundaries (e.g., in the atmosphere above a forest canopy or surface gravity
waves), the similarity layer is shifted to somewhat greater heights, well above
the viscous sub-layer, and the value of zo is much increased; furthermore, the
surface stress, τττs, is dominated by form stress due to pressure forces on the
rough boundary elements (Sec. 5.3.3) rather than viscous stress.

Under the presumption that the Reynolds stress profile approaches the
boundary smoothly on the vertical scale of the Ekman layer (Fig. 6.8), a
diagnostic eddy viscosity profile (6.23) in the log layer must have the form of

νe(z) =
u∗z

K
. (6.50)

This is also a mixing-length relationship (6.48) constructed from a
dimensional analysis with V ′ ∼ u∗ and L′ ∼ z. νe(z) vanishes as z → 0,
consistent with the shape sketched in Fig. 6.9. The value of νe(z) in the log
layer (6.50) is smaller than its gross value in the Ekman layer (6.47) as long as
z/h∗ is less than about 0.05, i.e., within the surface layer.

The turbulent Ekman layer problem has been posed here in a highly
idealized way. Usually in natural planetary boundary layers there are
important additional influences from density stratification and surface
buoyancy fluxes; the horizontal component of the Coriolis vector (Sec. 2.4.2);
and the variable topography of the bounding surface, including the moving
boundary for air flow over surface gravity waves and wave-averaged
Stokes-drift effects (Sec. 3.5) in the oceanic boundary layer.
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6.2 Oceanic Wind Gyre and Western

Boundary Layer

Consider the problem of a mid-latitude oceanic wind gyre driven by surface
wind stress over a zonally bounded domain. This is the prevailing form of the
oceanic general circulation in mid-latitude regions, excluding the ACC south
of 50o S. A wind gyre is a horizontal recirculation cell spanning an entire
basin, hence a largest scale of 5-10 ×103 km. The sense of the circulation is
anticyclonic in the sub-tropical zones (i.e., the latitude band of 20-45o) and
cyclonic in the subpolar zones (45-65o); Fig. 6.11. This gyre structure is a
forced response to the general pattern of the mean surface zonal winds (Fig.
5.1): tropical easterly Trade Winds, extra-tropical westerlies, and weak or
easterly polar winds.

This problem involves the results of both the preceding Ekman layer
analysis and a western boundary current that is a lateral, rather than vertical,
boundary layer within a wind gyre with a much smaller lateral scale, < 102

km, than the gyre itself. This problem was first posed and solved by Stommel
(1948) in a highly simplified form (Sec. 6.2.1-2). It has been extensively
studied since then — almost as often as the zonal baroclinic jet problem in
Sec. 5.3 — because it is such a central phenomenon in oceanic circulation and
because it has an inherently turbulent, eddy–mean interaction in statistical
equilibrium (Sec. 6.2.4). The wind gyre is yet another perennially challenging
GFD problem.

6.2.1 Posing the Problem

The idealized wind gyre problem is posed for a uniform density ocean in a
rectangular domain with a rigid lid (Sec. 2.2.3) and a steady zonal wind stress
at the top,

τττs = τxs (y) x̂ (6.51)

(Fig. 6.12). Make the β-plane approximation (Sec. 2.4) and assume the gyre
is in the northern hemisphere (i.e., f > 0). Also assume that there are Ekman
boundary layers both near the bottom at z = 0, where u = 0 as in Sec.
6.1.2-4, and near the top at z = H with an imposed stress (6.51) as in Sec.
6.1.5. Thus, the ocean is split into three layers (Fig. 6.13). These are the
interior layer between the two boundary layers, and the latter are much
thinner than the ocean as a whole. Based on an eddy-viscosity closure for the
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Figure 6.11: Observational estimate of time-mean sea level relative to a geopo-
tential iso-surface, η. The estimate is based on near-surface drifting buoy tra-
jectories, satellite altimetric heights, and climatological winds. gη/f can be
interpreted approximately as the surface geostrophic streamfunction. Note the
subtropical and subpolar wind gyres with sea-level extrema adjacent to the con-
tinental boundaries on western sides of the major basins and the large sea-level
gradient across the Antarctic Circumpolar Current. (From Niiler et al., 2003.)
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vertical boundary layers (Sec. 6.1.3) and the assumption that the Ekman
number, E in (6.44), is small, then an analysis for the interior flow can be
made similar to the problem of vortex spin down (Sec. 6.1.6).

τ (y)x
s

z y
x

Lx

Ly

Hy

Figure 6.12: Oceanic gyre domain shape and surface zonal wind stress, τ xs (y).
The domain is rectangular with a flat bottom (i.e., Lx×Ly ×H). The density
is uniform.

Within the interior layer, the 3D momentum balance is approximately
geostrophic and hydrostatic. A scale estimate with V = 0.1 m s−1,
L = 5× 106 m, H = 5 km, and f = 10−4 s−1 implies a Rossby number of
Ro = 0.5× 10−4 � 1 and an aspect ratio of H/L = 10−3 � 1. So these
approximations are well founded. Because of the Taylor-Proudman Theorem
(6.15), the horizontal velocity and horizontal pressure gradient must be
independent of depth (i.e., barotropic) within the interior layer, and because
of 3D continuity, the vertical velocity is at most a linear function of z in the
interior. The Ekman layers are not constrained by the Taylor-Proudman
Theorem since the large turbulent Reynolds stress there makes their
momentum balance (6.19)-(6.20) ageostrophic.

The relevant Ekman layer properties are the top and bottom horizontal
transports,

Tek, top = − ẑ× τττs
ρ0f
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Figure 6.13: Vertical layers for an uniform-density oceanic wind gyre. The
interior, hydrostatic, geostrophic, horizontal velocity is independent of depth,
and there are surface and bottom Ekman layers to accommodate the surface
stress and no-slip boundary conditions, respectively.
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Tek, bot =
εek, bot
f

(
−uibot − vibot, uibot − vibot

)
, (6.52)

and Ekman pumping,

wek, top = ẑ · ∇∇∇×
[
τxs x̂

ρof

]
= − 1

ρo

∂

∂y

[
τxs
f

]

wek, bot =
εek, bot
f

ζ ibot +
βεek, bot
f 2

(
uibot − vibot

)
(6.53)

(Secs. 6.1.4-5). The subscripts “ek, top” and “ek, bot” denote the surface and
bottom Ekman boundary layers, respectively, and the superscript “i” denotes
the interior value outside of the boundary layer.

In the interior the flow is barotropic. Therefore, the depth-averaged
vorticity for the interior region is simply the vorticity itself,

1

HI

∫ H−hek, top

hek, bot

ζ dz = ζ i(x, y, t) , and ζ(z = hek, bot) = ζ i . (6.54)

ζ i is the interior relative vorticity ,and

HI ≡ H − hek, top − hek, bot ≈ H

is the thickness of the interior region. The depth-averaged vorticity equation
(cf., (3.24)) can be written in the interior as

∂ζ i

∂t
+ uih · ∇∇∇(f(y) + ζ i) = −(f + ζ i)∇∇∇ · uih + F i . (6.55)

Use the Ekman pumping relations (6.53) and the continuity equation to
evaluate the planetary vortex stretching (i.e., the first right-side term in
(6.55):

−f∇∇∇ · uih = f
∂wi

∂z

=
f

H
(wek, top − wek, bot)

= − 1

ρ0H

∂τxs
∂y

+
βτxs
fρ0H

− εek, bot
H

(
ζ i − β

f
(ui − vi)

)
. (6.56)

Equation (6.55) is further simplified here by the additional assumptions that
the flow is steady in time (∂tζ

i = 0); that the interior non-conservative term,
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F i, is negligible; and the flow is weak enugh that the nonlinear terms are also
negligible. The result is

βHvi = − 1

ρ0

∂τxs
∂y

+
βτxs
fρ0

− εek, bot ζ i −
βεek, bot
f

(
ui − vi

)
. (6.57)

This is a formula for the interior meridional transport, Hvi. To obtain the
expressions for the total meridional transport, T y ≡ HV , viz.,

HV = Hvi + T yek, top + T yek, bot ,

multiply the T yek expressions in (6.52) by β and add them to (6.58):

β
(
Hvi + T yek, top + T yek, bot

)
= − 1

ρ0

∂τxs
∂y

+
βτxs
fρ0

− εek, bot ζ i −
βεek, bot
f

(
ui − vi

)

−β τxs
ρ0f

+ β
εek, bot
f

(ui − vi)

=⇒ βHV = − 1

ρ0

∂τxs
∂y
− εek, bot ζ i . (6.58)

As the final step in the derivation of the barotropic wind-gyre equation,
vertically integrate the continuity equation with the kinematic boundary
condition for flat top and bottom surfaces, i.e., w = 0. The result is that the
depth-averaged horizontal velocity (U, V ) is horizontally non-divergent. Hence
a transport streamfunction, Ψ(x, y) [m3 s−1], can be defined by

T x = HU = − ∂Ψ

∂y
, T y = HV =

∂Ψ

∂x
. (6.59)

Ψ differs from the usual streamfunction, ψ, by an added depth integration, so
here Ψ = Hψ.

Since the bottom Ekman-layer velocity is the same size as the interior
velocity (to be able satisfy the no-slip condition at the bottom), the bottom
transport will be small compared to the interior transport by the ratio,
hek, bot/H = E1/2 � 1. On the other hand, the surface Ekman and interior
transports are comparable, with the surface Ekman velocity therefore much
larger than the interior velocity. The curl of the total transport (6.59),
neglecting the O(E1/2) bottom Ekman-layer contribution, gives the relation,

∇2Ψ ≈ Hζ i + ẑ · ∇∇∇× τxs x̂

ρof
.
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Using this for ζ i and (6.59) for V to substitute into (6.58) yields the steady,
linear, barotropic, gyre, potential-vorticity equation,

εek, bot
H
∇2Ψ + β

∂Ψ

∂x
= − 1

ρ0

∂τxs
∂y

+
εek, bot
H

ẑ · ∇∇∇× τxs x̂

ρof

≈ − 1

ρ0

∂τxs
∂y

, (6.60)

where the the second right-side term in the first line is O(ε/fH) = O(E1/2)
relative to the first one by (6.33) and (6.44), hence negligibly small. Equation
(6.60) will be solved in Sec. 6.2.2.

Discussion: As an alternative path to the same result, the gyre equations
(6.58)-(6.60) could be derived directly and more concisely from a vertical
integral of the steady, linear, conservative, mean-field vorticity equation,

βv = f
∂w

∂z
− ẑ · ∇∇∇× ∂

∂z
w′u′

using the appropriate kinematic and stress boundary conditions. But the
preceding derivation is preferable because it emphasizes the role of the Ekman
boundary layers as depicted in Fig. 6.13.

It is noteworthy that the resulting vorticity equation (6.58) has apparent
body forces that are equivalent to those contained in the non-conservative
forces, Fn, for a N -layer quasigeostrophic model (Sec. 5.3). To see this, take
the curl of (5.79), perform a discrete vertical integration (to match the
depth-integrated, single-layer situation here), and neglect the eddy-viscosity
contributions. The result is the equivalence relation,

ΣN
n=1 Hn ẑ · ∇∇∇× Fn = − 1

ρo

∂τxs
∂y
− εbot ζbot .

This expression is equal to the right side of (6.58) for the particular choice of
the bottom-drag coefficient,

εbot = Hf0

√
E

2
=

√
νef0

2
,

consistent with (6.33) and (6.44).

Therefore, there is an equivalence between two different conceptions of a
layered quasigeostrophic model with vertical boundary stresses:
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• Explicitly resolve the Ekman layers between the vertical boundaries and
the adjacent interior quasigeostrophic layers, n = 1 and N (as done
here), with the Ekman transport, Tek, added to the interior
ageostrophic horizontal transport, Hnua, n, and the Ekman pumping,
wek, contributing to the vortex stretching in the vorticity and
potential-vorticity equations.

• Implicitly embed the Ekman layers within the layers n = 1 and N
through an equivalent body force in Fn (as in Sec. 5.3.1); the
consequences are that the Ekman transport is a depth-weighted fraction,
Tek/Hn, of the layer ageostrophic flow, Hnua, n, and the resulting
vorticity and potential-vorticity equations have forcing terms that are
identical to the consequences of the Ekman pumping, wek.

The first conception is the more fundamentally justifiable one, but the second
one is generally simpler to use since, once F is specified, the Ekman boundary
layers can be disregarded. This equivalence justifies a posteriori the model
formulation for the equilibrium zonal baroclinic jet (Sec. 5.3.1), and it is used
again for the equilibrium wind gyre problem (Sec. 6.2.4).

6.2.2 Interior and Boundary-Layer Circulations

A solution to the steady, linear, barotropic gyre model (6.60) is found now for
a rectangular, flat-bottomed domain and an idealized wind-stress pattern like
that in Fig. 6.12, representing mid-latitude westerly surface winds and
tropical and polar easterlies, viz.,

τxs (y) = τ0 cos

[
2πy

Ly

]

=⇒ ∂τxs
∂y

= − 2πτ0

Ly
sin

[
2πy

Ly

]
. (6.61)

The origin for y is in the middle of the domain in Fig. 6.12. This wind pattern
will be shown below to give rise to a double gyre pattern of oceanic circulation,
with a cyclonic circulation to the north and an anticyclonic one to the south.

Equation (6.60) can be recast in terms of the more familiar velocity
streamfunction, ψ = Ψ/H:

D∇2ψ +
∂ψ

∂x
= A sin

[
2πy

Ly

]
(6.62)
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for

D ≡ f0

β

√
E

2
=

εbot
βH

and A ≡ 2πτ0

ρoβHLy
. (6.63)

D has the dimensions of length, and A has the dimensions of velocity.

Equation (6.62) is a second-order, elliptic, two-dimensional, partial
differential equation in (x, y). It requires one lateral boundary condition on ψ
for well-posedness. It comes from the kinematic condition of no flow through
the boundary,

u · n̂ =
∂ψ

∂s
= 0

=⇒ ψ = C → 0 , (6.64)

where C is a constant along the boundary. (n, s) are the normal and
tangential coordinates at the boundary that here is located at x = 0, Lx and
y = −Ly/2, Ly/2. For barotropic flow in a simply connected domain, C can
be chosen to be zero without loss of generality, since only horizontal gradients
of ψ have a physical meaning in this context. (This choice is generally not
allowed for shallow-water or baroclinic dynamics since ψ or its purely vertical
derivatives appear in the governing equations; cf., (4.113) or (5.27).)

An exact, albeit complicated, analytic solution expression can be written for
(6.62)-(6.64). However, it is more informative to find an approximate solution
using the method of boundary layer approximation based upon D � Lx, which
is a consequence of E � 1 by (6.44) and (6.63). Implicitly this method is used
in Sec. 6.1 for the Ekman-layer problem by neglecting horizontal derivatives
of the mean fields and treating the finite fluid depth as infinite. In both cases
the approximate boundary-layer equations have higher-order derivatives in the
boundary-normal direction than arise in either the interior problem or in the
along-boundary directions. This method of asymptotic analysis is sometimes
called singular perturbation analysis.

By neglecting the term of O(D) in (6.62), the partial differential equation is

∂ψ

∂x
= A sin

[
2πy

Ly

]
. (6.65)

Note that the highest-order spatial derivatives have dropped out by this
approximation, which will be shown to be appropriate for the interior region
but not the lateral boundary layer. Equation (6.65) can be integrated in x,
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using the boundary condition (6.64) at x = Lx:

ψ = ψi(x, y) ≡ −A (Lx − x) sin

[
2πy

Ly

]
. (6.66)

This expression for the horizontal gyre circulation is called the Sverdrup
transport. After further multiplication of ψ by H, Ψ is the volume transport
around the gyre (n.b., but not a column transport; Sec. 6.1.1).

From (6.61) and (6.66), the Sverdrup transport is

Ψ(x, y) = − 1

ρoβ

∫ Lx

x
dx [ẑ · ∇∇∇h × τττs] .

In the interior of the ocean the barotropic streamfunction is proportional to
the curl of the wind stress whenever other terms (e.g., bottom drag) in the
depth-integrated vorticity balance are negligible, as they are assumed to be
here. The origin of this relationship, of course, is the formula for the surface
Ekman pumping (6.40).

Note that (6.66) satisfies (6.64) at all of the boundaries except the western
one, x = 0, where

ψi(0) = −ALx sin

[
2πy

Ly

]
6= 0 . (6.67)

The fact that (6.66) satisfies the boundary conditions at y = −Ly/2, Ly/2 is
due to the artful coincidence of the boundary locations with minima in τ xs ;
otherwise, the problem solution would be somewhat more complicated,
although essentially similar.

To complete the solution for (6.62)-(6.64), the boundary-layer
approximation is made near x = 0. Define a non-dimensional coordinate,

ξ ≡ x

D
, (6.68)

and assume that the the solution form is

ψ(x, y) = ψi(x, y) + ψb(ξ, y) . (6.69)

(cf., the Ekman-layer decomposition in (6.16)). Equation (6.68) is substituted
into (6.62), and whenever an x-derivative is required for a boundary-layer
quantity, it is evaluated with the relation,

∂

∂x
=

1

D

∂

∂ξ
.
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Grouping the terms in powers of D,

D−1

[
∂2ψb

∂ξ2
+
∂ψb

∂ξ

]

+ D0

[
∂ψi

∂x
− A sin

[
2πy

Ly

] ]

+ D1

[
∇2ψi +

∂2ψb

∂y2

]
= 0 . (6.70)

By treating D as an small asymptotic ordering parameter (i.e., small
compared to Lx), terms of O(D1) are negligible. The terms of O(D0) cancel
by (6.66). So focus on the leading-order terms of O(D−1) to pose the
approximate boundary-layer equation for ψb(ξ, y):

∂2ψb

∂ξ2
+
∂ψb

∂ξ
= 0

ψb = −ψi(0) at ξ = 0

ψb → 0 as ξ →∞ . (6.71)

The first boundary condition assures that there is no normal flow (6.64), and
the second condition assures that ψb is confined to near the western boundary.
The first condition provides the only “forcing” for ψb that precludes a trivial
solution. The raison d’être for the western boundary layer is to divert the
interior’s normal flow at x = 0 to be directed parallel to the boundary; this is
equivalent to saying the boundary layer provides a compensating meridional
volume transport for the interior Sverdrup transport.

The solution to (6.71) is

ψb = −ψi(0) e−ξ, (6.72)

and the total solution to (6.62)-(6.64) is approximately

ψ(x, y) = −ALx sin

[
2πy

Ly

] (
1− x

Lx
− e−x/D

)
(6.73)

when D/Lx � 1. The spatial pattern for ψ is shown in Fig. 6.14. It is
composed of two recirculating gyres (i.e., with closed contours of ψ), the
subpolar gyre in the north is cyclonic, and the subtropical gyre in the south is
anticyclonic. The gyres are separated by the zero in the wind-curl coinciding
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Figure 6.14: Transport streamfunction, Ψ(x, y), for linear oceanic wind gyres.
The subpolar gyre is to the north (in the northern hemisphere) (indicated by
dashed contours for Ψ < 0), and the subtropical gyre is to the south (indicated
by solid contours for Ψ > 0).
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with the maximum of the westerly winds at y = 0. Each gyre has a relatively
narrow (i.e., ∆x ∼ D) boundary current that connects the interior Sverdrup
streamlines with streamlines parallel to the western boundary.

An obvious question is why the boundary current occurs on the western
boundary. The answer is that the boundary-layer equation (6.71) only has a
solution that decays toward the east for D > 0 (due to the positive signs of β
and the bottom drag, εbot) and none that decays toward the west. So the only
way that the interior mass transport can be balanced by a boundary-layer
transport is for the boundary layer to be on the western side of the basin.
This is why it is correct to integrate the Sverdrup solution (6.66) from the
eastern boundary with the boundary condition, ψi = 0, using the single-sided
integration constant available for the first-order differential equation (6.65).

The volume transport across any horizontal section is expressed as

T⊥ ≡
∫ su

sl

ds
∫ H

0
dz u · n̂ = H [ψ(su)− ψ(sl) ] . (6.74)

Here n is the horizontal coordinate across the section, s is the horizontal
coordinate along it, and the section spans sl ≤ s ≤ su. The particular value,
T⊥ = HALx, is the maximum transport in each of the gyres in (6.73) and Fig.
6.14. It represents the transport magnitude between any boundary and the
gyre centers just interiorward of the western boundary layer at y = Ly/4 and
3Ly/4.

With this approximate boundary-layer solution, the meridional velocity in
(6.73) is

v(x, y) =
∂ψ

∂x
≈ −ALx

D
sin

[
2πy

Ly

] (
e−x/D − D

Lx

)
. (6.75)

Its structure is sketched in Fig. 6.15. There is a narrow meridional western
boundary current that has a much stronger velocity than the interior Sverdrup
flow. It is northward in the subtropical gyre and southward in the subpolar
gyre. The meridional volume transports (i.e., the x, z integrals of v) of the
boundary-layer and Sverdrup circulations are in balance at every latitude.

6.2.3 Application to Real Gyres

The western boundary currents in the preceding section can be identified —
at least qualitatively with respect to location and flow direction — with the
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Figure 6.15: Meridional velocity profile, v(x), for a barotropic oceanic wind
gyre across a zonal section that runs through the middle of the subtropical gyre
(at y = Ly/2). Note the narrow, poleward western boundary current and the
broad, Equatorward Sverdrup flow in the interior.
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strong, persistent, subtropical and subpolar western boundary currents in the
North Atlantic Ocean (Gulf Stream and Labrador Current) and North Pacific
Ocean (Kuroshio and Oyashio Currents). They have subtropical counterparts
in the southern hemisphere (i.e., Brazil Current in the South Atlantic, East
Australia Current in the South Pacific, and Agulhas Current in the South
Indian) but not subpolar ones since the Antarctic Circumpolar (ACC) region
is zonally unbounded by continents and does not have a wind gyre circulation
(Sec. 5.3).

Ly/2−
Lx

Ψmax

0

0

x

y

Figure 6.16: Sketch of the transport streamfunction, Ψ(x, y), for a steady, non-
linear, barotropic subtropical gyre in the northern hemisphere. In comparison
with the linear solution in Fig. 6.14, note the migration of the gyre center to
the northwest and the associated narrow separation of the western boundary
current into the interior near the northern gyre boundary.

How accurate and dynamically consistent is the solution in Sec. 6.2.2 for
real wind gyres? Both to give a physical interpretation of the preceding
solution and to provide a means of assessing its underlying approximations,
empirically based estimates are made for the magnitudes for various
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properties of the gyre circulation:

H = 5× 103 m , Lx ≈ Ly = 6× 106 m ,

f0 = 10−4 s−1 (at 45o N) , β = 2× 10−11 m−1 s−1 ,

τ0 = 0.1 N m−2 = ρo × 10−4 m2 s−2, hek, top = 100 m ,

=⇒ vi ∼ A = 10−3 m s−1 .

=⇒ νe = 0.5 m2 s−1 , vek, top = 10−2 m s−1 , and E = 10−4 .

=⇒ ∆xb ∼ D = 5× 104 m and
D

Lx
= 0.008 .

=⇒ vb ∼ ALx
D

= 0.13 m s−1 .

=⇒ max[T⊥] = HALx = 31.5× 106 m3 s−1 ≡ 31.5 Sv . (6.76)

The magnitudes in the first three lines are chosen from measurements of wind
gyres and their environment, and the magnitudes in the final five lines are
deduced from the analytic gyre solution in Sec. 6.2.2. In the third line the
unit for force is a Newton, 1 N = kg m s−2. In the final line the unit, 1 Sv =
106 m3 s−1, is introduced. It is called a Sverdrup, and it is the most commonly
used unit for oceanic volume transport.

The a posteriori consistency of the simple gyre model and its solution (Sec.
6.2.2) can now be checked for several assumptions that were made in its
derivation. This kind of analysis is a necessary step to decide whether an
approximate GFD analysis is both dynamically self-consistent and consistent
with nature.

E � 1 and D/Lx � 1: From (6.76) these conditions are well satisfied.

Ro� 1: Estimates from (6.76) give Roi = 2× 10−6 and Rob = 2× 10−2. Both
of these Rossby numbers are small, consistent with the assumptions made in
deriving the model (6.58).

|ζt| � |βv|: This can be alternatively expressed as a condition on the time
scale of wind variation, t∗, in order for the steady-state response assumption
to be valid; viz., in the interior,

t∗ �
ζ

βv
≈ 1

βLx
= 104 s < 1 day .

In the western boundary layer, the analogous condition is t∗ � (Dβ)−1 ≈ 106

s ≈ 10 day, which is much more restrictive since D � Lx. These time scales
relate to barotropic Rossby wave propagation times across the basin and
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boundary layer, respectively, assuming that the wave scale is equal to the
steady current scale. Obviously, one must accept the more stringent of the
two conditions and conclude that this theory is only valid for steady or
low-frequency wind patterns, rather than passing storms. In the real ocean
the mean gyres are baroclinic (i.e., with u largely confined in and above the
pycnocline), so the relevant Rossby wave propagation times are baroclinic
ones, Lx/(βR

2
1) and D/(βR2

1), respectively, with R1 = 5× 104 m; the former
condition is the longer time of ≈ 2 yrs. So the steady gyre assumption is only
valid for wind fields averaged over several years.

|u · ∇∇∇ζ| � |βv|: In the interior this condition is re-expressed as

1 � vi

βL2
y

≈ 10−6 ,

and it is well satisfied (cf., (4.125)). In the boundary layer, there is a bigger
velocity, vb, a shorter cross-shore scale, D, and the same alongshore scale, Ly;
so the condition for neglecting advection is

βvb � vb
∂ζb

∂y
,

or 1 � vb

βDLy
≈ 2× 10−2 . (6.77)

This seems to be self-consistent. However, it has been discovered by solving
computationally for nonlinear, time-dependent solutions of (6.58) that they
develop a meridionally narrow region of boundary-current separation, unlike
the broad separation region for the linear solution in Fig. 6.14. (And the
western boundary currents in nature also have a narrow separation region.) A
sketch of a hypothetical alternative separation flow pattern is in Fig. 6.16. If
D is used as an estimate of both the boundary-layer and separation-flow
widths, a more appropriate check on neglecting the nonlinearity is

1� vb

βD2
≡ L2

β

D2
≈ 2 , (6.78)

which is not well satisfied. In the nonlinear solution in Sec. 6.2.4, the
boundary current width is approximately Lβ = (vb/β)1/2. (Lβ has the same
definition as the Rhines scale (Sec. 4.8.1), although it has a different meaning
in the present context.) If one further takes in account the fact that real wind
gyres are baroclinic, then vb is even larger by a factor of approximately
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H/hpycnocline to achieve the same boundary-layer transport, and the revised
condition (6.78) is even more strongly violated.

Therefore, it must be concluded that this linear gyre solution is not a
realistic one principally because of its neglect of advection in the western
boundary current, even though it is an attractive solution because it has
certain qualitative features in common with observed oceanic gyres. (The
wind stress would have to be an order of magnitude smaller for the gyre
circulation to have a self-consistent linear dynamics.) Nonlinear dynamical
influences are needed for realism, at least for the western boundary layer and
its separated extension into the interor circulation. However, nonlinear mean
gyre circulations are usually unstable, as is true for most elements of the
oceanic and atmospheric general circulation. This implies that a truly relevant
solution will include transient currents as well as mean currents and so be yet
another example of eddy–mean interaction. Since the primary instability
mechanism is a mixture of barotropic and baroclinic types (Secs. 3 and 5), a
relevant oceanic model must also be fully baroclinic. For all of these reasons,
the model of a linear, steady, barotropic gyre is an instructive GFD example,
but it cannot easily be extended to real oceanic gyres without major
modifications. To demonstrate how a more general model compares with the
idealized analytic model, a computational solution for a baroclinic wind gyre
is examined in the next section.

6.2.4 Turbulent Baroclinic Wind Gyres

The N -layer, adiabatic, quasigeostrophic model (Sec. 5.2) is also appropriate
for examining the problem of a turbulent statistical equilibrium of the
baroclinic double wind gyre. The problem posed here is nearly the same as for
the zonal jet (Sec. 5.3), except the side boundaries are closed zonally as well
as meridionally, and the steady surface wind pattern for τ xs (y) (Fig. 6.12)
spans a greater meridional range to encompass both a subtropical gyre and a
subpolar gyre (Fig. 6.14). As in Sec. 5.3, the gyre solution is based on the
β-plane approximation and a background stratification, N (z), with a shallow
pycnocline (around 600 m depth) and baroclinic deformation radii, Rm,
m ≥ 1, much smaller than the basin dimensions, Lx = 3600 km and Ly = 2800
(i.e., somewhat smaller than the value in (6.76) to reduce the size of the
computation). The horizontal domain is rectangular, and the bottom is flat
with H = 5 km. The vertical layer number is N = 8, which rather higher than
is necessary to obtain qualitatively apt solution behaviors.
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Figure 6.17: Instantaneous quasigeostrophic streamfunction, ψn(x, y) in three
different layers with mean depths of 150, 850, and 1750 m (in rows) from an
8-layer model of a double wind-gyre at two different times 60 days apart (in
columns). Note the meandering separated boundary current and the break-off
of an anticyclonic eddy into the subpolar gyre. (From Holland, 1986.)
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After spin-up from a stratified state of rest over a period of about ten years,
a turbulent equilibrium state is established. The instantaneous flow (Fig.
6.17) shows the expected subtropical (ψ > 0) and subpolar (ψ < 0) gyres with
narrow western boundary currents that separate and meander as a narrow jet
in the region between the gyres. These gyre-scale flow patterns are most
evident in the upper ocean, although there is abundant eddy variability as
well. At greater depths the mesoscale eddies are increasingly the dominant
type of current. The horizontal scales of the eddies, boundary current, and
extension jet are all comparable both to the largest baroclinic deformation
radius, R1 ≈ 50 km, and to the inertial boundary current scale,

Lβ =
√
V/β ≈ 100 km based on the boundary current velocity (6.78) (rather

than on the linear bottom-drag scale, D, in Sec. 6.2.2). The comparability of
these different horizontal scales indicates that the eddies arise primarily from
the instability of the strong boundary current and separated jet through a
mixture of barotropic and baroclinic types because of the presence of
significant horizontal and vertical mean shears in the boundary currents and
elsewhere.

The time-mean flow (Fig. 6.18) does not show the transient mesoscale
eddies because of the averaging. The Sverdrup gyre circulation is evident (cf.,
Fig. 6.14), primarily in the upper ocean and away from the strong boundary
and separated jet currents. At greater depth and in the neighborhood of these
strong currents are recirculation gyres whose peak transport is several times
larger than the Sverdrup transport. These recirculation gyres arise in response
to downward eddy momentum flux by isopycnal form stress (cf., Sec. 5.3.3).
The separated time-mean jet is a strong, narrow, surface-intensified current
(Fig. 6.19, top). Its instantaneous structure is vigorously meandering and has
a eddy kinetic energy envelope that extends widely in both the horizontal and
vertical directions away from the mean current that generates the variability
(Fig. 6.19, bottom).

Overall, the mean currents and eddy fluxes and their mean dynamical
balances have a much more complex spatial structure in turbulent wind gyres
than in zonal jets. While simple analytic models of steady linear gyre
circulations (Sec. 6.2.2) and their normal-mode instabilities (e.g., as in Secs.
3.3 and 5.2) provide a partial framework for interpreting the turbulent
equilibrium dynamics, obviously they do so in a mathematically and
physically incomplete way. The eddy–mean interaction includes some familiar
features — e.g., Rossby waves and vortices; barotropic and baroclinic
instabilities; turbulent cascades of energy and enstrophy and dissipation (Sec.
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Figure 6.18: Time-mean streamfunction, ψn(x, y), at the same mean depths
as in Fig. 6.17 (left column) and interface displacement, ηn+.5(x, y), at mean
depths of 300, 1050, and 2000 m (right column) in an 8-layer model of a double
wind-gyre. Note the Sverdrup gyre in the upper ocean, the separated western
boundary currents, and the recirculation gyres in the abyss. (From Holland,
1986.)
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Figure 6.19: A meridional cross-section at mid-longitude in the basin in an
8-layer model of a double wind-gyre. (Top) Mean zonal velocity, u (y, z). The
contour interval is 0.05 m s−1, showing a surface jet maximum of 0.55 m s−1, a
deep eastward flow of 0.08 m s−1, and a deep westward recirculation-gyre flow
0.06 m s−1. (Bottom) Eddy kinetic energy, 1

2
(u′)2 (y, z). The contour interval

is 10−2 m2 s−2, showing a surface maximum of 0.3 m2 s−2 and a deep maximum
of 0.02 m2 s−2. (From Holland, 1986.)
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3.7); turbulent parcel dispersion (Sec. 3.5); lateral Reynolds stress and eddy
heat flux (Secs. 3.4 and 5.2.3); downward momentum and vorticity flux by
isopycnal form stress (and important topographic form stress if B 6= 0) (Sec.
5.3.3); top and bottom planetary boundary layers (Sec. 6.1); and regions of
potential vorticity homogenization (Sec. 5.3.4) — but their comprehensive
synthesis remains illusive.

Rather than pursue this problem further, this seems an appropriate point to
end this introduction to GFD — contemplating the relationship between
simple, idealized analyses and the actual complexity of geophysical flows
evident in measurements and computational simulations.
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Afterword

This book, of necessity, gives only a taster’s sampling of the body of posed and
partially solved problems that comprises GFD. A comparison of the material
here with other survey books (e.g., those cited in the Bibliography) indicates
the great breadth of the subject, and, of course, the bulk of the scientific
record for GFD is to be found in journal articles, only lightly cited here.

Most of the important GFD problems have been revisited frequently. The
relevant physical ingredients — fluid dynamics, material properties, gravity,
planetary rotation, and radiation — are few and easily stated, but the
phenomena that can result from their various combinations are many. Much
of the GFD literature is an exploration of different combinations of the basic
ingredients, always with the goal of discovering better paradigms for
understanding the outcome of experiments, observations, and computational
simulations.

Mastery of this literature is a necessary part of a research career in GFD,
but few practitioners choose to read the literature systematically. Instead the
more common approach is to address a succession of specific research
problems, learning the specifically relevant literature in the process. My hope
is that the material covered in this book will provide novice researchers with
enough of an introduction, orientation, and motivation to go forth and
multiply.
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Glossary of Symbols
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Symbol Name Definition Site

a Earth’s radius Sec. 2.4
— ∗ boundary location Eq. 4.61
a initial position of a parcel Eq. 2.1
A absolute momentum Eq. 4.54
— wind gyre forcing amplitude Eq. 6.62
A horizontal within C Eq. 3.17
APE available potential energy 4.20
b pycnocline depth Eq. 4.9
— buoyancy, −gρ/ρ0 Eq. 5.9
B topographic elevation 4.1
B Burger number Eq. 4.105
c, C phase speed Eqs. 3.94 & 5.56
cg wave group velocity Eq. 4.34
cp heat capacity (constant pressure) Eq. 2.31
— wave phase velocity Eq. 4.33
cv heat capacity (constant volume) after Eq. 2.11
C circulation Eq. 2.20
Cs sound speed after Eq. 2.34
C closed line Eq. 2.20
D western boundary layer width Eq. 6.62
D isopycnal form stress Eq. 5.86
Dbot topographic form stress Eq. 5.85
D /Dt substantial derivative Eq. 2.3
e internal energy Eq. 2.8
ê unit vector Eq. 2.50
E energy Eq. 4.17
— Ekman number Eq. 6.44
E Eliassen-Palm flux end of Sec. 5.3
Ens enstrophy Eq. 3.111

∗

— denotes the same symbol with a different meaning.

Table 6.1: Glossary of Symbols
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Symbol Name Definition Site

f Coriolis frequency Eq. 2.91
fh horizontal Coriolis frequency Eq. 2.115
F (p) pressure coordinate Eqs. 2.75-2.76
F non-conservative force Eq. 2.2
— boundary function Eq. 2.12
F ẑ · ∇∇∇× F Eq. 3.24
Fr Froude number Eq. 4.42
g gravitational acceleration after Eq. 2.2
g′ reduced gravity Eq. 4.12
g′I 2-layer reduced gravity after Eq. 5.2
g′n+.5 N-layer reduced gravity after Eq. 5.19
G pressure function Eq. 2.86
Gm(n), Gm(z) modal transformation function Eq. 5.28
h free-surface height Eq. 2.16
— layer thickness Eq. 4.1
— boundary-layer thickness Sec. 6.1
hek Ekman layer depth after Eq. 6.44
hpycnocline depth of oceanic pycnocline after Eq. 6.78
h∗ turbulent Ekman layer thickness Eq. 6.45
H oceanic depth Sec. 2.2.3
— atmospheric height Eqs. 2.60-2.63
— vertical scale Sec. 2.3.4
— Hamiltonian function Eq. 3.69
HI oceanic interior thickness Eq. 6.54
i

√
−1 after Eq. 2.68

I identity matrix Eq. 5.40
I identity vector after Eq. 5.40
I vorticity angular momentum Eq. 3.71
J Jacobian operator Eq. 3.26
k x wavenumber Eq. 3.32
— |k| after 3.113
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Symbol Name Definition Site

kE energy centroid wavenumber Eq. 3.116
k wavenumber vector Eq. 3.112
k∗ dominant wavenumber component Eq. 4.34
K wavenumber magnitude Eq. 4.37
— von Karmen’s constant Eq. 6.49
KE kinetic energy Eq. 3.2
l, ` y wavenumber Eq. 3.32
L (horizontal) length scale before Eq. 2.4
Lβ Rhines scale Eq. 4.128
— inertial western boundary current width Eq. 6.78
Lx zonal domain width after Eq. 6.64
Ly meridional domain width Sec. 5.3.1
Lτ horizontal scale of wind stress Sec. 5.3.1
m azimuthal wavenumber Eq. 3.76
— vertical mode number Eq. 5.28
M Mach number Eq. 2.34
— mass Eq. 4.14
n vertical layer number Eq. 5.17
n̂ unit normal vector after Eq. 2.14
N(z) buoyancy frequency Eq. 2.68
— number of vertical layers befor Eq. 5.17
N (z) buoyancy frequency after Eq. 5.27
r trajectory near Eq. 2.1
p pressure Eq. 2.2
P oscillation period after Eq. 2.68
— centrifugal pressure Eq. 2.99
— potential vorticity matrix operator Eq. 5.41
PE potential energy Eq. 4.19
P discriminant for baroclinic instabilty Eq. 5.62
q specific humidity after Eq. 2.11
— potential vorticity Eqs. 3.28, 4.24
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Symbol Name Definition Site

qQG quasigeostrophic potential vorticity Eq. 4.113
qE Ertel potential vorticity Eq. 5.24
qIPE isentropic Primitive-Equation potential vorticity Eq. 5.23
Q potential vorticity Eq. 4.56
Q heating rate Eq. 2.8

Q̃ potential heating rate Eq. 2.45
r radial coordinate 3.44
— damping rate Eq. 5.103
R gas constant Eq. 2.40
— deformation radius Eq. 4.43
Re external deformation radius after Eq. 2.112
Rm deformation radius for mode m Eq. 5.38
Re Reynolds number Eq. 2.4
Ree eddy Reyonlds number after 6.24
Reg grid Reynolds number Sec. 6.1.7
Ro Rossby number Eq. 2.103
R horizontal Reynolds stress after Eq. 3.98
— Rossby-wave dispersion-advection ratio Eq. 4.125
s streamline coordinate after Eq. 2.1
— instability growth rate Eq. 3.88
S salinity after Eq. 2.11
— strain rate Fig. 2.3 and Eq. 3.51
— spectrum Eq. 3.113
— stretching vorticity matrix operator Eq. 5.45
S non-conservative material source Eq. 2.6
— material surface Eq. 2.18
Sf sign of f Eq. 6.27
t time coordinate before Eq. 2.1
td spin-down time Eq. 6.43
T time scale after Eq. 2.4
— temperature Eq. 2.10
T depth-integrated horizontal column transport Eq. 6.21
Tek Ekman layer horizontal column transport Eq. 6.52
T⊥ horizontal volumne transport Eq. 6.74
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Symbol Name Definition Site

u eastward velocity component before Eq. 2.2
u∗ friction velocity Eq. 6.46
u vector velocity before Eq. 2.1
ug geostrophic horizontal velocity Eq. 2.104
ua ageostrophic horizontal velocity before Eq. 4.112
ust Stokes drift Eq. 4.95
U radial velocity Eq. 3.45
— rotating-frame velocity Eq. 2.95
— mean zonal velocity Eq. 3.96
— depth-averaged zonal velocity Eq. 6.59
U∗ eddy-induced velocity after 5.97
v northward velocity component before Eq. 2.2
V (horizontal) velocity scale before Eq. 2.4
— rotating-frame velocity Eq. 2.95
— azimuthal velocity Eq. 3.45
— depth-averaged meridional velocity Eq. 6.59
V ∗ northward eddy-induced velocity Eq. 5.96
V material volume Eq. 2.18
w upward (vertical) velocity component before Eq. 2.2
wek Ekman pumping velocity Eq. 6.22
wQG quasigeostrophic vertical velocity Eq. 5.48
W vertical velocity scale Sec. 2.3.4
W ∗ upward eddy-induced velocity Eq. 5.97
x eastward coordinate before Eq. 2.2
x spatial position vector before Eq. 2.1
x̂ unit eastward vector Eq. 2.14
X divergent potential Eq. 2.22
X streamline after Eq. 2.1
X = (X,Y ) rotating coordinate vector Eq. 2.93
X vorticity x-centroid Eq. 3.71
y northward coordinate before Eq. 2.2
ŷ unit northward vector Eq. 2.19
Y vorticity y-centroid Eq. 3.71
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Symbol Name Definition Site

z upward coordinate before Eq. 2.2
zo roughness length Eq. 6.49
ẑ unit upward vector Eq. 2.19
Z geopotential height Eq. 2.31
— isentropic height Eq. 5.23
α thermal expansion coefficient Eq. 2.27
— point-vortex index Eq. 3.60
β haline contraction coefficient Eq. 2.28
— Coriolis frequency gradient Eq. 2.91
— point-vortex index Eq. 3.60
γ compressibility coefficient Eq. 2.29
— gas constant ratio after Eq. 2.44
— Reimann invariant Eq. 4.85
δ divergence Eq. 2.17
δ, ∆ incremental change e.g., after Eq. 2.21
δp,q discrete delta function after Eq. 5.31
ε wave steepness Sec. 4.4
— small expansion parameter e.g., Eq. 4.106
εbot bottom damping coefficient Eq. 5.79
ζ, ζz vertical vorticity Eq. 3.5
ζζζ vector vorticity Eq. 2.19
η entropy Eq. 2.10
— interface height Eq. 4.1
θ potential temperature Eq. 2.44
— latitude Eq. 2.89
— azimuthal coordinate Eq. 3.44
— complex phase angle Eq. 5.71
Θ wave phase function after Eq. 4.92
κ diffusivity after Eq. 2.7
— gas constant ratio after Eq. 2.44
λ wavelength after Eq. 4.33
— inverse Ekman layer depth Eq. 6.29
λ0 phase constant Eq. 2.121
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Symbol Name Definition Site

µ chemical potential Eq. 2.10
— (KR)−2 Eq. 5.70
ν viscosity after Eq. 2.2
νe eddy viscosity Eqs. 3.102 & 6.23
νh, νv horizontal,vertical eddy viscosity Eq. 5.79
ξ Lagrangian parcel displacement Eq. 4.58
— characteristic coordinate Eq. 4.86
— western boundary layer coordinate Eq. 6.68
ρ density Eq. 2.2
ρpot potential density Eq. 2.44
σ instability growth rate Eq. 3.79
τ material concentration Eq. 2.5
τττs surface stress Eq. 5.79
φ, Φ geopotential function Eq. 2.31
Φ force potential Eq. 2.2
χ divergent potential Eq. 2.22
ψ streamfunction Eq. 2.22
Ψ transport streamfunction Eq. 6.59
ω cross-isobaric velocity Eq. 2.80
— oscillation frequency Eq. 3.32
Ω, ΩΩΩ rotation rate, vector Eq. 2.89
∇∇∇ gradient operator after Eq. 2.2
∇∇∇h horizontal gradient operator Eq. 2.24
∂x partial derivative with respect to, e.g., x after Eq. 2.23
· averaging operator Eq. 2.64
〈·〉 zonal averaging operator Eq. 3.97
·′ fluctuation operator Eq. 3.72
·̃ modal coefficient Eq. 5.28
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Index

absolute momentum, 130
absolute vorticity, 86, 119
acoustic wave, 33
adiabatic, 28, 168
adiabatic lapse rate, 36
advection, 10, 15, 17, 57, 63, 169,

216
advective time, 16
ageostrophic velocity, 51, 149, 186,

191, 220
Agulhas Current, 258
angular momentum, 76, 85
Antarctic Circumpolar Current,

187
Antarctic Circumpolar Current

(ACC), 186, 202, 244, 245,
258

anticyclonic, 54, 69, 232, 244
atmospheric approximations, 31
available potential energy, 117, 136,

167, 207
axisymmetric flow, 67, 234
axisymmetrization, 98, 104

balanced dynamics, 66, 235
baroclinic flow, 53, 58, 61, 111, 159,

161, 163, 223, 260, 261
baroclinic wind gyre, 261
baroclinic zonal jet, 163, 187
barotropic flow, 53, 57, 58, 97, 111,

151, 157, 161, 199, 235, 248
barotropic vorticity equation, 64,

234, 250
basis functions, 171
Benguela Current, 232
beta-plane, 47, 128, 149, 154, 187,

244
Bickley jet, 88
bifurcation sequence, 190
body force, 190
bolus velocity, 205
bore, 139
bottom drag, 189, 227
bottom Ekman layer, 223, 225, 244
boundary condition, 18, 28, 111,

113, 116, 125, 189, 202, 212,
219–221, 235, 249, 252, 254

boundary layer approximation, 215,
217, 252

boundary-current separation, 260
boundary-layer turbulence, 218
Boussinesq Equations, 25, 27, 111,

123, 151, 164
Brünt-Väisällä frequency, 39, 123,

170
Brazil Current, 258
buoyancy frequency, 39, 207
buoyancy oscillation, 37
Burger number, 148

California Current, 232
capping inversion, 213, 219
Cartesian coordinates, 14, 169
cascade, 97, 162, 190, 218, 263
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centroid, 76, 156
centroid wavenumber, 102
chaos, 8, 12, 15, 76, 80, 97
characteristic coordinate, 141
characteristic velocity, 141
chemical potential, 17
circulation, 20, 58, 60, 67, 186, 244
coastal downwelling, 232
coastal upwelling, 8–10, 232
coherent structure, 55, 98
compression of seawater, 26, 38
conservative motion, 18
continuity boundary condition, 19
continuity equation, 16, 57, 205
convection, 39, 45, 162, 213
Coriolis force, 49, 53
Coriolis frequency, 47, 50, 187
critical layer, 89, 211
cyclonic, 54, 69, 232, 244
cyclonic storm, 184
cyclostrophic balance, 72
cylindrical coordinates, 67, 83

Deacon Cell, 187, 191, 198, 206
deformation radius, 53, 124, 132,

134, 173, 261
density equation, 16, 27
diabatic, 28
diagnostic force balance, 64
diagnostic variable, 30
diffusive time, 16
diffusivity, 190, 212
dimensional analysis, 242, 243
direct numerical simulation (DNS),

235
dispersion relation, 64, 121, 125,

152, 178
dispersive wave, 121, 123, 153
dissipation, 94, 97, 101, 104, 162,

190, 211, 218, 263
divergence, 20, 24, 165
divergence equation, 64
divergent potential, 24, 51
double gyre, 251, 261
down-gradient eddy flux, 93, 224,

239
dry atmosphere, 32

East Australia Current, 258
Eddington, Arthur, 8
eddy diffusion, 96, 190, 211
eddy heat flux, 184, 266
eddy kinetic energy, 212, 218, 263
eddy mass flux, 147
eddy momentum flux, 215
eddy viscosity, 96, 189, 211, 223,

236, 243, 244
eddy viscosity closure, 223
eddy-induced transport velocity,

205
eddy-mean interaction, 91, 94, 148,

163, 185, 191, 203, 208,
215, 244, 261, 263

eigenfrequency, 64, 121, 122
eigenmode, 64, 86, 87, 89, 97, 121,

125, 145, 174, 202
Ekman layer, 9, 107, 190, 222
Ekman number, 234, 246
Ekman pumping, 190, 204, 222,

230, 248, 251
Ekman spiral, 226, 230, 236
Ekman transport, 204, 205, 246,

251
Eliassen-Palm flux, 208
end state, 129
energy conservation, 57, 76, 116,

167
energy conversion, 93, 185
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energy-containing scale, 236
ensemble average, 216
enstrophy, 101, 218
entropy, 17, 27
equation of state, 17, 24, 31, 50
equatorial wave, 128
equivalent barotropic flow, 62
ergodicity, 216
Ertel potential vorticity, 169
Eulerian expression, 13
external gravity wave, 123

f-plane, 47, 89, 119
far field, 67
fast mode, 151
Ferrel Cell, 187
first law of thermodynamics, 17
flux boundary condition, 19
force curl, 63, 190
form stress, 199, 243
forward enstrophy cascade, 104
Foucault’s pendulum, 54
Fourier transform, 101, 121
free shear layer, 87
free surface, 19, 112
friction velocity, 236
Froude number, 123
fully developed turbulence, 190,

224, 236

general circulation, 12, 117, 161,
232, 261

General Circulation Model, 44, 97,
215, 224

geopotential function, 27, 43, 49,
51, 92, 164, 168

geopotential height, 27
geostrophic adjustment, 128
geostrophic balance, 50, 66, 191,

218, 246

geostrophic mode, 122
geostrophic scaling, 51, 148
geostrophic velocity, 9, 50, 149,

166, 190
geothermal flux, 28
GFD, 6
gradient-wind balance, 66, 235
gravity current, 139
gravity wave, 123
Green’s relation, 20
group velocity, 121, 153, 209
Gulf Stream, 258

haline contraction, 25
Hamiltonian dynamics, 75
Hamiltonian function for point

vortices, 75
heat capacity, 18, 27
height equation, 113
Helmholtz decomposition, 23
hodograph, 226
homogeneity, 217
homogenization, 203
humidity, 18, 31, 35, 44
hydrostatic balance, 26, 34, 40, 108,

164, 166, 168, 169, 191,
218, 246

ideal gas, 31
incompressibility, 23
inertia-gravity wave, 122
inertial circle, 54
inertial oscillation, 54
inertial wave, 54, 122
initial condition, 19
instability, 15, 55, 161, 213, 261
instability growth rate, 39
instability, baroclinic, 9, 161, 176,

179, 186, 199, 261, 263
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instability, barotropic, 80, 85, 86,
91, 94, 161, 185, 261, 263

instability, boundary current, 263
instability, centrifugal, 72, 85, 162
instability, gravitational, 26, 39
instability, inertial, 85
instability, Kelvin-Helmholtz, 80,

87, 162
instability, symmetric, 85
instability, thermobaric, 26
instability, vortex pairing, 79
integrability, 76
integral invariant, 63, 75, 102, 115
interaction energy, 75
internal energy, 17
internal gravity wave, 39, 45, 108,

123
inverse barometer response, 30
inverse energy cascade, 102
inversion layer, 213, 223
isentropic, 28
isentropic atmosphere, 34
isentropic coordinates, 168
isentropic Primitive Equations, 169
isobaric surface, 42
isopycnal, 28, 139, 168
isopycnal form stress, 186, 266
isothermal atmosphere, 36
isotropy, 217

Jacobian operator, 63
Jet Stream, 50, 186, 211
jump conditions, 142

Karman vortex street, 80
Karman, Theordore von, 80
Kelvin wave, 125
Kelvin’s circulation theorem, 61
Kelvin, Lord, 86
kinematic boundary condition, 18

kinetic energy, 17, 26, 57, 101, 116,
136, 167

Korteweg-deVries equation, 139
Kuroshio Current, 258

Labrador Current, 258
Lagrangian expression, 13
Lagrangian mean flow, 145, 206
laminar Ekman layer, 224
Langmuir circulation, 148
lapse rate, 36
layered hydrostatic model, 163
lee wave, 211
limits of predictability, 80
linearization, 25, 33, 64, 83, 87, 89,

120, 147, 177
log layer, 239
long-wave limit, 122, 139, 157

Mach number, 28
mass conservation, 113, 116, 129,

204, 213
mass equation, 16, 23
material concentration, 16
material parcel, 13
material tracer, 16, 203
mean flow, 91, 162, 177, 185, 206,

215, 263
mean heat balance, 186
mean-field equations, 215
meridional direction, 15
meridional overturning circulation,

187, 191, 204
mesoscale, 9, 50
mesoscale eddy, 9, 10, 56, 161, 190,

206, 263
mixed layer, 213
mixing, 80, 101, 213
mixing layer, 87
mixing length, 239, 243
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mixing ratio, 16
momentum equation, 15, 57, 92,

113, 148, 198
Monin-Obukhov similarity, 243
monopole vortex, 67

N-layered models, 167
Navier-Stokes Equation, 11, 15
negative eddy viscosity, 202, 211
Newton (N), 259
Newton’s Law, 15
Newtonian diffusion, 218
non-conservative forces, 15
non-conservative motion, 18
non-dimensionalization, 148, 152
non-dispersive wave, 34, 121, 123,

125, 153
non-local transport, 211
normal mode, 64, 83, 84, 87, 89,

119, 128, 150, 152, 178

Occam’s Razor, 11, 229
oceanic approximations, 21
Oyashio Current, 258

parameterization, 7, 11, 45, 94, 97,
215, 224

parcel diffusivity, 97
parcel dispersion, 97, 266
parcel displacement, 130
parcel invariant, 63, 117, 169
Parceval’s Theorem, 101
parity invariance, 70
parts per thousand (ppt), 18
Pascal (Pa), 15
phase velocity, 121, 123, 124, 152,

209
planetary boundary layer, 12, 212,

213, 215, 219, 223, 235
planetary wave, 152

plankton productivity, 232
Poincaré wave, 124
point vortex, 73
potential density, 32, 37, 38
potential energy, 17, 26, 116, 136,

167
potential temperature, 25, 32, 38
potential vorticity, 63, 117, 130,

150, 165, 167–169, 195, 203,
208

potential vorticity homogenization,
195, 203, 266

Practical Salinity Unit (PSU), 18
Prandtl number, 17
predictability, 80
pressure coordinates, 41
Primitive Equations, 44, 108, 111,

151, 165, 168, 169
prognostic variable, 30, 65
pycnocline, 110, 114, 159, 213, 223

quasi-periodic, 76
quasigeostrophy, 51, 148, 166, 250,

261

radiation stress, 211
random walk, 96
Rayleigh criterion, 83, 89, 180
recirculation gyre, 263
rectification, 208
reduced gravity, 115, 164, 168
regime diagram, 180
resting state, 23, 34, 120, 142, 165,

263
reversibility, 80
Reynolds number, 15, 212, 218,

224, 236
Reynolds stress, 93, 161, 184, 199,

215, 221, 223, 246, 266
Rhines scale, 157, 189, 260
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Riemann invariant, 141
rigid-lid approximation, 30, 52, 115,

124, 204, 244
Rossby number, 45, 50, 246
Rossby wave, 64, 152, 178, 202,

208, 259, 263
Rossby, Carl, 129
rotating coordinates, 47
rotation, 45, 46, 48, 53, 55, 57, 124,
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