
Chapter 5

EQUATORIAL CURRENTS

1 Phenomenology

Tropical circulation is unique because of the vanishing of the Coriolis frequency f at the equator,
with

f ≈ βy

in the vicinity of the equator at y = 0. This is called the equatorial β-plane approximation), and
it has several dynamical consequences. One is that geostrophic balance is much less reliable a pri-
ori as a large-scale dynamical approximation, although some of the most important zonal currents
approximately remain geostrophic even at the equator (this requires that the meridional pressure
gradient vanish there too). Another consequence is that the inviscid, adiabatic conservation of po-
tential vorticity, q, constrains parcel displacements from crossing the equator for any substantial
distance, since q must assume the sign of f away from the equator and this sign is different in the
different hemispheres. This means that the mean circulation and most long-time parcel displace-
ments are primarily zonal near the equation, but it also focuses our attention on locations (e.g.,
surface PBL, deep WBC) where mixing processes break the constraint of q conservation. A third
consequence is that the equatorial band is an effective zonal waveguide for distinctive, zonally
propagating Kelvin, Rossby, Yanai, and gravity wave modes. These waves can support east-west
mass adjustment processes, including some essential behaviors for the most important global, cou-
pled climate-variability mode on intermediate time scales, viz., El Niño – Southern Oscillation
(ENSO) (Philander, 1990). A fourth consequence is that the “linear” Ekman depth,

hek ≈
√

τττ/f →∞ as f → 0 ;

i.e., the steady-state boundary-layer depth might reach all the way to the bottom. However, in
practice this is prevented mostly by a strong stable density stratification but also by equatorial
upwelling and nonlinear boundary-layer dynamics.

In analogy with the mid-latitude definition of the baroclinic deformation radius (i.e., R =
NH/f ) as an important horizontal scale for circulation, eddies, and planetary waves, we can make
a scaling estimation for the equatorial deformation radius by replacing f with βy ∼ βR, whence

R = NH/βR ⇒ R =
√

NH/β . (1)

This has a value of R ≈ 200 km for β = 2× 10−11 m−1 s−1, N = 4× 10−3 s−1, and H = 250 m
(appropriate to the rather shallow depth of the equatorial pycnocline). This value is substantially
larger than typical extra-tropical R values≤ 50 km. We shall see that this is roughly the meridional
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width of the zone in which the equator is distinctly different in its dynamics, as indicated by the
Equatorial Undercurrent and the most energetic, zonally propagating equatorial waves.

We have already seen several aspects of the measured Equatorial forcing and circulation in
Chaps. 1-3:

• Surface trade winds (Chap. 2, Figs. 2-3)

• Surface equatorial heating (Chap. 2, Figs. 5 and 7) and freshwater flux (Chap. 2, Fig. 9)

• Equatorial divergence of Ekman transport as a result of the sign change in f and the generally
easterly trade winds (Chap. 2, Fig. 11)

• Meridional Overturning Circulation (MOC) streamfunction showing equatorial upwelling
(Chap. 1, Fig. 5)

• Surface Equatorial Current (Chap. 1, Figs. 2 and 12)

• Sverdrup transport showing the North Equatorial Countercurrent (Chap. 2, Fig. 12; Chap.
3, Fig. 2)

• Meridional sections of T , S, and u showing the strong, shallow pycnocline; the equatorial
water-mass boundary in S; and the surface Equatorial Current (EC), Equatorial Undercurrent
(EUC), and North Equatorial Countercurrent (NECC) (Chap. 1, Figs. 6, 8, and 9).

Another sketch of the principal equatorial currents is Fig. 1. In particular, it indicates strong
upwelling along the eastern boundary near Peru, as well as an advection of cold water there from
the South American coast in the Peru (or Humbolt) Current.

2 Mean Zonal Currents

Figures 2-4 show several further views of the mean zonal currents in a meridional plane near
the equator. Note the various currents: Equatorial Current (EC), Equatorial Undercurrent (EUC),
North Equatorial Countercurrent (NECC), and the deep zonal jets. Also note that the EC and
EUC have quite similar structures in (y, z) in all three oceans. Their meridional scale is about
the same as estimated above for R. The bulge in the isotherms above and below the EUC is
qualitatively consistent with a meridional geostrophic momentum balance for an eastward current
with its maximum speed in the pycnocline. The geostrophic balance is valid even as y → 0,
since ∂yφ → 0 too insofar as the EUC is equatorially symmetric about y = 0. Figure 4 shows the
Sverdrup transport streamfunction for the Atlantic, indicating clearly the forcing for the NECC due
to the wind-curl; however, the EC-EUC structure is not evident in the Sverdrup transport because
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they are substantially baroclinic in their structure and have little vertically integrated horizontal
transport.

Figures 5-7 show the distribution of dynamic height and isotherms in the equatorial plane: sea
level slopes up to the west and the pycnocline slopes down to the west, consistent ∇∇∇hφ ≈ 0 in the
abyss. This structure occurs in both the Atlantic and Pacific (as well as in the Indian, not shown
here). Notice in Fig. 7 the large variability that occurs for the pycnocline depth, especially in the
east; the greatest part of this is associated with either the seasonal cycle or ENSO.

2.1 Equatorial-Plane Currents

The zonal momentum balance in this plane is illustrated in Fig. 8; notice that it occurs without
the influence of the Coriolis force, due to small f and v near y = 0. A very simple form for the
momentum balance is

νvuzz = φx , (2)

for an upper-ocean fluid layer of depth H , with

νvuz =
1

ρ0

τx at z = 0 ,

νvuz = 0 at z = −H .

H is interpreted as the pycnocline depth, and τx is the zonal wind stress. The model is unstratified,
but implicitly stratification is invoked to limit the circulation to ze.g ., − H . We assume that the
zonal pressure gradient is independent of depth; this is an essentially ad hoc assumption, but it is
based on general fluid dynamical experience that pressure forces do not vary much on the scale of
a boundary layer and the particular idea that mass is pushed in the direction of the wind so that sea
level and dynamic height increase in the downwind direction. Thus,

φx =
1

ρ0H
τx,

and for τx negative, φx is also negative. The current profile resulting from these equations is
plotted in Fig. 9. It shows that the current is more westward near the surface. If we further add the
constraint that ∫ 0

−H

u dz = 0

(consistent with no net zonal transport in the equatorial plane), then the current profile is

u(z) =
Hτx

ρ0νv
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This has an eastward current at depth (the EUC) and a westward current near the surface (the EC).
Of course, this flow is not inconsistent with a geostrophic balance in the meridional momentum
equation,

fu = −φy ,

but the y structure of φ (and u) is not explicitly considered in this equatorial plane model. Never-
theless, even this simple model represents the primary structure of the equatorial current system.

2.2 3D Linear Model for Equatorial Currents

The simplest 3D theory for the EC-EUC current dynamics comes from a linear, viscous model
with uniform density (Gill, 1975):

−βyv = −φx + [νvuz]z − ru

βyu = −φy + [νvvz]z − rv

ux + vy + wz = 0, (4)

where r is a constant “drag” parameter. (The use of r rather than a horizontal eddy viscosity
is made for analytical convenience; see the next subsection for the latter modeling choice.) The
boundary conditions in z are w = 0 at z = −H and 0, the viscous stress at the top surface is
equal to the wind stress τ , and free-slip (zero stress) at the bottom surface, as in the equatorial-
plane model. A vertical integral of the curl of (4) and the usual definition of a horizontal transport
streamfunction Ψ,

H

∫
u dz = −Ψy , H

∫
v dz = Ψx ,

lead to
ρ0r(Ψxx + Ψyy) + βΨx = ẑ · ∇∇∇× τττ , (5)

which has no singular behavior near the equator and no explicit dependence on the pressure gradi-
ent force. The corresponding solution for the pressure gradient is determined by

HΦx =
1

ρ0

τx, HΦy =
1

ρ0

τ y , (6)

where Φ is depth-averaged geopotential function. If we further assume that the pressure gradient
force is depth-independent for 0 ≥ z ≥ −H (again as in the equatorial-plane model), then φ = Φ.

If we assume that τττ is spatially uniform, then we can take the trivial solution to (5), viz., Ψ = 0.
Below the surface (turbulent) boundary layer where νv is necessary, we can assume that νv = 0, so
the momentum balance simplifies to

−ρ0βyv = − τx

ρ0H
− ru

ρ0βyu = − τ y

ρ0H
− rv (7)
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for −h ≥ z ≥ −H (where z = −h is the bottom of the boundary layer). This is a linear algebraic
system for the velocity, whose solution is depth-independent:

u =
−rτx − βyτ y

Hρ0(r2 + β2y2)

v =
−rτ y + βyτx

Hρ0(r2 + β2y2)
. (8)

In particular, we see that u > 0 when τx < 0 and τ y = 0 (Fig. 10); thus the EUC is a result of
the penetration of the zonal wind stress via the zonal pressure gradient into the layer beneath the
surface boundary layer where νv vanishes. In this situation, v < 0 for y > 0, and v > 0 for y < 0;
i.e., there is inflow into the EUC from both sides. From the incompressible continuity equation,
the associated vertical velocity below the boundary layer is

w = − 1

ρ0

(
z + H

H

)
β(r2 − β2y2)τx + 2rβ2yτ y

(r2 + β2y2)2
. (9)

For τx < 0 and τ y = 0, this formula implies upward vertical motion in the core of the EUC that
increases upward from w = 0 and z = −H and downward motion away from the core (Fig. 10).

Within the surface boundary layer, νv 6= 0, and all the terms in (4) contribute. We again
solve for u(z) and v(z) with specified Φ, stress boundary conditions top and bottom, and the zero-
transport constraint,

∫ 0

−H
uhdz = 0. Notice that this surface boundary layer is different from

the mid-latitude Ekman layer because its transport is in the direction of the wind stress. The drag
parameter r plays an important role in avoiding singular solutions (e.g., in (8)-(9)). This model is
an extension of (2) above and is useful for assessing how the currents change if τ y 6= 0 and how
they decay in amplitude as |y| increases away from the equator even though τττ is constant.

2.3 Zonal Boundaries and Nonlinear Equatorial Currents

The preceding models fail near the eastern and western boundaries, where u = 0. A slightly more
complicated model, which can represent the behavior near these boundaries, comes from replacing
−ru in (4) with νh∇2

hu. An example of its solution is shown in Fig. 10, assuming τ y = 0. From
this solution we can evaluate the vertically averaged horizontal Reynolds stress, uv(y), also shown
in Fig. 10. We note that its effect is to accelerate the flow towards the east near the equator and
towards the west away from the equator. So it acts to resist the westward wind stress by transporting
westward momentum away from the equator. So, a nonlinear EUC model will have a horiozntal
Reynolds stress divergence at least partly replace eddy diffusion, consequently with a stronger and
sharper meridional EUC profile (Fig. 11). One can similarly show from (8)-(9) or Fig. 10 that
the vertical Reynolds stress, uw(z), acts to decelerate the EUC in its core and accelerate it on its
periphery, as well as to decelerate the EC near the surface. The shape of the real EUC is, therefore,
expected to be significantly influenced by these nonlinear advective forces. Pedlosky (1987) is an
example of a nonlinear, analytic solution.
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2.4 Equatorial Deep Jets

The equatorial deep zonal jets in Fig. 3 are found in all basins, and they have very long zonal
and temporal correlation scales. Several theoretical explanations of their occurrence have been put
forward, and this is not a settled issue yet. Among the most plausible explanations are centrifugal
instability for currents near the equator (where potential vorticity changes sign, a necessary con-
dition for this type of instability) and a large-scale instability associated with short Yanai waves
(Sec. 3), in each case with an associated finite-amplitude equilibration process for the deep jets
(Hua et al., 1997; d’Orgeville et al., 2006).

2.5 OGCM Equatorial Currents

As a final topic, we consider what it takes for a GCM to calculate the equatorial currents. In a
traditionally coarse-gridded GCM, with meridional grid size of several 100 km, the peak current
speed in the EUC is too weak by nearly an order of magnitude and the meridional breadth is
far too large (e.g., compared to R or Fig. 2). It has been a long-standing practice for modelers
interested in equatorial currents to use a non-uniform meridional grid spacing in the tropical region
of |φ| ≤ 10o, say. With a grid spacing finer than about 1o, the EUC structure is much improved.
It is equally important, though, to specify the eddy viscosity appropriately. The key conditions are
that νh beO(103) m2 s−1 with respect to meridional diffusion and that νv beO(10−4) m2 s−1 in the
stably stratified upper ocean but it must substantially increase on the eastern underside of the EUC
where Ri = N2/|u2

z| decreases to O(1) due to large shear underneath the strongest part of the
pycnocline. The rationale for an increased νv where Ri is small is the onset of Kelvin-Helmoholtz
instability and its associated vertical mixing.

A fairly successful EUC simulation is shown in Fig. 12 for an OGCM calculation that has the
characteristics just described.

3 Transient Dynamics

The trade winds have a strong seasonal cycle (e.g., Fig. 13), as well as significant intra-seasonal
(e.g., the Madden-Julian Oscillation, MJO) and interannual (e.g., ENSO) variability. Consequently,
the forced transient response of the circulation is of considerable interest. In this section we de-
scribe several transient behaviors.
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3.1 Equatorial Waves

Consider a linear, conservative, shallow-water model on the equatorial β-plane, which can also be
viewed as governing the (x, y, t) linear dynamics of the nth vertical mode:

ut − βyv = −φx

vt + βyu = −φy

φt + c2[ux + vy] = 0. (10)

Here c is the gravity wave speed of the shallow fluid layer, c =
√

g′H or c =
√

gH ′, depending
upon whether one prefers to characterize the oceanic pycnocline stratification effect as having a
“reduced gravity” (g′) or an “equivalent depth” (H ′). Or, it can be viewed as the gravity wave
speed cn that comes from solving the vertical eigenvalue problem associated with the vertical
stratification. For the ocean, c1 ≈ 3 m s−1 in the equatorial Pacific.

After various manipulations (10) can be transformed into a single-variable PDE for v:

∂

∂t

[
c−2
n

(
∂2v

∂t2
+ β2y2v

)
−∇2

hv

]
− β

∂v

∂x
= 0 . (11)

This has eigensolutions of the form

v = Dm[
√

2β/cny] cos (kx− ωt) . (12)

Here Dm is the parabolic cylinder function, related to the Hermite polynomial function Hm as
follows:

Dm[α] = 2−m/2Hm[α/
√

2]e−α2

. (13)

Dm both oscillates through Hm and decays at large distance through the exponential factor. Its
structure can be either even or odd symmetric relative to the equator, depending upon the order
index m. Thus, the eigensolutions are equatorially trapped on a scale

∆y =
√

cn/2β ∼ [g′H]1/4β−1/2

(cf., R in eqn. (1)). The band with |y| < ∆y is sometimes referred to as the equatorial wave guide.
The eigenfrequencies ωnm associated with (12) are the solutions of the cubic equation,(

ω

cn

)2

− k2 − βk

ω
= (2m + 1)

β

cn

, (14)

plus one more mode (the Kelvin mode) with

ωK
n = cnk (15)

and v = 0. The solutions to (14)-(15) are plotted in Fig. 14, in a non-dimensional form that makes
them applicable to all n values (refer to the caption). They are of four distinct types: the Kelvin

7



mode, the family of westward-propagating Rossby modes (lower left, for m = 1, 2, ...), the family
of gravity modes (upper, for m = 1, 2, ...), and the so-called “mixed Rossby-gravity” or “Yanai”
mode that separates these other types (m = 0).

A planetary wave analysis of interannual variability observed in the equatorial Pacific is shown
in Fig. 15. It shows how both Rossby and Kelvin waves are generated and propagate along the
equation. Their amplitude is especially large during 1997, which is an ENOS year. Also notice
their reflection patterns off the eastern or western boundaries, where a Kelvin wave reflects as a
Ross by wave or vice versa.

Figures 16-17 show two impulsively forced solutions in which the equatorial wave dynamics
are dominant in the oceanic adjustment:

• The sudden onset of a spatially localized, zonal wind stress for a single fluid layer (Fig.
16). This is sometimes taken as a canonical event for the onset of ENSO, resulting from
a relaxation of the Trade Winds (or a westerly wind burst) in the western and/or central
Pacific regions. Note the leakage of mass from the equatorial waveguide through poleward
propagating coastal Kelvin waves at the eastern boundary; their dynamics will be further
discussed in Chap. 8.

• The spin-up of the EUC from rest in a multi-layer (multi-mode) model, where the zonally
uniform zonal wind-stress divergence is applied uniformly in depth over a boundary layer
of thickness 150 m (Fig. 17). The transient phases of this spin-up are sometimes called the
Wyrtki-Yoshida Jet, and it is considered relevant to the seasonal reversal of the zonal winds
at the equator in the Indian Ocean.

These two solutions illustrate how the tropical ocean adjusts to variable wind.

3.2 Tropical Instability Waves

The EUC is generally believed to be fairly stable to mesoscale perturbations, but not necessarily to
Kelvin-Helmholtz instabilities associated with the large vertical shears above and below the core.
(Baroclinic instability, sustained by vertical shear, disappears as f → 0.) However, the horizontal
shear between the EC and the NECC is observed to be sometimes barotropically unstable (e.g., it
can satisfy the Rayleigh necessary condition for instability, β + uyy changing sign in y), and the
resulting eddy motions are often called Tropical Instability Waves (TIWs). They are evident as
cusps on the near-equatorial meridional gradient of SST (Fig. 18), and they propagate westward
(Fig. 19). Although their existence and propagation is often rationalized by linear wave theory,
their speed is quite substantial and is more suggestive of a vortex flow — with material properties
trapped within its core as it propagates — than a wave just passing through the region (Fig. 20).
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3.3 ENSO

ENSO is illustrated in Figs. 21 and 22. This phenomenon comprises one of the strongest signals in
the otherwise rather noisy regime of interannual intrinsic climate variability, and the atmospheric
manifestations approach the spatial scale of the globe. It is generally understood that ENSO arises
through dynamical coupling of the upper tropical ocean with the local tropical atmosphere. The
important oceanic ingredients are Kelvin and Rossby wave adjustments to changes in the wind
stress, which change the pattern of the thermocline depth and currents, which in turn produces
anomalous thermal advection (i.e., u′ · ∇∇∇T ) and modifies the SST. The primary atmospheric in-
gredient is a quasi-stationary wind response to a SST anomaly. Together these relations close the
feedback loops for ocean-atmosphere co-evolution. This topic has an extensive theoretical and
observational literature (Philander, 1990; Neelin et al., 1998), so it will not be discussed further
here.

4 Eulerian and Eddy-Induced Meridional Overturning

The upper tropical oceans comprise the core of the global Warm Water Sphere (Wüst, 1949). This
regime is strongly stably stratified in potential density (Fig. 23a), primarily due to the dominance
of solar heating, and it has strong zonal currents (Fig. 23b). It contains some of the globally
most important meridional and vertical oceanic heat fluxes that must pass through its bounding
isopycnal ∼ isothermal surfaces (McWilliams et al., 1996). Inspired by recent measurements of
the eddy-induced meridional overturning circulations (MOC) v∗ in the tropical North Pacific Ocean
by Roemmich and Gilson (2001) (among the few places in the ocean where this quantity has been
measured), we analyze an OGCM for its Eulerian and eddy-induced MOC in the tropics (Figs.
23c,d and 24). The model representation for the eddy-induced circulation is the parameterization
by Gent and McWilliams (1990). The eddy-induced circulation is similar in all tropical basins.
It has a strength of about 10% of the Eulerian (Ekman) circulation, and its contribution to the
meridional heat flux is a similar fraction (Fig. 27). The pattern of the meridional streamfunction
is one of double cells in the vertical and antisymmetry about the equator. Near the equator there
is downwelling above the undercurrent and upwelling below, with the return circulations closed
within the upper 250 m and ±5o of latitude. Away from the equator in each basin, there are
overturning cells with flow in the opposite direction to those nearest the equator, and they reach
deeper into and through the main pycnocline as well as poleward into the subtropics. Similar to the
wind-driven Eulerian MOC, the seasonal cycle in the eddy-induced circulation has a magnitude
comparable to the time-mean circulation, although for an entirely different dynamical reason than
associated with seasonal changes in the buoyancy field that is diabatically forced from the surface
(Fig. 26). The simulation also has a circulation anomaly during the 1997-98 ENSO event that
nearly cancels the counter-rotating, eddy-induced cells near the equator and surface. The rather
good agreement between the measurements and the model solution (Fig. 25) gives support to
the theory underlying the parameterization of eddy-induced circulation, and it indicates that the
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associated eddy transport coefficients are larger in the tropics (i.e.,∼ 2×103 m2s−1) than in middle
and high latitudes, consistent with measured float dispersion rates (cf., Chap. 1, Fig. 14) (Krauss
and Böning, 1987; Sundermeyer and Price, 1998; Bauer et al., 1998). A simple rationalization of
larger lateral eddy diffusivity in the tropics comes from the mixing-length estimate,

κ ∼ V ′L′ ,

where V ′ and L′ are characteristic eddy velocity and length scales. If, as often, the horizontal length
scale L′ is approximately the same as the baroclinic deformation radius R, a tropical region with
similar eddy energy compared to an extra-tropical one (i.e., similar V ′) will have larger κ ∼ V ′R
because the tropical R is larger.
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Figure 1: Schematic of flow patterns in the equatorial Pacific Ocean. Adapted from Philander
(1990).
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Figure 2: Upper-ocean, equatorial, meridional sections of zonal velocity in the Indian, Atlantic,
and Pacific Oceans (Taft, 1967; Sturm and Voigt, 1966; Knauss, 1960).
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Figure 3: Full-depth, equatorial, meridional section of zonal velocity in the Pacific basin (Firing,
1987).
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Figure 4: Annual mean Sverdrup transport streamfunction in the Atlantic (Mayer and Weisberg,
1993).
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Figure 5: Upper-ocean, equatorial, zonal sections of dynamic height and T in the Pacific (Lemas-
son and Piton, 1968).
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Figure 6: Upper-ocean, equatorial, zonal sections of T in the Atlantic and Pacific (from an un-
known source).
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Figure 7: Depth of the 14o isotherm in an upper-ocean, equatorial, zonal section in the Pacific,
whose scatter is shown by dots (Meyers, 1979).
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Figure 8: Schema of zonal momentum balance in the upper-ocean, equatorial, zonal plane.

18



Figure 9: Vertical profile of eastward velocity at the equator obtained from eq. (2).
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Figure 10: Typical variations of zonal velocity u (upper left), MOC (v, w) (upper right), and
horizontal Reynolds uv for a linear, steady-state equatorial model with a westward wind.
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Figure 11: Structure of u(y, z) for a nonlinear model with an eddy viscosity ν and westward wind
stress (Mikhailova et al., 1967; Gill, 1975). The top panel is a linear solution, and the bottom two
panels show increasingly nonlinear solutions. Only the northern half plane is shown.
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Figure 12: Zonal current in a Pacific equatorial plane from a GCM solution (Danabasoglu and
McWilliams, 2000).
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Figure 13: Annual cycle of zonal winds near the equator in the Pacific (Leetma et al., 1981).
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Figure 14: Nondimensional dispersion curves for the equatorial β-plane. ω is the eigenfrequency,
and ` is the zonal wavenumber (Gill, 1975).
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Figure 15: Longitude-time sections (a.k.a. Hovmüller diagrams) for the projections of altimetric
sea level measurements onto Kelvin waves (left panel and repeated on the right for visualizing
wave reflections at the western boundary) and first-meridional-mode Rossby waves (center panel,
with longitude reversed for visualizing wave reflections at the eastern boundary) (Boulanger and
Menkes, 1999). The units are arbitrary (!) and negative anomalies are shaded.
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Figure 16: Transient development of a thermocline depth anomaly in response to a local, impulsive,
eastward wind stress acting within the dashed lines in the first panel (McCreary, 1978). Notice the
eastward Kelvin wave of thermocline elevation and the westward Rossby wave of thermocline
depression. After the equatorial Kelvin wave reaches the eastern boundary, it is partly transformed
into poleward propagating boundary Kelvin waves.
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Figure 17: Transient development of u (left column) and dynamic height (right column) in response
to a spatially uniform, impulsive westward wind stress acting on an initially resting, stratified
ocean (Gill, 1975). These panels are for a meridional plane (y, z), and the successive rows are for
successive times. Notice the spin up of the EUC and EC and the lifting of the pycnocline above
the EUC’s core.
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Figure 18: Selected 3-day composite-average maps of tropical SST measured from a satellite
(Chelton et al., 2000). The cusps are TIW crests made visible at the boundary of the eastern
equatorial “cold tongue” and the surrounding warmer water.
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Figure 19: Time-longitude plots of 50-day high-pass filtered, tropical SST along 2o S (left) and 2o

N (right), showing westward propgation, partial cross-equatorial correlation, and episodic occur-
rence (mainly during the northern fall season) (Chelton et al., 2000).
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Figure 20: Velocity mapping of a TIW vortex in a horizontal-plane translating westward at 0.3
ms−1 (Kennan and Flament, 2000).
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Figure 21: Correlation pattern of sea-level pressure with Darwin, Australia (Philander, 1990).

Figure 22: SST in 1982 (El Niño) and 1983 (La Niña) (Philander, 1990)

31



Figure 23: Global, upper-ocean, zonal- and time-mean quantities: (a) potential density, 〈σ〉(φ, z)
[CI = 0.5 kg m−3] (with a surface reference pressure); (b) zonal velocity, 〈u〉(φ, z) [CI = 0.04
m s−1, with dashed lines for ±0.02 m s−1]; (c) Eulerian meridional overturning streamfunction,
Ψ(φ, z) [CI = 4 Sv]; (d) eddy-induced meridional overturning streamfunction, Ψ

∗
(φ, z) [CI = 0.5

Sv] (McWilliams and Danabasoglu, 2001).
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Figure 24: Meridional velocity, averaged temporally, zonally, and between 15-20◦ latitude, for
each of the 5 tropical basins: (a) Eulerian, 〈v〉(z) [m s−1], and (b) eddy-induced, 〈v∗〉(z) [m s−1].
The insets list basin labels and total southward and northward transports [Sv] in the upper ocean
(McWilliams and Danabasoglu, 2001).
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Figure 25: Eddy-induced normal heat transport, T
∗
⊥(θ) [Sv], in temperature bins (δθ = 1◦ C),

in the upper ocean (θ ≥ 5◦ C), averaged in time (8 years) and integrated along the repeated-
hydrography line in the tropical North Pacific: (a) measured (Roemmich & Gilson, 2001); (b)
modeled. Numerical labels indicate total southward and northward transports. Note the rescaled
abscissa between (a) and (b), by a factor of 2.6. This is the ratio of their total southward and
northward transports (McWilliams and Danabasoglu, 2001).
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Figure 26: Mean-seasonal extreme differences (i.e., the mean of the months ASO minus that of
FMA): (a) global, ∆Ψ∗(φ, z) [CI = 0.4 Sv]; (b) 〈∆v∗〉(z) [m s−1], averaged between 15-20◦, with a
stretched depth scale; and (c) global, 〈∆σ〉(φ, z) [CI = 0.2 kg m−3] (McWilliams and Danabasoglu,
2001).
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Figure 27: Vertically and zonally integrated meridional heat flux [PW]: time-mean, Q(φ), (a) Eu-
lerian and (b) eddy-induced components; and mean-seasonal extreme difference, ∆Q(φ), (c) Eu-
lerian (DJF minus JJA) and (d) eddy-induced (ASO minus FMA) (McWilliams and Danabasoglu,
2001).
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