
Chapter 6

THERMOHALINE CIRCULATION

1 Phenomenology and Processes

As discussed in Chap. 1, the global distribution of surface heat and water fluxes creates large-
scale, upper-ocean pressure gradients and sparsely distributed sites of deep convection (mainly in
Labrador, Greenland, Weddell, and Ross Seas) that combine to drive the global-scale thermohaline
circulations (THCs). These surface forcings and the THC are also the cause of the stably strati-
fied pycnocline structure found almost everywhere away from the deep convection sites. Here we
continue the examination of the THC. We will see how an abyssal circulation can be driven by lo-
calized downwelling regions balanced by widespread upwelling over the rest of the ocean, as in the
model by Stommel and Arons (1960). A component of this circulation is the Deep Western Bound-
ary Currents (DWBC) that move away from the sinking regions, as well as along the equator. The
signatures of this abyssal circulation are evident in the abyssal water-mass distributions. Another
topic is the existence of multiple equilibria (i.e., different steady circulation patterns) for the THC,
with the implication of possible regime transitions in past and future climates. Yet another topic is
basin-scale instabilities of the THC that lead to oscillations with decadal and longer periods. These
oscillations are quite distinct from the mesoscale, barotropic and baroclinic shear instabilities of
the wind-driven currents seen earlier in Chaps. 3-5. In addressing each of these topics, we will use
simplified models, mostly, but not entirely, deferring until Chap. 7 further discussion of fully 3D
circulation. (There is substantial overlap here with the topics in Welander (1986).)

In Chaps. 1 and 2 we have already seen various graphical depictions of the density stratification
and THC:

• Typical pycnocline structure (Chap. 1, Fig. 1)

• Isentropic laminae and their topology on macro-, meso-, and microscales (Chap. 1, Fig. 11)

• Heat and freshwater forcing at surface (Chap. 2, Figs. 5, 7-10)

• THC as part of the global MOC (Chap. 1, Fig. 5)

• Meridional heat transport (Chap. 2, Fig. 4)

• Global “conveyor-belt” pattern for the THC (Chap. 1, Fig. 7)

• Abyssal penetrations of North Atlantic Deep Water (NADW) and Antarctic Bottom Water
(AABW) in T , and S in the North Atlantic (Chap. 1, Figs. 8-9)
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• Hydraulically controlled AABW flow through the Vema Gap (Chap. 1, Fig. 13)

The oceanic buoyancy forcing is, on the planetary scale, one of tropical heating and salinifying
and polar cooling and freshening, although there is a sizable local freshening near the Intertropical
Convergence Zone (i.e., ITCZ; Chap. 2, Figs. 9-10). Since these have opposing effects on the
surface density, hence on the meridional buoyancy gradients, we can anticipate delicate balances
and exotic responses in the THC. These forcings imply that there must be mean poleward fluxes
of warm, salty water and equatorward return flows of cool, fresh water (Fig. 1). The largest
sustained air-sea fluxes occur near the largest gyre currents, because they are capable of large lateral
advective transports of heat that can resupply these sites of large vertical flux; note in particular the
regions around the Gulf Stream, the Antarctic Circumpolar Current, the Agulhas Current, and the
Equatorial Currents. However, these are not the sites of deep convection, which are in locations
where the lateral flux of lighter water is relatively weak, so that negative buoyancy fluxes that are
even rather modest in amplitude can suffice to make the surface waters heavy enough to sink and
convect deeply.

The stable vertical density stratification is mostly the product of the isopycnal mixing away
from the boundaries and the elevated diapycnal mixing in and near the surface and bottom bound-
ary layers (Fig. 2). Significant mixing occurs in turbulent gravity currents (Fig. 6) where denser
water flows downhill (e.g., the Mediterranean Outflow and Iceland-Faroe Sill Overflow) and some-
times in connection with the turbulence around hydraulic control points. The interior material mix-
ing rates are believed to be governed by small-scale waves and turbulence, viz., breaking inertia-
gravity waves, Kelvin-Helmholtz instability, and double diffusion, with different efficiencies in
different locations. A currently popular hypothesis is that both tidal currents in shallow water and
tidally generated inertia-gravity waves in the deep ocean over topography are potentially impor-
tant sources of mixing, especially in the abyssal water beneath the pycnocline (Munk and Wunsch
(1998); also see Chap. 4, Appendix Chap. 4, (Webb and Suginohara, 2001)). Measurements of
diapycnal mixing have been mainly by indirectly inference from microstructure, but in the past
decade purposeful tracer releases have provided direct evidence (Figs. 3-4, further discussed in
Sec. 2.2).

Water masses that go into the abyss (a.k.a. deep water) are formed in several places: in the
ocean ocean, usually in association with cyclonic preconditioning flows (Fig. 7); in shallow regions
on continental shelves (e.g., in parts of the Weddell Sea); and in marginal seas with sills that are
partial barriers to the world ocean (e.g., the Mediterranean Sea). In Fig. 8 we see that the circulation
of the Labrador Sea is generally cyclonic, and the deepest winter convection occurs in a rather small
region in its center where its isopycnals bulge upward, and consequently the interior stratification
is weakest. From shallow or marginal sources, the associated dense water subsequently flows off
the shelf or over the sill and then down a bottom slope into the abyss. This way of renewing deep
water masses is sketched in Fig. 5, and a closer look at the flow in a down-slope gravity current is
in Fig. 6.

The net result of having geographically localized, deep-water formation sites is that they are
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usually distinguishable in their characteristic chemical signatures. These distinctive water masses
have long been known because they are so readily measurable by hydrography. Figures 9-18
illustrate various water mass features, and they are further discussed in Sec. 2.3.

2 Simple Models of the THC

The oceanic THC occurs under many influences, including complex patterns for the buoyancy
fluxes and the basin shapes; coupling with the wind driven circulations; and subtleties of the equa-
tion of state at low temperature where the linearized approximation (Chap. 1) is least reliable. As
a result full OGCM solutions (Chap. 7) are an important means of investigating the THC. Nev-
ertheless, there are several simpler models we will consider that are useful in understanding basic
THC dynamics.

2.1 Maintenace of the Pycnocline

The time-averaged buoyancy balance outside of the boundary layers has the adiatatic form,

u · ∇∇∇b = −∇∇∇ · u′b′ , (1)

neglecting compressibility and molecular diffusion. Here an overbar is implicit for the mean fields
on the left-hand side of (1). The theory of Gent and McWilliams (1990) posits that the largest eddy
fluxes in (1) are due to mesoscale eddies; they act in an integrally adiabatic fashion to move the
mean isopycnal surfaces around as part of the shaping of the main pycnocline. The parameteriza-
tion form is expressed as a Lagrangian mean advection,

∇∇∇ · u′b′ = u∗ · ∇∇∇b , (2)

where u∗ is the non-divergent, eddy-induced transport velocity (also in Chaps. 3-4). Historically,
however, the oceanographic theories of the pycnocline have focused on an alternative approximate
balance for (1), viz.,

u · ∇∇∇b = −[κvbz]z , (3)

which, in particular, is the basis for the so-called thermocline theory (Sec. 3.1). This balance
neglects the effects of mesoscale eddies and includes the vertical mixing caused by microscale
motions such as breaking internal gravity waves, Kelvin-Helmholtz shear instability, and double
diffusion. If the issue is how the pycnocline surface is bent and moved around, then the mesoscale
effects in (2) may be very important; however, if the issue is how the pycnocline is formed and
how heat and salt cross it between tropical and polar regions, then the microscale effects in (3) are
essential.

An experiment was made in the pycnocline of the North Atlantic sub-tropical gyre, in which
a “dye” of SF6 was released in a small patch centered about a particular buoyancy surface. SF6
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does not occur naturally and thus is a controlled tracer (although by now enough releases have
been made in both the ocean and atmosphere that its controllability is diminishing). Over time
the dye was stirred laterally on the surface by mesoscale eddies and mixed vertically across it by
microscale motions, and the resulting dye distributions were measured (Figs. 3-4). The diapycnal
spreading was fit to a 1D conduction equation,

∂c

∂t
= κv

∂2c

∂z2
,

with a best-fit eddy diffusivity value of κv = 2×10−5 m2 s−1 (Fig. 4). This is much larger than the
molecular values of 10−7 m2 s−1 for heat and 10−9 m2 s−1 for salt, but it is still smaller, by about
an order of magnitude, than was earlier believed when (3) was viewed as the controlling dynamical
balance for the pycnocline (Munk, 1966). This dye-determined value is consistent with other, less
direct, recent empirical estimates of κv in the pycnocline, although many of them are even smaller
by a factor of 2-5. This range of values is explained, in part, by geographical variations in the
occurrence of double diffusion (thought to be relative strong at the site for Fig. 4). Another dye
experiment occurred in the Brazil Basin’s abyssal waters the over rough topography associated
with the mid-Atlantic ridge. Its results indicated a larger best-fit value of κv ≈ 10−4 m2 s−1. This
abyssal increase in κv is thought to be primarily a consequence of two processes:

1. Relatively large diapycnal fluxes in the bottom PBL where it intersects iso-buoyancy sur-
faces, with efficient mesoscale fluxes carrying the tracers to and from the boundaries along
the iso-buoyancy surfaces (Fig. 2).

2. Upward interal gravity wave radiation from flow past topography, followed by steepening,
breaking, and mixing events as the waves encounter larger stratification and horizontal cur-
rent shear (e.g., providing critical layers where the phase speed is equal to the current speed);
the generating current can be either the tides or the circulation, and the present observational
evidence is that this enhanced deep mixing is quite inhomogeneously distributed.

These pathways are not as available in the upper ocean where a typical distance to the nearest
solid boundary intersection is much greater and where bottom-generated gravity waves do not
penetrate as readily. Note that the upper-ocean, dye-measured value of κv implies a full-column
diffusive adjustment time ofH2/κv = 4.5×1011 s = 1.4×104 yr for a vertical scale ofH = 3000
m, although the adjustment time is shorter for smaller values ofH characteristic of the thermocline.
A value of κv ten times bigger implies a full-column diffusion time of 103 yr. This deep diapycnal
mixing well away from isopycnal intersections with the solid bottom is believed to be the slowest
process involved in bringing the ocean into equilibrium with a steady surface forcing field or with
climate variability over intervals shorter than the ice ages.
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2.2 1D Advection-Diffusion Balance

We now make a scaling analysis of (3). Assume that it is accompanied by geostrophic, hydrostatic
balance, which implies

fV

H
∼ ∆b

L
, (4)

and a 3D continuity balance, which implies

W

H
∼ V

L
. (5)

Together these relations imply

W ∼ ∆b

f(H/L)2
. (6)

Another scaling balance comes from (3), viz.,

U∆b

L
∼ W∆b

H
∼ κv∆b

H2
. (7)

These latter two relations imply

H ∼
(
κvfL

2

∆b

)1/3

, W ∼
(
κ2

v∆b

fL2

)1/3

. (8)

This is a scaling estimate for the depth scale of the thermocline and its associated mean circulation.
If we use characteristic scales of ∆b = 0.02 m s−2, f = 10−4 s−1, L = 107 m (planetary scale),
and κv = 10−5 m2 s−1, then from (8) we predict H ∼ 200 m and W ∼ 6 × 10−8 m s−1 = 2
m yr−1. These values are of the right order of magnitude, although both are a bit small compared
to the observed thickness of the pycnocline in most places and, say, the Stommel-Arons estimate
(below) for the uniformly distributed upwelling at the base of the pycnocline. Notice from (8) that
this discrepancy would be less if κv were larger, as it once was believed to be everywhere and has
now been found only in some places in the abyssal ocean where steep topography supports the gen-
eration of strong internal tidal oscillations (Munk, 1966; Munk and Wunsch, 1998). Nevertheless,
(8) is qualitatively reasonable. It also encourages us to view the pycnocline as a vertical boundary
layer.

We can pursue this idea further if we further restrict (3) to a 1D advection-diffusion balance,

w
∂b

∂z

= κv
∂2b

∂2
z

. (9)

If we assume w and κv are constants, then (9) has a boundary-layer solution of the form

b = bo exp

[
z − zo

h

]
, (10)
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for z < zo and h = κv/w > 0. This solution is consistent with the scaling theory (8), but it is
also less restrictive because it can also accommodate general values of κv > 0 and w > 0. The
latter requirement means that this view of the pycnocline is only valid where there is upwelling,
w > 0. Almost universal upwelling is, of course, one of the premises of the Stommel-Arons
theory (Sec. 2.3), but it is consistent with the sign of the wind-forced Ekman pumping only over
about half the globe (mostly in the sub-polar gyres). So, at the least, there must be some mutual
accommodation in the upper pycnocline between the Ekman pumping at the base of the Ekman
layer and the pycnocline upwelling. In reality, this doesn’t leave much room to maneuver. It
probably is best to view (9) as only qualitatively relevant, with the real ocean in a more fully 3D
mean buoyancy balance, with respect to both mean advection and eddy rectification, as in (1)-(3).

2.3 Abbysal Circulation and Stommel-Arons Theory

Since the traditionally most feasible technique for making ocean measurements is sampling of the
material properties (Chap. 1), a traditional way of empirically characterizing the ocean has been by
inferring circulation from the 3D spatial distributions of T , S, and other chemical concentrations
that are approximately conserved following fluid parcels (or, as with radioactive decay, have known
rates of change). Implicit in this inference are the following assumptions:

1. The surface chemical fluxes have large geographical contrasts with distinctive combinations
for their tracer constituents.

2. The forcing and circulation are steady.

3. The material mixing rates are slow enough that geographical contrasts can persist over the
many decades and centuries that parcels take to move significant distances around the ocean.

None of these assumptions is strictly correct, but experience has shown that they are all true
enough for there to be significant information about circulation patterns in the water-mass distri-
butions. Nevertheless, inferences of this type are difficult to defend as accuracte.

Examples of the spread of two different water masses from their source regions, NADW and
AABW, respectively, are shown in Fig. 10. There are indications in the spreading patterns of a
mid-depth DWBC in the NADW and of both a bottom DWBC as well as passage-following cur-
rents in the AABW. Figure 15 shows a geographical water-mass regime diagram for a zonal section
in the sub-tropical North Atlantic. Figures 11-12 show tracer evidence of DWBC far away from
deep-water formation sites: southward DWBC in the South Atlantic and northward in the South
Pacific. Figure 9 shows meridional sections of tracers in the Atlantic, suggesting tongues of trans-
ported material in patterns that mirror the meridional overturning streamfunction (Fig. 5 of Chap.
1). Figure 13 shows the transient invasion of radioactive products from atmospheric nuclear bomb
tests in the 1960s, showing the tracer penetration pathway from the sub-polar North Atlantic to

6



great depths in less than a decade, followed by southward advection by the THC. Figure 14 shows
the decadal penetration of another transient tracer, Chlorofluorcarbons (CFCs; e.g., freons), indus-
trially produced in the middle of the century primarily for use in refrigeration. Along a mid-depth
isopycnal surface (within the NADW), the CFCs move south in a DWBC, with a substantial part
diverted to flow along the equator. Figure 16 has meridional cross sections showing the equatorial
confinement and eastward penetration of the CFCs. An argument rationalizing the latter is that
potential vorticity must change sign in order to cross the equator because f does; however, in the
absence of rectification effects, potential vorticity should be conserved along large-scale trajecto-
ries lying within surfaces of constant potential density, and the trajectories must avoid crossing the
equator for any significant distance. Since obviously some parcels do cross the equator, they must
undergo significant mixing en route for q and other material tracers like freon.

How are we to understand the occurrence of DWBC? The original theory for this is by Stommel
and Arons (1960), and an example of its solutions is shown in Fig. 18, where a global pattern of
abyssal circulation, including several DWBC, arises from the assumption that there are deep-water
formation (i.e., deep convection) sites only in the Greenland and Weddell Seas. Note the absence
of any eastward diversion of boundary currents crossing the equator; in this theory it is assumed
that the western boundary currents are as diffusive as they need to be to satisfy the interior flow
constraints (n.b., this is somewhat analogous to the assumptions in the Sverdrup theory for wind-
driven gyres).

The Stommel-Arons (S-A) problem assumes that the abyssal ocean is a shallow layer of uni-
form density, with depth H and with a steady circulation driven by a spatially concentrated mass
source (with w < 0) and a uniformly distributed upwelling sink (with w > 0) everywhere else.
This is, of course, a strong idealization for the abyssal thermohaline circulation in a number of ways
(e.g., by neglecting unsteadiness, rectification, topography, stratification, dynamical coupling with
the upper ocean where the THC buoyancy forcing really occurs, and non-uniformly distributed
w(λ, ψ, zo) > 0). Nevertheless, there is often widespread appreciation for simple theories that
seem to capture important phenomena with the least complexity, and the S-A problem has this
virtue for the occurrence of DWBC.

Consider a simple basin geometry that is a hemispheric sector bounded by the equator and
north pole, with latitudes φ = 0 and π/2, and by the latitudes λw and λe (Fig. 17). Assume there
is a downwelling volume flux So at the pole, with a integral mass balance determined by

So = Qo · Area = Qoa
2 ∆λ , (11)

where w = Qo is the spatially uniform vertical upwelling velocity; a is the radius of the Earth;
and ∆λ = (λe− λw) is the longitudinal width of the basin. The dynamics in the fluid interior (i.e.,
away from the lateral boundaries and the source region) are geostrophic and hydrostatic balances
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and 3D continuity, here expressed in spherical coordinates:

2Ω sinφ v =
1

a cosφ
Pλ

2Ω sinφu = −1

a
Pφ

uλ + [cosφ v]φ = −a cosφwz

= −aQo

H
cosφ . (12)

The final line comes from matching w(0) = Qo and w(−H) = 0 with a linear function in z, since
the Taylor-Proudman theorem applies here (i.e., a rapidly rotating, uniform density, inviscid fluid
has depth-independent horizontal motion, hence vertical motion that is a linear function of depth).

The solution to (12) is perhaps easier to verify than to derive; nevertheless, its horizontal ve-
locity is

v =
aQo

H
tanφ , (13)

which has v = 0 at φ = 0 and v →∞ as φ→ π/2, and

uλ = −[cosφ v]φ −
aQo

H
cosφ , (14)

or, after using the now-familiar choice of an eastern boundary condition with u(λe, φ) = 0,

u =
a

H tanφ
[λe − λ]

∂Qo sin2φ

∂sinφ
. (15)

Note that u > 0 everywhere, which indicates that the interior abyssal circulation is supplied from
the western boundary current. Also note that v > 0 everywhere in the interior, even though the
source is at the north pole. Thus, the interior flow represents a recirculation that converges on
the source point at the pole and adds to the lateral transport carried by the DWBC. To connect
the source flow with the interior flow, the DWBC transport at each latitude is assumed to exactly
supply the volume transport required for all the interior upwelling that occurs more distantly from
the source, detraining fluid as it progresses to the south. This northward DWBC transport can
therefore be calculated at each latitude as the sum of total source strength (i.e., −So northward
flow) minus the interior transport across the latitude line plus the interior upwelling to the north of
the line:

T = −So −
∫

∆λ

dλ aHv cosφ+Qoa
2∆λ (1− sinφ)

= Qoa
2 ∆λ−∆λ a2Qo sinφ+Qoa

2∆λ (1− sinφ)

= −2Qoa
2 ∆λ sinφ

= −2So sinφ . (16)
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In this solution, T ≤ 0 everywhere. It goes to zero at the equator, consistent with no upwelling
at the equator and no cross-equatorial flow (unlike nature). Notice that T is twice as large as the
source at the pol, because of lateral recirculation (see Fig. 17 for the lateral circulation pattern of
(13)-(15)). This interior solution, like the wind-driven Sverdrup solution, can be completed with
western boundary layers supported by lateral momentum diffusion.

Some typical numerical values for an oceanic realization of such a S-A circulation are H = 4
km; So = 10 Sv = 107 m3 s−1; ∆λ = 70o = 1.22 radians; a = 6.35× 106 m; Qo = 2× 10−7

m s−1 = 6 m yr−1; and v = 2× 10−4 m s−1. In spite of this slow speed, the THC — with the S-A
circulation as its abyssal component in the interior — is the dominant circulation type for global
ocean heat transport.

The preceding A-A solution is a steady one. The behavior of its set-up — in a two-hemisphere
sector domain and a variable upper interface height for the abyssal layer — is shown in Fig. 19,
leading to the steady-state circulation in Fig. 20 after sufficient time elapses. The dynamical
mechanism for the spin-up of the abyssal circulation involves both Kelvin and Rossby waves. The
Kelvin waves propagate cyclonically around the boundary away from the equator (i.e., in opposite
directions in the two hemispheres) and eastward along the equator (Chap. 5).

Since both the Munk and Stommel-Arons theories are linear, they can formally be superim-
posed, although neither theory addresses the questions: What determines the vertical distribution
of the wind-driven currents? What establishes and maintains the pycnocline (i.e., the top of the
S-A abyssal layer)? And what localizes the deep convection? In this traditional simple view, the
wind gyres were assumed to be confined within the upper ocean, in and above the pycnocline.
Since OGCM solutions show similar circulation patterns, we can infer from them, as well as more
idealized problems, what the missing dynamical elements are for these simpler problems. The
occurrence of the pycnocline and localized sinking regions are the result of a full-depth, nonlinear
posing of the thermohaline circulation with laterally-varying surface fluxes, and the depth confine-
ment of mean wind gyres is a result of the inefficiency of lateral buoyancy flux and isopycnal form
stress (i.e., vertical momentum flux) by mesoscale eddies in the weakly stratified abyssal water
(Chaps. 3-4).

2.4 Box Models

A remarkably simple analog model of the THC was devised in Stommel (1961) (Fig. 21). It
consists of two “boxes” within which the water is well-mixed. Each of the boxes is forced by
an osmotic exchange with different external reservoirs (i.e., the analog of surface fluxes), and the
boxes exchange fluid through connecting pipes with a circulation transport rate proportional to the
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buoyancy difference between them. The governing equations are

VpṪp = CTp(T̂p − Tp) + |Ψ|(Te − Tp)

VeṪe = CTe(T̂e − Te)− |Ψ|(Te − Tp)

Ṡp = CSp(Ŝp − Sp) + |Ψ|(Se − Sp)

VeṠe = CSe(Ŝe − Se)− |Ψ|(Se − Sp)

Ψ = −D[−γT (Te − Tp) + γS(Se − Sp)] . (17)

Here the boxes have volumes V , heat and saline capacities C, reservoir values (T̂ , Ŝ), thermal
expansion and haline contraction coefficients (γT , γS), and a circulation transport efficiency ex-
pressed as a diffusivity times a box length, D. The subscripts e and p invite the interpretation of
the boxes as polar and equatorial regions, respectively. The exchange does not depend upon the
sign of the circulation, since we assume it must be closed between only these two boxes; i.e., for a
flow from e→ p, there must also be a mass-balancing return flow from p→ e.

Now analyze (17) for its steady states, since the only transient behavior for steady reservoir
values is relaxation to a unique steady state at rates R = C/V (and if C ∝ V as usual, the R
values are the same for the two boxes). The volumetric sum of the box (T, S) values relaxes to the
volumetric sum of the reservoir values, since the circulation terms in (17) cancel when added and
the relevant equations are linear. The more interesting variables are the differences between the
boxes,

Θ = Te − Tp, Σ = Se − Sp . (18)

We choose the following units for non-dimensionalization: 1/RT for time, (1/Vp + 1/Ve)
−1RT/DγT

for T , (1/Vp + 1/Ve)
−1RS/DγS for S, and (1/Vp + 1/Ve)

−1RT for Ψ. The dimensionless model
is thus

Θ̇ = α−Θ− |Ψ|Θ
Σ̇ = β − ξΣ− |Ψ|Σ
Ψ = Θ− Σ , (19)

where ξ = Rs/RT , α = T̂e − T̂p, and β = ξ(Ŝe − Ŝp) are the three dimensionless control
parameters. We are interested mostly in the regime ξ < 1, because we believe the climate-feedback
(i.e., reservoir-exchange) rate is quicker for temperature than for salinity in nature.

The equilibria of this simple model are given by

Θ = α/(1 + |Ψ|), Σ = β/(1 + |Ψ|) ,

and the solution of an implicit equation for Ψ,

Ψ(1 + |Ψ|)(ξ + |Ψ|) = α(ξ + |Ψ|)− β(1 + |Ψ|) . (20)

This is a cubic equation, and, under some conditions including ξ 6= 1, it can have multiple solutions
(i.e., multiple equilibria). In the control space of forcing strengths (α, β), there is a line is a line
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of zero circulation, β = ξα. There is a regime of multiple stable equilibria for forcing amplitudes
bounded away from zero — i.e., with appreciable nonlinearity in (20) — and lying between the
zero-circulation line f1 and another curve f2 that lies above it for ξ < 1 (Fig. 22a). Outside of
these lines there are only single equilibria. For T̂p < T̂e and Ŝp < Ŝe (as in nature), these two
equilibria have either Ψ > 0, with polar “sinking” in the sense of the thermal driving, or Ψ < 0,
with equatorial “sinking” in the sense of the salinity driving; we refer to these equilibria as TH and
SA, respectively. At each of the curves f1 and f2, either the SA or TH equilibrium loses stability
in what are called saddle-node bifurcations where two equilibrium solutions coalesce. Between
these curves there are three equilibria, only two of which are stable (TH and SA). For ξ < 1 in
the regime with both TH and SA solutions, the circulation strength is stronger in TH than in SA.
Thus, this simple analog model has the property that the THC can occur in different circulation
configurations, even with the same forcing fields (represented here by the reservoir values).

Additional variants have been proposed for simple models in the spirit of the 2-box model
(Welander, 1986; Thual and McWilliams, 1992).

2.5 2D Models

Box-model solutions are, of course, not necessarily like fluid dynamical solutions. So now we
consider the fluid dynamics of the 2D meridional-plane Boussinesq equations in a domain of size
L×D,

Du

Dt
= −∇∇∇φ− ẑg(−γTT + γSS) + ν∇2u

∇∇∇ · u = 0
DT

Dt
= κT∇2T

DS

Dt
= κS∇2S , (21)

with u = ∂x = 0. Note that the Coriolis force is absent here, and we have assumed, for sim-
plicity, that the diffusive terms are isotropic (unlike in the ocean), although the domain is not
isotropic (like the ocean). We make these equations non-dimensional with the following units: D
for length, 2πD3/LκT for time, LκT/2πD

2 for velocity, νκTL
2/(4π2D5gγT ) for temperature, and

νκTL
2/(4π2D5gγS) for salinity. Because of 2D non-divergence we can represent the velocity in

terms of a meridional overturning streamfunction Ψ(y, z),

v = −Ψz , w = Ψy , (22)

and replace the first two equations in (21) with the zonal vorticity equation. The resulting equation
set is

(kσ)−1 [∇2Ψt + J [Ψ,∇2Ψ] = k−1 (Ty − Sy) +∇4Ψ

k−1 [Tt + J [Ψ, T ] = ∇2T

k−1 [St + J [Ψ, S] = τ∇2S , (23)
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where σ = ν/κT is the Prandtl number, τ = κS/κT is the Lewis number, and k = 2πD/L is the
fundamental horizontal wave number in the domain. We take as boundary conditions on T and S
the so-called “mixed” set,

T = a cos ky, Sz = b cos[ky] , (24)

at the top, with insulation conditions (i.e., no flux) at the sides and bottom. a and b can each be
thought of as a Rayleigh number, ∆

νκgγH3 , associated with the strength ∆ of the surface forcing
for T and S, respectively. The conditions (24) reflect the physical view that the ocean surface
temperature is tightly constrained due to efficient local feedbacks with the atmosphere, whereas
salinity has a climatological flux independent of the local oceanic value. The forms in (24) are
symmetric about the equator (at y = 0) and have the same equator vs. pole sense as in the true
climatological forcing of the THC. For the velocity field we choose no normal flow and no stress
at all boundaries, Ψ = Ψnn = 0.

We focus on the steady states of (23)-(24). In these equations (a, b, k, σ, τ) are the control
parameters, but common practices in using OGCMs support the simplifications τ = 1 and σ →∞,
which reduces the control space to 3 parameters. We are interested in the regime k < 1 since
oceanic basins are anisotropic (although this effect is partly canceled by the opposing anisotropy
of the vertical and horizontal eddy diffusivities). We can show that the line b = ak tanh k is a
line in the forcing space on which the circulation can vanish; this is most easily derived in the limit
a, b→ 0, when the solution is linear and unique, but it also applies to arbitrary forcing values.

As expected from the 2-box analog model, this problem also has multiple equilibria for finite
values of a and b (Fig. 23). Some of them retain the equatorial symmetry of the forcing; again
we name name these solutions TH and SA. A comparison of their regime diagram with the 2-box
model’s is shown in Fig. 22b. The comparison is close qualitatively but cannot be made precisely
so; however, an extended 4-box model with upper and lower equatorial boxes and separate boxes
for each polar region can be shown to have a quantitatively very close correspondence to the 2D
fluid model. Other equilibria break the symmetry and exhibit sinking only in one polar region;
these we designate as PP (pole-to-pole). The present state of the THC in the real ocean is akin to a
PP state, in that fairly symmetric surface forcing patterns give rise to a highly asymmetric circula-
tion pattern. Notice that the TH and PP equilibria in Fig. 23 exhibit well defined pycnoclines away
from high latitudes, but SA does not. This demonstrates that the THC is indeed the controlling
influence on the maintenance of the pycnocline. The general regime diagrams are shown in Fig.
24, with an accompanying categorization of the types of bifurcations associated with the loss of
stability of various equilibria; these are determined from many integrations of (23)-(24) to their
steady state.

For larger values of a, b than those examined above, there are further bifurcations in (23)-(24)
to time-varying solutions. One example of a periodic oscillation (i.e., due to a Hopf bifurcation)
between opposing PP states in the two different hemispheres is shown in Fig. 25. Its period is on
the order of a parcel recirculation time in the PP configuration; i.e., on the order of 103 years. A
different kind of behavior is shown in Fig. 26: a PP equilibrium — associated with surface forcing
patterns somewhat different from (24) — is stable under steady forcing, but it exhibits a well-
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defined oscillation with local variations in the strength of the THC near the sinking regions when
stochastic surface forcing is included. Thus, this oscillation is sub-critical, at least for these values
of the control parameters. Its time scale is decadal, independent of the time-scale of the forcing.
This makes it potentially relevant to shorter-period climate variability because the atmosphere has
its own intrinsic variability that cause fluctuations in the surface buoyancy flux. In the noisy reality
of nature it usually is unimportant whether an oscillation is super-critical or moderately sub-critical
in any particular model configuration; it will be manifested in the solution behavior in either case.

3 Idealized 3D Models

For all of these simple models, of course, there is a need to demonstrate their relevance to the fully
3D ocean. 3D dynamics is the subject of the next section. However, we can here summarize their
relevance broadly as follows: κv does play an important role in the maintenance of the pycnocline,
although it is not true that w exhibits nearly uniform upwelling at the pycnocline base; the multiple
equilibria of box and 2D models do have 3D counterparts; and there is also intrinsic variability
of the 3D THC, especially on the decadal time scale. The clearest failings of these simpler THC
models are their absence of geostrophic balance for the zonally averaged v, which in a 2D model
requires an excessively large νv or νh value to compensate for the lack of a zonal pressure-gradient
force. A 2D model also lacks a narrow DWBC because of the absence lack of zonal variation. At
the least, these deficiencies are likely to cause a bias in the parameter correspondences between 2D
and 3D model regimes; e.g., a small diffusivity acting on a narrow current in 3D can have the same
integral effect as a broad diffusivity acting on a broadly distributed current, and an approximate
geostrophic balance in 3D can greatly reduce the requirement for eddy diffusion in the momentum
balance.

3.1 Thermocline Theory

There is a body of theoretical studies based on the Planetary Geostrophic Equations:

f ẑ× uh = −∇∇∇φ− g

ρo

(ρ− ρo)ẑ

∇∇∇ · u = 0
Dθ

Dt
= κv∂

2
zθ

DS

Dt
= κv∂

2
zS

ρ = R[θ, S] , (25)

which implies a parcel conservation of Qpg = fbz = fN2 (cf., Chap. 1, Sec. 7.7). Accom-
panying (25) are surface boundary conditions of Ekman pumping for w and specified distributions
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of T and S. In most applications κv is taken to be small (or even zero, where 25 is called ideal
thermocline theory), which is appropriate in stably stratified regions but not actively convective
ones. This model is proposed as relevant to the large-scale circulation below the surface boundary
layer and away from western-boundary and equatorial regions, other places with strong currents or
topography, and sites of deep convection. For these reasons it obviously is an incomplete model
for the general circulation.

However, as stated in the review by Pedlosky (1987), “The main objective of thermocline the-
ory is to explain the phenomenon of the strong, vertical temperature gradient in relatively shallow
water (200-800 m) where the transition occurs from the ocean’s surface temperature to the colder,
more uniform waters of the abyss.” Its implicit premise is that — while the existence of a pycn-
ocline may fundamentally be due to the THC as a whole (e.g., even the simple 1D model above
requires an abyssal upwelling velocity, which also is an ingredient in the Stommel-Arons concep-
tual model) — its interior distribution in space arises as a consequence of hydrostacy, geostrophy
(hence planetary vorticity balance), and advective tracer conservation, given the surface distribu-
tions of Ekman pumping and tracers.

Even the simplified dynamics of the nonlinear equations in (25) gives rise to rather complex
and elegant mathematical analyses. The solutions do have some qualitative features as observed,
viz., , the general deepening of the thermocline moving from the equator into the subtropical gyre
with subsequent rising again into the subpolar gyre and the general shallowing of the pycnocline
approaching the eastern boundary. Of course, to a large extent these features are simply conse-
quences of the pattern of Ekman pumping and geostrophic balance, given the confinement of the
Sverdrup circulation in and above the pycnocline. This latter feature is therefore the principal
success of thermocline theory, viz., some of its solutions have this feature.

My principal criticism of (25) is that it neglects the role of mesoscale eddy fluxes of T and S
(e.g., as parameterized by isopycnal mixing and eddy-induced transport-velocity advection) that
are likely to be significant in modifying the implied conservations of T , S, and Qpg along mean-
flow trajectories when κv → 0 in (25). There is a sharp contrast between the quasigeostrophic
wind-gyre solutions (Chap. 3) — which assumes the mean vertical stratification profile (i.e., a
substantial part of the thermocline shape) and has the dilemma of surface confinement in the ab-
sence of mesoscale-eddy form stresses — and the Planetary-Geostrophic ideal thermocline theory
— which assumes the surface T and S distributions (i.e., also a substantial part of the thermocline
shape, but a different part) and determines their subsurface distribution in the absence of eddy
effects. Undoubtedly there is some degree of validity in from each of these theories. It has long
seemed to me worthwhile to extend the analytic thermocline theory by including parameterized
mesoscale effects, but as yet no one has done this.

The equations in (25) may be extended by adding drag or viscous diffusion to the horizontal
momentum equations, in which case the model is capable of representing diffusive western bound-
ary layers and thus the linear momentum dynamics for wind gyres in closed basins. Colin de
Verdiere (1976) and Samelson and Vallis (1997) give examples of basin-scale solutions in such
extended Planetary Geostrophic models.
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3.2 The Ventilated Thermocline

Another influential theoretical perspective is the so-called ventilated thermocline. It is a combined
wind- and buoyancy model that is particularly relevant to the eastern part of the subtropical gyres
(i.e., away from the western boundary current, its strong offshore extension, and the recirculation
zone). It also makes use of the Planetary Geostrophic equations. Because the theory is mathemat-
ically rather elaborate, it is not presented here, but it is extensively discussed in Pedlosky (1996).

3.3 Sector Models

The simplest relevant 3D THC model is one in a basin shaped either as a rectangular box or as
a spherical-shell sector bounded by lines of constant longitude (as in Fig. 17). Since there is
more interest in the THC on the planetary scale, the latter choice has been made more often.
Furthermore, the common practice has been to use an OGCM in sector THC studies, even though
simpler alternatives for the equation of state and for the various SGS parameterizations might allow
a more distilled depiction of the essential dynamics. One essential aspect of the parameterizations,
however, is use of a nonlinear vertical eddy diffusivity for tracers (and also for momentum if one
is being consistent) with the following property:

κv = κ1 if bz < 0

= κ0 if bz > 0 , (26)

where κ1 � κ0 ≥ 0. The rationale for this behavior is the greater mixing efficiency of convection
in gravitationally unstable situations and the necessity for wholly parameterizing convective effects
in the hydrostatic Primitive Equations that are the basis for almost all OGCMs. Sometimes (26)
is represented in a more differentiable form with κv expressed as a continuous function of the
stratification bz if not more fundamentally of the Richardson number,

Ri =
bz

(uz)2
.

One of the earliest uses of a sector model is by Bryan (1986). It shows that steady, stable pole-to-
pole circulations can arise even with equatorially symmetric forcing and that multiple equilibria
do indeed exist in 3D, just as in the box and 2D models.

More extensive uses of sector models have addressed the intrinsic variability of the THC
(Weaver et al., 1993) even with steady surface boundary conditions. This phenomenon is not well
represented in any of the even simpler models. Yet, because of the central role of THC meridional
fluxes in maintaining climatic heat balance, THC oscillations are obviously of potentially great
relevance to natural climate variability. Surface boundary conditions that permit such oscillations
in ocean-only, coarse-resolution OGCMs can be either of the mixed type (i.e., thermal relaxation
and specified S flux) or the flux type with both T and S fluxes specified. Of course, neither type
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represents the true, albeit still poorly known, ocean-atmosphere feedback that occurs in the pres-
ence of THC variability, but the mixed type seems somewhat more plausible, since local thermal
feedbacks in air-sea fluxes are strong, while local water feedbacks are virtually non-existent. With
mixed boundary conditions plus climatological wind stress, the spontaneous oscillations fall into
two classes:

1. Flushing oscillations with periods of millennia, in which long intervals of slow diffusive
evolution are punctuated by abrupt overturning events at high-latitudes.

2. Decadal oscillations with fluctuations in both the amplitude of the meridional overturning
circulation and lateral advection of T and S anomalies primarily by the subpolar gyre.

For different model parameters and surface flux patterns, these oscillations may or may not
appear. On the other hand, with broad-band stochastic buoyancy forcing superimposed on the mean
fluxes or with coupling to even an idealized atmospheric model with its own intrinsic variability
(i.e., weather noise) (Saravanan et al., 2000), it appears to be quite common for at least the decadal
THC fluctuations to be manifest (Fig. 27).

Decadal oscillations are also found with specified T and S flux boundary conditions, although
the associated spatial patterns are rather different. Recent studies by Arzel et al. (2006) and Mole-
maker and McWilliams (2006) indicate that the underlying dynamical behaviors for decadal oscil-
lations of the thermohaline circulation are fundamentally different with mixed and flux boundary
conditions. For example, Fig. 28 shows bifurcation diagrams for these two ways of posing the
problem as a function of the overall buoyancy forcing strength. The latter is expressed in terms of
a Rayleigh number,

Ra =
BH3

νeκe

,

where B is the surface buoyancy flux magnitude (either separately for heat and freshwater, or for
their combination), H is the domain depth, and νe and κe are the eddy viscosity and diffusivity.
For small Ra there is a unique steady solution with either type of boundary condition. With flux
boundary conditions, increasing Ra leads to a simple Hopf bifurcation that is a linear baroclinic
instability of the mean circulation, and it subsequently equilibrates as a periodic limit-cycle oscil-
lation. However, for mixed boundary conditions, multiple steady-state circulations occur for larger
Ra values, and a periodic oscillation emerges as a global bifurcation (i.e., not associated with the
linear instability of a steady circulation). At present it is uncertain which of these mechanisms for
spontaneous decadal thermohaline variability is more relevant to climate variability.
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Figure 1: Annual- and zonal-mean heat and water transports from both observations and OGCM
solutions (i.e., R-E and B-K) (Large et al., 1997).
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Figure 2: Schema of diapycnal mixing pathways.
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Figure 3: Schematic dye distributions in a purposeful tracer release experiment at a time approxi-
mately six months after being released at a single point.
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Figure 4: Diagnosed vertical eddy diffusivity, averaged horizontally, from the subtropical North
Atlantic Tracer Release Experiment (TRE) (Ledwell et al., 1993).
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Figure 5: Schetch of water-mass renewal processes in gravity currents (e.g., Greenland overflow,
Mediterranean outflow, and Weddell shelf.
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Figure 6: A profile of current and salinity and a profile of dissipation rate adjacent to the bottom
within the Mediterranean Outflow in the North Atlantic (Price et al., 1993).
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Figure 7: Schetch of a cyclonic preconditioning circulation that induces weak stratification in its
center, which is more readily invaded by deep convection induced by negative surface buoyancy
forcing with a larger spatial scale.
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Figure 8: (Left) mean circulation of the Labrador Sea and Irminger Basin at 700 m depth. (Right)
Mixed layer depths in the Labrador Sea during winter 1996-97. Measurements were made with
profiling floats (Lavender et al., 2002).

24



Figure 9: Phosphate and S along a meridional section in the Atlantic (Niiler, 1992).

25



Figure 10: Spreading of NADW (top) and AABW (bottom) in the Atlantic, expressed as percent-
ages of pure source water (Niiler, 1992).
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Figure 11: O2 (top) and silica (bottom) along a zonal section in the South Atlantic.
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Figure 12: S (solid contours) and silicate (dashed) along a zonal section in the South Pacific
(Gordon, 1975).
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Figure 13: Tritium along a meridional section in the North Atlantic in 1972 and 1981 (Östlund and
Rooth, 1990). 29



Figure 14: Distribution of time since exposure to the atmosphere (i.e., age) based on Freons on a
mid-level isopycnal surface in the Atlantic (Smethie and Fine, 2001).
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Figure 15: Schema of water masses along a zonal section at 25o N in the North Atlantic (Niiler,
1992).
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Figure 16: Freon concentrations along two meridional sections across the equator in the Atlantic.
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Figure 17: Stommel-Arons circulation for a hemispheric sector with a source at the North Pole.
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Figure 18: Stommel-Arons circulation for the global ocean assuming two sources in the North and
South Atlantic (Veronis, 1981).
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Figure 19: Establishment of the dynamic height anomaly from a state of rest in response to a mass
source in the northwest corner of the basin after 5, 10, 20, and 40 days (Kawasi, 1987).
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Figure 20: Final steady-state dynamic height and circulation at day 200 for the problem in Fig. 19
(Kawasi, 1987).
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Figure 21: Configuration for a two-box model (Stommel, 1961).
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Figure 22: Bifurcation diagrams (a.k.a. catastrophe structure) for two-box model for two different
values of ξ (Thual and McWilliams, 1992).
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Figure 23: Multiple steady states for a 2D fluid model (Thual and McWilliams, 1992).
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Figure 24: Bifurcation diagram (a.k.a. catastrophe structure) for the steady states of a 2D fluid
model (Thual and McWilliams, 1992).
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Figure 25: Pole-to-pole steady state of a 2D fluid model at the Hopf bifurcation point: (a) stream-
function, (b) T , and (c) S (Dijkstra and Molemaker, 1997).
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Figure 26: Periodically forced oscillation about the pole-to-pole steady state shown in Fig. 25 for a
2D fluid model: (a) streamfunction, (b) ρ, (c) T , (d) S shown at four different times ωt/2π during
the periodic oscillation (Dijkstra and Molemaker, 1997).

42



Figure 27: Time-mean and dominant EOF for the variability in a 2D fluid model with stochastic
transient forcing (Saravanan and McWilliams, 1997).
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Figure 28: Bifurcation diagrams for steady solutions (solid lines) and decadal limit cycles (open
circles) with (left) mixed surface boundary conditions and (right) flux boundary conditions. The
black lines are incompletely delineated here, except at the point of the black circle where this
solution branch terminates. The abscissa is proportional to the combined Rayleigh number Ra
for heat and freshwater forcing, and the ordinate is the mass transport amplitude of the MOC
(Molemaker and McWilliams, 2006).
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