
Chapter 4

ANTARCTIC CIRCUMPOLAR CURRENT

1 Phenomenology

The Antarctic Circumpolar Current (ACC) is unique because of the combination of westerly wind
stress at the surface and the absence of continental barriers along latitude lines (though there are
proximate partial barriers). The response is a broad eastward geostrophic ACC flow, extending
over ∼ 1000 km meridionally (with embedded narrow ribbons of stronger flow) and ∼ 25, 000
km zonally, and reaching down to the bottom where the influence of topography is strong. There
is also an equatorward Ekman flow (with transport to the left of the wind since f < 0), whose
associated interior meridional overturning circulation (MOC) is called the Deacon Cell. Sverdrup
balance is precluded for the ACC because there can be no balancing zonal pressure gradient for
a geostrophic, zonally averaged meridional flow. Although the ACC is primarily wind-driven, it
is enveloped in the global thermohaline circuit (Chap. 1, Figs. 5 and 7), and most likely there is
important mutual coupling between the ACC and the diabatic aspects of the MOC in the Southern
Ocean.

In Chaps. 1 and 2 we saw various depictions of the ACC region:

• Mariner’s chart and an OGCM solution for surface currents (Chap. 1, Figs. 2 and 12)

• Surface winds (Chap. 2, Figs. 2-3)

• Ekman and Stokes transports (Chap. 2, Figs. 11 and 16-17)

• Barotropic streamfunction (Chap. 1, Fig. 4)

• SST (Chap. 2, Fig. 6)

• Surface heat and water fluxes (Chap. 2, Figs. 7-10)

• MOC streamfunction (Chap. 1, Figs. 5 and 7)

• Sea level (Chap. 1, Figs. 17-19)

2 Adiabatic Equilibrium of a Wind-Driven Zonal Jet

The cogent idealization of the ACC is an adiabatic, zonally periodic jet driven by a broad, steady
zonal wind on the β-plane over irregular topography with a baroclinic deformation radius much
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smaller than the wind and current scale (i.e., R � Ly) and without surface buoyancy flux. The
dynamics can be well represented by the QG approximation, and we will do so here. The prob-
lem configuration is shown in Fig. 1. Another important scale, which we can recognize as δc
(Charney, 1955) for a nonlinear western boundary current, is Lβ =

√
U/β, where U is a typical

current velocity, either mean or eddy. In the ACC, Lβ < Ly, though not necessarily by much; the
implications of this are further commented on below.

First, consider spin-up from a stratified resting state. At early times the jet will accelerate with

u(y, z, t) ∝ τ (x)
s (y)t , (1)

where τ (x)
s = u2

∗ is the zonal wind stress divided by ρo. The early-time depth profile depends upon
the scale of the wind forcing; when Lτ � R, it is mostly barotropic (i.e., depth independent).

To have any chance of arriving at an equilibrium state, the problem must be posed with non-
conservative terms, e.g., eddy viscosities νh and νv and/or bottom-drag damping rate εb. If these
parameters are large enough, they can support a steady, stable jet in a late-time equilibrium. How-
ever, for smaller values, as geophysical plausibility requires, the accelerating jet will become un-
stable before it reaches a viscous steady state. A bifurcation sequence of successive instabilities
can be mapped out, but geophysical jets are well past this transition regime; they can reach an
equilibrium only in balance with fully developed geostrophic turbulence. The most important type
of jet instability for L > R is baroclinic instability.

Now consider the fully developed, statistical equilibrium state. Its instantaneous flow and
potential vorticity in a numerical solution of the QG layered equations are shown in Fig. 5, and its
buoyancy and vertical velocity are shown in Fig. 6. Note the strong, narrow, meandering jet near
the surface, and the weaker, broader flow near the bottom. The centerline of the jet is a continuous
front in temperature T , a broken front in potential vorticity q, and an axis of alternating centers in
vertical velocity w.

We define an overbar as an average over (x, t), where the domain of each is taken to be infinite,
consistent with our assumptions of zonal homogeneity and stationarity. The mean geostrophic flow
is a surface intensified zonal jet, u(y, z) ≡ um(y) (Figs. 2-3). This jet is in hydrostatic, geostrophic
balance with the dynamic pressure φm, streamfunction ψm, layer thickness hm, anomalous interfa-
cial elevation ηm+.5, and anomalous interfacial “temperature” Tm+.5 (or, with a different notation
for the layer interface index, Tα with α = 1, . . . ,M − 1):

um = − 1

f

∂φm

∂y

ψm = φm/f

hm = Hn + ηm−.5 − ηm+.5

ηm+.5 =
f

g′m+.5

(ψm+1 − ψm)

Tm+.5 = − f

αg
(ψm+1 − ψm) . (2)
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Here g′ = g∆ρ/ρ0 = ∆b measures the effective stratification across an interface, and we have
assumed the simple, equation of state, ρ = −αTTρ0 with αT the thermal expansion coefficient.

The time-mean profiles from the same numerical solution are shown in Fig. 7. They show a
surface intensified eastward jet; geostrophically balancing temperature gradients (with cold water
on the poleward side of the jet); opposing potential vorticity gradients in the top and bottom layers
(i.e., satisfying a Rayleigh necessary condition for baroclinic instability) and homogenized q in the
middle layer (cf., Chap. 3, Sec. 3.5); and a mean upwelling on the poleward side of the jet and
downwelling on the equatorward side (i.e., a Deacon cell of an overturning secondary circulation
in the meridional plane, whose surface branch of equatorward flow is the Ekman transport).

2.1 Zonal Momentum Balance

What is the zonal momentum balance for this state? Its most important part is

∂u

∂t
(= 0) ≈ ∂τ

∂z
, (3)

where

τ = τ (x)
s , z = H

= D, b < z < H

= Db + εbub, z = b ≈ 0 , (4)

and we have assumed an Ekman layer form for the turbulent bottom drag. In a vertical integral of
(4),

∂

∂t

∫ H

b

u dz (= 0) = W (x) − [Db + εbub] . (5)

Thus, for τ (x) > 0, we need ub > 0 and/or Db > 0. The latter, which is topographic form
stress, dominates in the Antarctic Circumpolar current (Treguier and McWilliams, 1990; Wolff
et al., 1991). Without topographic stress, the turbulent drag over a flat bottom is so inefficient with
realistic values of εb that an unnaturally large bottom velocity and zonal transport is required to
reach equilibrium, e.g., in the zonal momentum balance.

For balance in (3) near the top and bottom surfaces, we also need D > 0; generally, D > 0∀z.
D is the isopycnal form stress discussed in Chap. 3, Sec. 3.2, viz.,

D(x) = −φxη = −fvη . (6)
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In a momentum budget, like (3), we have

∂u

∂t
=

∂D(x)

∂z
,

∂uabove

∂t
∼ −D(x)/Habove

∂ubelow

∂t
∼ +D(x)/Hbelow . (7)

When the material surface is the bottom, then η = B and

Db = −fvB . (8)

Note that Db 6= 0 requires that the time-mean v 6= 0; i.e., there must be “standing eddies” present.
When η is an isopycnal surface, we can derive

Dm+.5 = − f

g′m+.5

vmψm+1 , (9)

where the “turbulent” eddies can be either standing or transient.

To complete the characterization of the zonal momentum balance (i.e., going beyond the ap-
proximation in (3)), we must also consider the horizontal Reynolds stress:

∂u

∂t
(= 0) =

∂τ

∂z
+
∂R

∂y
+O(Ro, Reh) , (10)

where R ≡ −uv. Thus, in each interior layer, the mean zonal flow is accelerated by the difference
between the isopycnal form stress, D(z), at the interfaces (isopycnal surfaces) above and below,
and it is decelerated by the divergence of the horizontal Reynolds stress.

The time- and zonal-mean zonal momentum balance from the same numerical solution is
shown in Fig. 8. In the upper layer, we see the eastward surface wind stress balanced primar-
ily by eddy isopycnal form stress (i.e., associated with the first interior interface between layers,
−D1), with the eddy horizontal Reynolds stress divergence redistributing momentum in y, increas-
ing the eastward momentum in the core of the jet and decreasing it at the edges (a.k.a. negative
eddy viscosity). In the bottom layer, we see eastward momentum transmitted downward by the
isopycnal from stress (i.e., +D2) and balanced almost entirely by bottom stress, here represented
by a bulk formula for drag by bottom boundary-layer turbulence, −CD|u|u, with negligible deep
eddy horizontal Reynolds stress. These eddy momentum flux patterns are typical of broad baro-
clinically unstable zonal jets (cf., the atmospheric westerly winds).

The most striking feature ofR is the acceleration of the mean zonal jet in its meridional/vertical
core. Eddy acceleration of the mean flow is referred to as a negative-viscosity behavior since it
implies that the eddy Reynolds stress profile has the same shape in y as the mean horizontal shear.
An explanation forR having this shape can be either made in terms of radiating Rossby waves (Sec.

4



2.4) or as a property of the linearly unstable eigenmodes for un(y). When Lτ > Lβ > R, multiple
jets can occur, with a meridional scale near Lβ (Panetta, 1993; Treguier and Panetta, 1994). The
common view of the ACC, based on shipboard hydrographic transects and instantaneous altimetric
fields, is that it typically has several cores of relatively intense narrow zonal flow embedded in the
broader zonal of the ACC as a whole; it remains somewhat uncertain whether the same is true of
the time-mean ACC.

2.2 Meridional Overturing Circulation (MOC)

The mean circulation is (u, v, w), where only the zonal component is in geostrophic balance. The
components in the meridional plane — the Deacon Cell — are ageostrophic velocities, and thus
weaker by O(Ro).

Consider the relation expressing the movement of the interfaces as material surfaces,

w =
Dη

Dt
. (11)

The mean of this relation is

w = uηx + vηy =
∂

∂y
vη = − 1

f

∂

∂y
D . (12)

Thus, w is forced by the isopycnal form stress in the interior. By continuity,

vy + wz = 0 , or (13)

v =
1

f

∂

∂z
D → Dm−.5 −Dm+.5

fHm

. (14)

When we combine (12) and (14) with the assumption that the PBL lies entirely within the upper
layer of our model configuration, i.e., that

w = wekman = − 1

f

∂

∂y
τ (x)
s at z = H , (15)

then we obtain the clockwise mean meridional circulation seen in Fig. 4.

We can reinterpret (14), using the definition of hm in (2), to express the condition that there
can be no equilibrium flux of mass within any layer; viz.,

hv = Hv + (h−H)v = 0 . (16)

Thus, there is an exact cancellation of the mean mass flux within an isopycnal layer by the eddy
mass transport. The same conclusion could be drawn for any non-diffusing tracer that does not
cross the material interfaces. There can be no net flux of any material property in an adiabatic
equilibrium state.
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2.3 Meridional Heat Balance

D plays an essential role in the equilibrium balances for the jet. Where does it come from? From
(2) we can write the interfacial temperature as T = −g′η/αg. Hence, isopycnal form stress (6)
can be related to lateral heat flux by

D =
αfg

g′
vT . (17)

D > 0 implies vT < 0, and, as can be seen from the shape of Tm+.5(y) in the figure above, this
sign for D implies both a down-gradient heat flux and a release of available potential energy — as
also found in the linear eigenmodes for baroclinic instability of u(y, z).

The equilibrium heat balance is

T t (= 0) = − ∂

∂y
vT − wT z , (18)

which is assured by the previous relations. Thus, there is no net heat flux and the eddies balance
the mean ageostrophic advection exactly.

2.4 Rectification by Rossby Wave Radiation

A type of rectification that does not necessarily involve circulation instability arises when waves
radiate away from a localized source region and decay in amplitude as they propagate. This effect
can be illustrated for Rossby waves in solutions of the barotropic potential vorticity equation on
the β-plane,

Dq

Dt
= F − rζ

q = ∇2ψ + βy
D

Dt
=

∂

∂t
+ ẑ · ∇∇∇ψ × ∇∇∇, (19)

where the potential vorticity is q = f + ζ; the vertical component of vorticity is ζ; the Coriolis
frequency is f = f0 + βy; F is a forcing term (e.g., Ekman pumping due to the wind); and r is a
damping coefficient (e.g., Ekman drag). Consider the situation where F = F∗(x, y) sin [ωt] and
F∗ is nonzero only in a narrow region in y (Fig. 9).

Rossby waves with frequency ω will be excited and propagate away from the source region.
Their dispersion relation is

ω = − βk

k2 + `2
, (20)
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where (k, `) is the horizontal wavenumber vector. The associated meridional phase and group
speeds are

c(y)
p = ω/` = − βk

`(k2 + `2)

c(y)
g =

∂ω

∂`
=

2βk`

(k2 + `2)2
. (21)

To the north of the source region, the group speed must be positive for outward energy radiation.
Without loss of generality we can choose k > 0; hence the northern waves must have ` > 0 for
northward radiation. This implies c(y)

p < 0 and a NW-SE alignment of the constant-phase lines,
hence u′v′ < 0 since the horizontal velocity is parallel to the constant-phase lines. In the south the
constant-phase lines have a NE-SW alignment, and u′v′ > 0. This leads to the u′v′(y) profile in
Fig. 9. Notice the amplitude decay as |y| → ∞, due to damping by r. In the vicinity of the source
region the flow can be complicated, depending upon the form of F∗, and here we simply connect
the far-field relations smoothly across it without being too concerned about local details.

This horizontal Reynolds stress enters in the time-mean, zonal momentum balance as

ru = − ∂

∂y

(
u′v′

)
(22)

since F = 0. Thus the mean zonal flow generated by wave rectification has the pattern sketched
in Fig. 9, eastward in the vicinity of the source and westward to the north and south. This a simple
model for the known behavior of eastward acceleration by the eddies in an baroclinically unstable
eastward jet (e.g., in the Jet Stream and ACC), where the eddy generation process by instability
has been replaced in this simple mechanistic model by the transient forcing F . Note that this
rectification does not act like an normal eddy mixing process in the generation region since

νe ≡ −u
′v′

uy

< 0 , (23)

although this ratio is positive in the far field. The reason is that the eddy process is highly non-local,
with the eddy generation site distant from the dissipation site. Associating westard momentum
with Rossby waves, we can say that they receive westard momentum from (or impart eastward
momentum to) the mean flow where they are generated and deposit or impart westard momentum
to the mean flow where they are dissipated. Since∫ ∞

−∞
u(y) dy = 0 (24)

from (22), we can view the rectification process as a conservative redistribution of the ambient
mean zonal momentum – initially zero everywhere and integrally zero at all times — through
Rossby-wave radiation stresses.

There are other important examples of non-local transport of momentum by waves, taking it
from where they are generated and depositing it where they are dissipated. This is what happens for
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gravity lee waves generated by flow over topography, propagating upward and breaking at critical
levels where they then retard the mean flow (e.g., certainly in the tropopause jet stream or perhaps
in the upper part of the ACC too).

2.5 Alternative Languages for Theoretical Interpretation

Much of what is presented above is a picture that was first drawn in the 1950s and 1960s to describe
the maintenance of the atmospheric jet stream (e.g., Lorenz (1967)), even though for many years
afterwards it was still a serious challenge to realize computational solutions for this behavior. The
ACC and jet stream have a lot in common. Perhaps the biggest difference being is that the former
is driven by a mean surface stress and the latter by a mean meridional heating gradient, and the
associated vertical wind shears and meridional temperature gradients are related by thermal wind.
This GFD problem is such an important one that its interpretation has continually been developed
further. A variety of languages have been developed in this context:

• Eulerian mean circulation: (u, v, w).

• Eliassen-Palm (EP) flux: ~F = (0, R,D).

• Residual-mean circulation: (0, ṽ, w̃), where

ṽ = v − 1

f
Dz, w̃ = w +

1

f
Dy . (25)

The final r.h.s. terms are the non-divergent eddy-induced transport velocity, u∗, that appears
in the widely used eddy tracer transport parameterization of Gent and McWilliams (1990),
discussed in Chap. 3, Sec. 3.3. (Residual-mean flow may be defined more operationally as
the Lagrangian mean flow for passive tracers, i.e., the net motion due to the Eulerian mean
flow and the eddy-induced Largrangian transport.)

• Transformed Eulerian Mean (TEM) equations: for an average that is now made in x, a
diabatic fluid, and quasigeostrophic relations [with a harmless extra O(Ro) meridional ad-
vection in the temperature equation], we can write a transformed dynamical set of equations
for the Eulerian mean zonal flow, u(y, z, t):

ut − fṽ = ~∇ · ~F + n.c.t.

T t + ṽT y + w̃T z = n.c.t.

ṽy + w̃z = 0

fuz + αgT y = 0 . (26)

In these equations n.c.t. denotes any non-conservative terms in zonal momentum and heat.
These equations have subtracted the geostrophic balance terms from the zonal momentum
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equation, and all the eddy effects appear explicitly only in one place as the EP flux diver-
gence. The residual-mean flow acts as the effective transport velocity for passive tracers as
well as buoyancy/temperature, although for tracers there are additional eddy flux terms for
lateral mixing along isopycnal surfaces (n.b., mixing buoyancy along an isopycnal surface
has no effect).

• Eddy potential vorticity flux:

v′q′ = Ry +Dz = ~∇ · ~F , (27)

using the definition for potential vorticity, q′ = v′x − u′y − f0η
′
z. This the eddy forcing term

that appears in the TEM zonal momentum balance.

• Adiabatic equilibrium: the relations (12)-(14) imply

ṽ = w̃ = 0 and ~∇ · ~F = −n.c.t. ,

where the latter consist of the surface wind stress, bottom drag, and interior momentum
diffusion.

• Non-acceleration, non-interaction, and Eliassen-Palm theorems (Andrews et al., 1987): in
adiabatic equilibrium and with n.c.t. = 0, there are no eddy rectification effects on the zonal
mean flow.

Now consider the behavior implied by the GM parameterization of geostrophic turbulence and
its effects on the mean circulation. This parameterization addresses the isopycnal form stress but
not the horizontal Reynolds stress (i.e., D not R; Chap. 3, Sec. 3.2). If the interior of the ocean
is approximately in adiabatic equilibrium, steady time, and without important n.c.t. effects on the
mean circulation, then the residual-mean circulation will be zero and a non-acceleration state will
occur. Evidently these conditions are approximately realized in a coarse-resolution OGCM us-
ing the GM parameterization in Fig. 10, where the eddy-induced circulation nearly cancels the
Eulerian-mean Deacon cell, except very near the surface (i.e., in the vicinity of the diabatic PBL).
An alternative parameterization of the rectified, mesoscale-eddy, tracer transport as horizontal eddy
diffusion of buoyancy and tracers (the historically common practice) leads to a very different out-
come. The implications for material property fluxes across the ACC are significant, such that the
net flux (mean advection plus eddy rectification) is much smaller than the flux caused only by the
mean Eulerian circulation (but also see Sec. 3).

In summary, we see the pervasive dynamical importance of form stress, both isopycnal, D,
and topographic, D−H , in extra-tropical, nearly adiabatic, wind-driven circulations. The spatial
structure of the form stress is particularly simple in the zonally periodic ACC, which is therefore
an easier context for understanding it. In 3D, baroclinic wind gyres, form stress is also important
(e.g., in resolving the dilemma of surface confinement; Chap. 3, Sec. 3.1), but its spatial structure
is much more complex and its degree of dominance over horizontal Reynolds stress is less extreme
(because the strong boundary currents are not broad compared to the deformation radius, R).
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3 Coupling to the Thermohaline Circulation

The idealized model in Sec. 2 does not include effects of surface buoyancy flux and diabatic
interior mixing. The common opinion is that these are of secondary influence on the ACC, but
there are several reasons why this might not be true. First we discuss one associated with bottom
topography. Figure 11 shows the barotropic streamfunction from three global GCM solutions
presented in Cai and Baines (1996). They have surface buoyancy forcing (specified by restoring
toward the climatological surface values of T and S) but no wind forcing. They differ only in their
bottom topography: flat (run F1l I), a small ridge obstructing the Drake Passage south of South
America (run F1I1p), and a larger ridge there (run F1Ipp). In all cases there is a thermohaline
circulation in response to the buoyancy forcing (Chap. 6), but this has little expression in the
depth-avveraged (barotropic) transport. In the first case there is essentially no barotropic transport
anywhere, including in the ACC. This is consistent with Sverdrup theory and the adiabatic, wind-
driven problems in Chap. 3 and Sec. 2. However, with a topographic ridge, a substantial eastward
transport develops in the ACC.

This, too, can be interpreted as a consequence of topographic form stress, except that here
D−H < 0 is acting in (5) to accelerate the ACC, instead of decelerating it as in the usual wind-
driven situation. The cause is the formation of dense water in the Weddell Sea that flows northward
along the eastern side of the ridge in the Drake Passage. Denser water to the east of the ridge
implies a larger bottom pressure there:

1. The pressure anomaly in the fluid decreases further to the east, so that the northward flow on
the ridge slope is in geostrophic balance (i.e., φx < 0 and v = φx/f > 0 since f < 0).

2. The larger bottom pressure is on the eastern slope, where Bx < 0, with smaller pressure on
the western slope, where Bx > 0. By first line in (8), this implies D−H < 0.

So, it is possible to create an eastward ACC with only thermohaline forcing and topographic
form stress. In Fig. 11, the transport through the Drake Passage with the largest ridge is 110 Sv;
this is almost as large as the observed transport. On the other hand, in the same paper, other GCM
solutions are reported with wind forcing in all combinations with and without buoyancy forcing
and with and without bottom topography. Somewhat surprisingly, the ACC transport varied in
these cases only within the range 120-131 Sv, indicating that similar transport magnitudes may be
achieved by several different dynamical circumstances.

Second, there is continuing scientific debate over whether the global thermohaline circulation
(THC) is “pulled” downwards by deep convection or “pushed” towards the sinking regions by
northward Ekman transport in the ACC region (i.e., the surface branch of the Deacon Cell; Togg-
weiler and Samuels (1998)). There is no question that pulling can drive the THC (Chap. 6), since it
can be realized in models with no wind driving and no zonally periodic circumpolar latitude band.
The question of whether it can be pushed is whether the northward surface drift will continue past
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the ACC — going against the southward Ekman pumping in the Trade Wind zone — or sink and
become a closed MOC in the ACC region (as it mostly does in Fig. 10). There is a related, though
not identical, question about whether an unusually large amount of the rising branch of the THC
ascends in the neighborhood of the ACC, rather than more broadly around the world as tradition-
ally believed and as implied by the global conveyor-belt cartoon (Chap. 1, Fig. 7). Since the
ACC region is atypically weakly stratified, the amount of diapycnal mixing required to balance
upward advection is relatively smaller. I am not explaining any further about these issues, but I
have appended a relevant recent article by Webb and Suginohara (2001).

Third, the surface fluxes of heat and water in the ACC region (Chap. 2, Figs. 7 and 9), although
nowhere near global maxima in their strength are non-zero, and there must be at least some degree
of buoyancy forcing for the ACC. This is perhaps most significant for the MOC, although even
the zonal flow may be influenced by changes in the meridional T and S gradients due to buoy-
ancy forcing and expressed through the thermal wind relation. The observed meridional fields are
shown in Fig. 12, although it is impossible to say which aspects are wind- or buoyancy-driven.
Other observational fields (and their interpretation for the MOC) are in Fig. 13. One means of
inferring the MOC is by tracing the water mass properties, and sometimes this approach is for-
malized by so-called inverse models (Speer et al., 2000). Figure 14 shows estimates of the surface
water mass transformation, and Fig. 15 shows a schematic pattern for the inferred MOC. Since
material transport by the Eulerian-mean MOC is substantially opposed by eddy fluxes in a quasi-
adiabatic conception of ACC dynamics (Sec. 2), water-mass tracking is primarily focused on the
net Lagrangian transport. This transport is often idenitifed with the residual-mean circulation (Sec.
2.5; Marshall and Radko (2003)). An interesting aspect of the diabatic MOC in the ACC is that the
northward surface Ekman current is in the direction of increasing T ; hence, a water parcel must
gain heat as it moves northward. Apart from implausible heat sources from below or a large lateral
eddy diffusion effect, there must therefore be net atmospheric heating in a latitude range where
the air-sea interaction implies strong cooling in the Northern Hemisphere. The climatological flux
estimate (Chap. 2, Fig. 7) does not have a strong signal in the ACC region.

Appendix: Webb and Suginohara (2001) (next page)
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Figure 1: Posing the wind-driven zonal jet problem in the southern hemisphere.
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Figure 2: Sketch of the time-mean zonal flow in the zonal jet problem.
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Figure 3: Sketch of a meridional cross-section for the time-mean zonal jet and buoyancy field.
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Figure 4: Sketch of the time-mean, meridional overturning circulation (i.e., Deacon Cell) for the
zonal jet.
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Figure 5: Instantaneous streamfunction and potential vorticity (i.e., excluding βy) patterns in the
upper- and lower-most layers in a QG zonal-jet solution with M = 3 (McWilliams and Chow,
1981).
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Figure 6: Instantaneous buoyancy and vertical velocity patterns at the the upper and lower interior
interfaces in a QG zonal-jet solution with M = 3 (McWilliams and Chow, 1981).
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Figure 7: Time-mean meridional profiles for a QG zonal-jet solution with M = 3 (McWilliams
and Chow, 1981): ψi, ui, Hi(qi − f0), Hi∂yqi, Tα, & wα.
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Figure 8: Terms in the zonal momentum budget in the upper- and lower-most layers for a QG
zonal-jet solution with M = 3 (McWilliams and Chow, 1981).
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Figure 9: Sketch of radiating Rossby waves from a zonal line source and the resulting Reynolds
stress and mean zonal flow.
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Figure 10: Time- and zonal-mean MOC Φ in the meridional plane from global equilibrium GCM
solutions. HOR denotes a solution with κh as the mesoscale-eddy tracer diffusivity and ISO de-
notes one with κi as the isopycnal eddy-induced advection and mixing diffusivity (Danabasoglu
and McWilliams, 1976).
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Figure 11: Thermohaline driving of the ACC through topographic torques (Cai and Baines, 1996).
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Figure 12: Hydrographic meridional section across the ACC at Drake Passage (Whitworth, 1988).
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Figure 13: (Marshall and Radko, 2003)
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Figure 14: Water mass transformation in the southern hemisphere calculated from COADS (i.e.,
shipboard) heat and freshwater flux data. A zone of buoyancy gain occurs at surface densities
greater than 27 in both components of the buoyancy flux. Ekman transport is shown for compari-
son, showing the alignment of buoyancy gain and growing northward transport (divergent Ekman
flow, hence Ekman suction). Inverse model results for total transformation are generally consistent
(Speer et al., 2000).
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Figure 15: A schematic view of the MOC in the southern ocean. An upper cell is formed primar-
ily by northward Ekman transport beneath the strong westerly winds with an associated upward
eddy transport in the UCDW layer. A lower cell is driven primarily by formation of dense AABW
near the Antarctic continent. PF=Polar Front; SAF=Subantarctic Front; STF=Subtropical Front;
AAIW=Anarctic Intermediate Water; ECDW=Upper Circumpolar Deep Water; NADW=North At-
lantic Deep Water; LCDW=Lower Circumpolar Deep Water; AABW=Antarctic Bottom Water.
(Speer et al., 2000)
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