
Wind Gyres
Here we derive the simplest (and oldest; Stommel, 1948) theory to explain western boundary

currents like the Gulf Stream, and then discuss the relation of the theory to more realistic gyres.
This expands the material in the lecture slides in circulation.pdf.

Recall several relations from the lecture on Equations. The depth-integrated horizontal trans-
port T is non-divergent and can be represented with a transport streamfunction Ψ,

T = ẑ×∇hΨ .

The depth-integrated steady vorticity balance, including contributions from Coriolis force and Ek-
man layer Reynolds stress divergence, is

β∂xΨ =
1

ρ0
curl[τ s − τ b] . (1)

We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κv,
viz.,

τ b = ρ0R
bub

i , (2)

where Rb [m s−1] is a bottom drag coefficient, and we assume the interior currents are wholly
barotropic, ub

i = T/h. Thus,
1

ρ0
τ b = Ru =

R

h
T .

Thus, if h is spatially uniform (i.e., the bottom is flat),

1

ρ0
curl[τ b] =

R

h
∇2Ψ ,

and we can state the horizontal boundary-value problem for Ψ as

R

h
∇2Ψ + β∂xΨ =

1

ρ0
curl[τ s] ,

with Ψ = 0 on the boundary. (3)

The boundary condition assures no flow through the horizontal boundary. This is a 2D, second-
order, elliptic PDE for Ψ(x, y) given the time-mean wind stress τ s(x, y).

We already saw a partial solution of this model in the Sverdrup relation DE(33):

ΨSv(x, y) = − 1

βρ0

∫ xe(y)

x

curl[τ s] dx , (4)

where xe(y) is the location of the eastern boundary. This balances the right-side forcing in (3) with
the first left-side term. It also satisfies the boundary condition at the eastern boundary xe but not at
the western boundary xw(y) because

ΨSv
w (y) = − 1

βρ0

∫ xe(y)

xw(y)

curl[τ s] dx
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Figure 1: Sketch of Sverdrup gyres in the Northern-Hemisphere. A zonal surface stress profile is on the
left, with a maximum westerly wind at middle latitudes. The associated Sverdrup transport streamfunction
ΨSv(x, y) from (4) is on the right in an oceanic basin bounded on the west and east by xw and xe. Flow
is along isolines of Ψ as indicated by the arrows. The subpolar gyre has ΨSv < 0 (blue contours) and
counterclockwise circulation due to the positive wind curl, − ∂yτ s,x > 0, at high latitudes. The subtropical
gyre has ΨSv > 0 (red contours) and clockwise circulation due to the negative wind curl, − ∂yτ s,x < 0,
in middle latitudes. The flow near the western boundary is not sketched because it does not satisfy the
Sverdrup balance. However, by transport non-divergence within a bounded basin, there must be return flow
for steady-state mass balance; these occur in western boundary currents (WBCs) as indicated by the colored
arrows. This is a repeated figure.

Figure 2: Global Sverdrup transport ΨSv [Sv] calculated with (4) using the observed mean wind. Notice the
subtropical and near-equatorial gyres, the subpolar gyres in the north (partly off the page), and the approach
to the Antarctic Circumpolar region without zonal boundaries. (Stewart, 2008)
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is usually nonzero.
The Sverdrup transport ΨSv(x, y) is sketched in Fig. 1 and diagnosed from the global mean

wind field in Fig. 2.
To complete the solution of (3) we add a correction component, i.e.,

Ψ = ΨSv + Ψw , (5)

where after substitution the boundary-value problem for the correction is

∇2Ψw +
hβ

R
∂xΨw = −∇2ΨSv ,

with Ψw = −ΨSv on the boundary. (6)

Define Lw = R/hβ, which has the unit of length. For oceanic conditions,

Lw � Ld ,

where Ld is the scale of the basin and/or the mean wind field. By (4) Ld is also the scale for
ΨSv in both x and y. If we posit that Lw is the appropriate zonal scale for Ψw and that ΨSv

w is
the appropriate amplitude scale for both Ψ components, then we can make scale estimates for the
second-derivative terms in (6):

∂2xΨw ∼ ΨSv
w

Lw 2
� ∂2yΨw and∇2ΨSv ∼ ΨSv

w

Ld 2
.

Thus, we can approximate the full Ψw(x, y) problem by a simpler boundary-layer problem in x
(independently for each value of y):

∂2xΨw +
1

Lw
∂xΨw = 0 ,

Ψw(xw) = −ΨSv
w and Ψw(xe) = 0 . (7)

This is a second-order ODE in x, so it has two homogeneous solutions. We can factor this ODE
operator into [∂x − 1/Lw] times ∂x]; the first factor has is exponential function of x decaying to
the east, and the second is a constant in x. The general solution is their linear combination with
coefficients c1 and c2:

Ψw = c1 e
−x/Lw

+ c2 .

The coefficients are determined by the boundary conditions. Because xw < xe and Lw � Ld,
e−xe/Lw � e−xw/Lw ; so c2 ≈ 0 and c1 ≈ −ΨSv

w e
xw/Lw . Thus, the solution to (6) is

Ψ(x, y) ≈ −ΨSv
w e
−(x−xw)/Lw

+ ΨSv . (8)

For further simplicity we now assume τ s is independent of x and identify Ld with xe − xw. So,

Ψ(x, y) =
curl[τ s]

βρ0

(
Lde

−(x−xw)/Lw − Ld + x− xw
)
, (9)

and the associated meridional barotropic velocity is

v(x) =
1

h
∂xΨ =

curl[τ s]

hβρ0

(
1− Ld

Lw
e−(x−xw)/Lw

)
(10)
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Figure 3: The transport streamfunction Ψ [Sv] for a subtropical gyre in a closed domain. (Here it is plotted
with the wrong sign; Ψ is a maximum in the middle of an anticyclonic gyre in the Northern Hemisphere).
The wind stress τx(y) is on the left, and the solution to (6) is on the right. The value of R is empirically
chosen to match the width Lw (∼ 100 km) of the Gulf Stream along the east coast of North America. For
comparison the middle panel shows a solution to (3) except that β is set to zero (i.e., a f -plane model). In
this case the interior flow is not Sverdrup flow and there is no WBC. (Stewart, 2008)

Figure 4: Sketch of the barotropic meridional velocity v(x) across a subtropical gyre with curl[taus] < 0.
The interior velocity is a southward Sverdrup flow and the narrow western boundary current (WBC) is much
faster. The zonally integrated meridional transport

∫
T y dx, is zero; i.e., the WBC provides an equal and

opposite mass flux to the Sverdrup flow.
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(Figs. 3-4).
We derived (9) assuming in anticipation that ΨSv

xe
= 0 in (4). Had we instead retained the

possibility of a “constant”-of-integration for (1), i.e., ΨSv
e (y) 6= 0, then we would have derived that

c2 = −ΨSv
e (y), leading to the same outcome in (9).

The reason the boundary current is on the western side is that the exponential homogeneous
solution, e−x/Lw , is decaying toward the east, i.e., Lw = R/hβ is a positive number. This is
because β is positive on Earth (Ω is counter-clockwise rotation about the North pole)) and because
R is positive since the stationary sea bed provides a drag on the adjacent currents, not vice versa.
Of course, h > 0 by definition. A WBC exists because β 6= 0 (cf., Fig. 3) and because turbulence
mix mean momentum; in this model the relevant mixing occurs within the bottom Ekman layer
as u′w′. Notice that this mixing effect is only quantitatively significant in our solution within the
WBC, even though it is acting everywhere in (3).

A more mechanistic explanation for why the western boundary current is on the western side
comes from taking the area integral of (3) over the whole basin. The β term integrates to zero since∫ ∫

dx dy ∂xΨ =

∫
dyΨ

∣∣∣xe

xw

= 0 .

The integral of the bottom drag term is proportional to the barotropic circulation C by application
of Stokes integral theorem,

1

h

∫ ∫
dx dy∇2Ψ =

∫ ∫
dx dy ẑ · ∇ × u =

∮
dsu · ŝ ≡ C ,

where ŝ is unit vector traversing the boundary in a counter-clockwise direction and ds is its differ-
ential arc length. Thus, the circulation balance from (3) is

C =
1

ρ0R

∫ ∫
dx dy curl[τ s] , (11)

and this is negative in a subtropical gyre. Hence, C < 0, and the integrated boundary current
must be in a clockwise direction. This is true for v in Fig. 4 with the boundary current on the
west. A hypothetical northward flow boundary current on the east, while consistent with overall
mass balance by opposing the southward Sverdrup flow, would not be consistent with circulation
balance (11). Thus, a negative vorticity input by the wind in the subtropical gyre, leading to
downward Ekman pumping and southward Sverdrup transport, also requires an anticyclonic gyre
circulation with a northward WBC.

Now we lift our eyes from the narrow perspective of this simple theory to makes some more
general remarks on oceanic wind-driven gyres.

• There are other simple models for a wind gyre that show the same overall structure of an in-
terior Sverdrup flow and a WBC. One alternative is to assume that horizontal turbulence pro-
vides the important mixing in the WBC region, i.e., u′v′ in momentum and u′ζz ′ in vorticity.
This turbulence would mesoscale or submesoscale eddies rather than bottom boundary-layer
turbulent eddies.

• Obviously, many generalizations are needed before this simple model can be realistically
complete. The principal missing effects here are pycnocline density stratification and associ-
ated buoyancy forcing and baroclinic circulation, time-variability in τ s, nonlinear advection
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Figure 5: Time averaged ψ (left) and Qqg = ζ
w

+ βy (right) from a nonlinear, QG, barotropic model
with steady, “double gyre” wind stress (i.e., τ s x(y) is maximum in the center). The averaged circulation is
unstable, mesoscale eddies arise, and the eddy term J [ψ′, Q′qg] allows ψ to deviate from the Sverdrup flow
in the interior recirculation zone. (Marshall, 1984)

by the circulation, and mean circulation barotropic and baroclinic instabilities that generate
mesoscale eddies which in turn provide momentum and buoyancy mixing that reshape the
circulation. A modestly less simple model — but one requiring a computer for solution —
includes the latter two effects in the barotropic QG equations with steady wind forcing (Fig
5). By comparison with Fig. 3) we see two main differences: the WBC only separates in a
narrow eastward jet rather than in a broad interval along the western boundary, and there is a
region of enhanced recirculation (i.e., larger than the total Sverdrup transport) in the corner
of the gyre next to the separated jet.

• Wind-gyre circulation is essentially geostrophic outside the Ekman layers. Thus, it is re-
flected in the surface dynamic height field (Fig. 6) where the extrema are usually close to
the western boundary as in our simple solution just interiorward of the WBC. (The Antarctic
Circumpolar Current [ACC] is the biggest exception.) We see some pattern similarities with
ΨSv in Fig. 2. We can approximately identify η with fΨ/ghpyc 0. The relevant depth here is
the pycnocline depth hpyc since real gyres are baroclinic and have most of their wind-driven
transport in the upper ocean and weak flow in the abyss. The latter implies that

gη ≈ g′(hpyc − hpyc 0) ,

where g′ = g∆ρ/ρ0 is gravity reduced by the relative stratification in the pycnocline; i.e.,
the pycnocline is deeper where the sea surface elevation is higher such that the horizontal
pressure gradient force is weak in the abyss. Some numbers: Ψ = 30 Sv (3 × 107 m3 s−1);
f = 10−4 s−1; g = 10 m s−2; ∆ρ/ρ0 = 2.5× 10−3; η = 0.7 m; and hpyc − hpyc 0 = 300 m.
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drogued to 15-m depths. Figure 2a shows mean stream-

lines and color-coded velocity magnitudes calculated from

the ensemble-averaged drifter velocities collected by

the National Oceanic and Atmospheric Administration

(NOAA) Atlantic Oceanographic and Meteorological

Laboratory (AOML) from February 1979 through April

2007. Data are averaged in 0.258 boxes and smoothed with

a 18 3 18 moving mean filter.

FIG. 1. Maps of mean dynamic topographies (a) hA, (b) hB, and (c) hC calculated with methods A, B and C,

respectively, as described in the text. All figures are adjusted to the period 1993–2002. The contour interval is 10 cm.
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Figure 6: Global mean sea-level relative to an iso-surface of Earth’s gravitational potential (i.e., dynamic
height) [in m with contour interval 0.1 m]. It is an analysis from altimetry and surface drifters for the period
1993-2002. This figure is repeated.

• Real gyres are dynamically complex, with stratification, baroclinicity, and eddy mixing all
playing essential roles (e.g., Figs. 7-8). Analytic theories have some skill in representing
these influences, but computational general circulation models (GCMs) are necessary to
adequately simulate them.
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Figure 7: Instantaneous of SST in the Western North Atlantic. The warm, narrow, separated Gulf Stream
and mesoscale eddies are evident. This figure is repeated.
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Figure 8: Meridional section of density (σ = ρ− 103 kg m−3) from hydrographic stations taken across the
Gulf Stream downstream from its separation point on the western boundary (right) and the vertical profile of
the geostrophic zonal current [m s−1] at its center (left). Notice that the gyre circulation is baroclinic, with
the strong currents in and above the main pycnocline, rather than with a barotropic vertical profile. (Stewart,
2008)
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