
Oceanic Dynamical and Material Equations
and General Circulation Models

The ocean is a rotating, stratified, weakly compressible fluid with a functionally
complex equation of state (EOS) for seawater.

The primary variables are velocity u, pressure p, density ρ, temperature T , salinity
S, and various material concentrations C (a.k.a. tracers).

The oceanic domain is bounded from above by a free-surface interface between air
and water and from below by a solid bottom surface of silt, sand, and rock with
some localized inflows by rivers and hydrothermal vents. With minor departures the
interface is immiscible; the bottom is unmoving; and there are no side boundaries.

The forcing for oceanic currents is mainly through the surface interface, usually
expressed as horizontal wind stress vector τ s, heat flux Q, and freshwater flux F
(including rivers with shallow inflows). There is a bottom stress τ b that arises as
an internal product of the circulation (mainly a drag force), but generally negligible
bottom heat and water fluxes. For various C materials, there are both surface and
bottom fluxes.



.

Concept: The fundamental equations of oceanic circulation are known, and they can
be solved approximately in computational simulations that are often very realistic.

This is in contrast to most other natural sciences. Even the atmosphere has poorly
determined cloud physics that make its models less fundamentally grounded.

The least certain physical component of an oceanic model is its interaction with sea
ice, which occurs in only a small fractional volume.

On the other hand, the uncertainties are large in the representation of oceanic
biogeochemical processes, especially the organic ones.

The biggest deficiency in oceanic models is their incomplete spatial resolution due
to computational limits.



A Fluid-Dynamical Hierarchy

Parameters that measure the dynamical influences of planetary rotation and stable
density stratification are the Rossby and Froude numbers,

Ro =
V

fL
and Fr =

V

NH
.

V is a characteristic horizontal velocity; f = 2Ω sin[ϕ] is Coriolis frequency (Ω is
Earth’s rotation rate; ϕ is latitude); N ≈ [− (g/ρ) ∂zρ ]1/2 (with g the gravitational
acceleration; ρ is potential density to eliminate effects of compressibility) is buoyancy
frequency for the stratification; and (L, H) are (horizontal, vertical) length scales.
For flows on the planetary scale and mesoscale, Ro and Fr are . 1. For these flows
the atmosphere and ocean are relatively thin, so their aspect ratio,

Λ =
H

L
,

is often small. A measure of the dynamical influence (vs. EOS influence) of
compressibility is the Mach number,

M =
V

cs
,

where cs is the speed of sound; cs ≈ 1500 m s−1, so M is extremely small.
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Basic Oceanic Dynamics: the Boussinesq Equations

Du

Dt
+ 2Ω× u = −∇φ− g

ρ0
(ρ− ρ0)ẑ +D[u] momentum

∇ · u = 0 incompressible mass = volume

DT

Dt
= D[T ] heat

DS

Dt
= D[S] salinity

ρ = E [T, S, z] equation of state

DC

Dt
= SC +D[C] material concentration ,

with the advective time derivative for any quantity a,

Da

Dt
=

∂a

∂t
+ u · ∇a .

φ = p/ρo is the geopotential function with p the dynamic pressure. ẑ is an
upward-vertical unit vector (opposite to gravity). (x̂,ŷ) are (east,north).



E is the EOS, where we have made the fairly accurate approximation that the compressibility is

primarily a bulk effect due to the mean hydrostatic pressure at depth − z, viz., p ≈ patm− gρ0z.

Because ρ0 ≈ 103 kg m−3 for seawater, the added pressure at d = 10 m is equivalent to the

average surface air pressure, patm ≈ 105 Pa. Otherwise, E is a complicated functional that is fit to

experimental data without a clear theoretical justification.

D is the “mixing” operator due to averaging over molecular kinetics and unresolved (subgrid-scale)

fluid mixing often called eddy diffusion. Its fundamental definition is

D[a] = κm∇2
a−∇ · u′a′ ,

if we view the governing equations as based on averaging over a certain minimum space and time

scale. κm > 0 is a molecular diffusion coefficient for a. In model solutions, the subgrid eddy fluxes

are unknown and must be parameterized, often as

D[a] ≈
[
κh(∂

2
x + ∂

2
y) + κv∂

2
z

]
a .

h and v denote horizontal and vertical, respectively. Typically, κm � κv � κh for eddy mixing

due to the pervasiveness of small Λ effects in the ocean, while κv = κh for molecular diffusion.

The molecular κ values may be different for different quantities (e.g., κSm � κTm for molecular

diffusion, giving rise to salt fingers and double diffusion at small scale), but the same eddy κ values

are used for all materials insofar as they are commonly mixed by the turbulent currents.

Only the C equation has an important interior source/sink term SC. It represents non-conservative

biogeochemical reactions or particulate physics. We might also include such a term for heat due to

solar radiation absorbed below the surface, but its important penetration depth is only O(m), so it

is often lumped with Q at the surface. Light useful for photosynthesis penetrates much deeper.



Eddy Fluxes

When an average and fluctuations are defined (e.g., time average during a statistically stationary

equilibrium state), then for any quantity a,

a = a+ a
′

and a′ = 0.

Thus, for any quadratic quantity, in particular an advective flux,

ua = (u + u′) (a+ a′) = u a+ u′a′ .

For example, if a = sin[t], a = 0, and a2 = a′2 = 1/2.

In balances with advective time derivative, we can rewrite advection as a flux divergence,

(u · ∇)a = ∇ · (ua)− a∇ · u = ∇ · (ua) .

Hence, an average of advection includes an eddy flux divergence:

(u · ∇)a = u · ∇a+∇ · u′a′ .

Typically in D the eddy fluxes are much larger than the molecular diffusion by a ratio we can scale

estimate as
∇ · u′a′

κ∇2a
∼

V A/L

κA/L2
=

V L

κ
� 1 ,

analogous to a Reynolds number for momentum diffusion (Re = V L/ν, with ν the viscosity).



Boundary Conditions

Boundary conditions have zero normal velocity and specified normal fluxes. The kinematic condition

at the free surface is

w =
Dη

Dt
at z = η(x, y, t) ,

which plays an essential role, e.g., in surface gravity waves. w is vertical velocity, and η is the surface

elevation, where there is pressure continuity, pocean ≈ patm. At the solid bottom the kinematic

condition is

w = − u · ∇h at z = −h(x, y) ,

where h is the bottom depth relative to a resting sea surface at z = 0.

The surface flux conditions have the following forms:

ρ0κu
∂uh

∂z
= τ

s
, ρ0CpκTv

∂T

∂z
= Q ,

1

S0

κSv
∂S

∂z
= −F , κCv

∂C

∂z
= C ,

where τ s is surface stress [N m−2]; Q is heat flux [W m−2]; Cp ≈ 4000 J K−1 kg−1 is heat capacity;

S0 ≈ 35 PSU is an average S value; F [m s−1] is vertical freshwater flux per unit horizontal area;

and C [m C s−1] is the surface C flux. All of these fluxes have the sign convention of being positive

when they are putting their relevant stuff (momentum, heat, etc.) into the ocean. The surface flux

fields must be specified as external information.

There are analogous bottom flux relations, in particular a bottom stress τ b. At both vertical

boundaries, the sense of τ is as a drag of the fluid or boundary above on the fluid or boundary

below.



Common Dynamical Approximations and Diagnostic Relations

EOS: A local Taylor series expansion of the EOS around a given state (T0, S0, d0) is

ρ ≈ ρ0

(
1− α̃(T − T0) + β̃(S − S0)− γ̃(z − z0)

)
+ . . . , α̃, β̃, γ̃ > 0 ,

which is valid for small ∆S, ∆T , and ∆z. ρ0 ≈ 1.25×103 kg m−3 is a mean density
of seawater; T0, S0, and z0 are local reference values; and α̃ ≤ 2×10−4 K−1 and β̃ ≈
8× 10−4 PSU−1 are the thermal-expansion and haline-compression coefficients; the
bulk compressibility coefficient is γ̃ ≈ 4× 10−6 m−1. These expansion/compression
coefficients vary with conditions and location, most substantially for α, which
becomes very small at cold polar and abyssal T values. This EOS simplification is
not made in OGCMs.

The difference between in situ temperature and potential temperature T is often
ignored unless atypically large vertical parcel displacements of O(km) are involved.
Ditto for in situ density ρ and potential density.

In hydrostatic models with a vertical momentum balance,

∂zφ = b = − g(ρ/ρ0 − 1) ,

and the EOS above, only horizontal pressure gradients are dynamically important,
hence γ̃ can be ignored. b is “buoyancy”.



Coriolis force: The Coriolis force is often approximated by neglecting its local
horizontal component:

2Ω× u ≈ f(ϕ) ẑ× uh ,

where uh is the horizontal velocity and ϕ is the latitude; this is justified by Λ � 1
and is even done in OGCMs. Common further approximations of f are

f ≈ f0

(f-plane), with f0 = 2|Ω| sin [ϕ0], and

f ≈ f0 + β(y − y0)

(β-plane) with β = (2|Ω|/R) cos [ϕ0]. R ≈ 6.35 × 106 m is the radius of Earth,
and y = Rϕ is a local Cartesian meridional coordinate (with x = R cos[ϕ0]λ as its
zonal counterpart, where λ is longitude). Note that f and f0 change sign across the
equator, whereas β is always positive and largest at the equator. When ϕ = f0 = 0,
the approximation is called the equatorial β-plane. Rossby waves are a common
phenomenon in the ocean, and they occur only in models with β 6= 0.



Geostrophic balance: In the horizontal momentum equations when Ro � 1 and
D/Dt and D are O(Ro) relative to the Coriolis and pressure gradient forces,

fvg ≈ ∂xφ , fug ≈ − ∂yφ ;

i.e., the geostrophic flow ug is along isolines of φ in horizontal planes. In combination
with hydrostatic balance, this gives the “thermal wind”:

f∂zvg ≈ ∂xb , f∂zug ≈ − ∂yb ;

In combination with an f -plane approximation, it implies non-divergent flow,

∂xug + ∂yvg ≈ 0 ,

and w ≈ 0 to this level of approximation. Because b is known when T and S
are measured (and even T is often enough), thermal wind enables an approximate
inference of current.
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equivalent in the common situation of a surface-intensified current) in relation to
horizontal gradients in ρ, b, φ, T , and S.



Primitive Equations with “Traditional” Coriolis Approximation: These are based on a hydrostatic

vertical momentum balance and Ω = f(ϕ)ẑ. They comprise the fluid dynamical component of

most OGCMs.

Side Boundaries: The ocean has no large side boundaries as a matter of geophysical reality, but

oceanic models often do. A typical continental margin has the shape of a shallow shelf region (with

depth H = O(100) m) extending from the shoreline to the shelf-break (with width L = O(10)

km). Further offshore the continental slope falls sharply to mid-ocean depths (H = O(5000) m).

Thus, unless we are prepared to resolve the shoaling slope and shelf topography slope, a vertical side

wall must be assumed. For “climate” OGCMS with typical horizontal grid resolution ∆x ≈ 100

km, this is the common practice. Obviously, it is not adequate for coastal currents.

Rigid Lid: Similarly, the ocean has a deformable free surface controlled by the gravitational

force, with its kinematic boundary condition and an accompanying pressure continuity condition,

φ = patm/ρ0 at z = η. However, on periods long compared to surface gravity wave oscillations

(e.g., > O(∼ 10) s), these may often be accurately approximated by

w = 0 and φ = gη at z = 0 , (1)

referred to as the rigid-lid conditions. The former is consistent with the surface wave-averaged w

values being small compared to interior ones, and the second is a hydrostatic approximation to the

dynamic pressure immediately below the surface after excising the “inverse barometer response” of a

quasi-static sea-level deformation opposite to an atmospheric surface pressure anomaly that excites

little low-frequency motion in the ocean. This can be made for analytic convenience and was even

made historically for computational efficiency (but is no longer algorithmically necessary).



Boundary Layers, Stratification, and Isopycnal Laminae
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Schematic vertical profile of buoyancy b = −g(ρθ/ρ0− 1) =
∫
N2(z′) dz′, where ρθ

is potential density and N is the stratification frequency (e.g., for internal gravity
waves). On the vertical scale of the full depth shown here, compressibility makes
ρ increase with depth much more than ρθ, but this effect has little dynamical
consequence.



Schematic meridional section of potential density (isopycnal) surfaces viewed on three different

spatial scales. In the interior, outside boundary layers, the evolution is approximately adiatatic,

with Db/Dt ≈ 0; i.e., parcels mostly move along isopycnal surfaces. The largest scale shows

the time-mean or low-frequency structure. The intermediate scale shows how eddies deform the

large-scale buoyancy structure on time scales of weeks and months. The finest scale shows how

small-scale turbulence mixes the parcels and disrupts the statically stable vertical ordering of b(z)

on a time scale of minutes.



Eddy-Induced Advection

For conservative flow within isopycnal layers (laminae), an especially important eddy flux is the eddy

volume flux (≈ mass flux / ρ0 in the Boussinesq equations), i.e., u′h′ where h′ is the fluctuation

in the vertical thickness of a layer bounded by isopycnal surfaces.

We can define an eddy-induced velocity,

u∗ =
u′h′

h
,

and write its flux divergence as

∇ · u′h′ = u∗ · ∇h
because of the incompressibility constraint ∇ · u∗ = 0. u∗ is sometimes called “Stokes drift” (for

surface or internal gravity waves) or “bolus” velocity (for mesoscale eddies).

If the implicit space-time averaging for the governing Boussinesq equations is done in a coordinate

frame following isopycnal surfaces, then tracer advection is augmented by eddy-induced advection:

u · ∇C −→ u · ∇C + u∗ · ∇C

for any “eddies” that are subgrid-scale to the modeled flow. Thus, u + u∗ is a kind of Lagrangian

mean flow. This effect is distinct from the eddy mixing effect in D, which itself is often preferentially

along isopycnal surfaces (rather than strictly horizontal).

The theory behind this is rather subtle, but the oceanic effects are often important especially for

models of larger-scale flows.



.

Concept: The oceanic interior is quasi-adiabatic, where most stirring and mixing
occurs along surfaces of constant potential density, which themselves are stably
ordered with respect to gravity (“isopycnal laminae”).

The diabatic interior processes that “break” isopycnals are relatively weak: over-
tuning internal waves, vertical shear instability (Kelvin-Helmholtz), double diffusion
(salt fingers), and molecular diffusion, of course.

Chemically distinctive water masses mostly spread along isocpycnal surfaces.

Eddy-induced advection that moves the isopycnal surfaces along with the other
materials on them is a process consistent with this quasi-adiabaticity.

This behavior makes isopycnal out-crops (vertical boundary intersections) important
atypical locations of strong diabaticity.



Ekman Transport and Pumping: The momentum boundary layers (called Ekman layers) are

especially important in the forcing and damping of currents. Their momentum balance is

f ẑ× uh = − ∂zu′hw′ ≈ ∂z[κv∂zuh] .

At the surface the turbulent momentum flux u′hw
′ is equal to −τ s/ρ0 and it → 0 going into the

interior. Independent of the profile of κv(z) (parameterized), the “transport” relation is

T
s
ek = −

1

fρ0

ẑ× τ s , T
s
ek ≡

∫ η

−hs
ek

u
s
ek(z) dz .

hsek is the Ekman layer thickness, typically O(100) m, and it scales with the “friction velocity” and

f as hek ∼ u∗/f with u∗ =
√
|τ |/ρ0. The surface stress itself is often empirically specified

from the near-surface wind Uatm by a bulk formula,

τ
s

= ρatmC
s
D|Uatm|Uatm , (2)

with CD = O(10−3) the drag coefficient for wind over waves. Thus, there is a shallow surface-layer

Ekman transport perpendicular to the wind, i.e., rotated clockwise viewed from above in the Northern

Hemisphere. The Ekman profile itself, usek(z), rotates clockwise, and this is called the Ekman spiral.

An analogous bottom Ekman layer due to the bottom stress is

T
b
ek =

1

fρ0

ẑ× τ b , T
b
ek ≡

∫ −h+hbek

−h
u
b
ek(z) dz ,

with a bulk formula for drag of current over the bottom, τ b = ρ0C
b
D|u

b
i|u

b
i (“i” denotes interior).



Large- and meso-scale currents typically have a vertical structure with

uh = ui(z) + usek(z) + ubek(z) (3)

with the interior horizontal current ui having larger vertical scales than the Ekman
currents and usually satisfying geostrophic balance.
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Schematic vertical profiles of horizontal (left) and vertical velocity (right) with top
and bottom Ekman boundary layers and interior flow.



The incompressible continuity equation, ∇ · u = 0, allows us to determine w from
vertical integration of −∇ · uh. In particular, for the Ekman layers with w = 0 at
the boundary (rigid-lid and flat bottom), the vertical velocities at the interior edge
of the layers are

wsek =
1

fρ0
ẑ · ∇h × τ s

wbek =
1

fρ0
ẑ · ∇h × τ b , (4)

neglecting horizontal variations in f and hek. These are called the Ekman pumping
velocities. In the vertical interior the w(z) smoothly connects these top and bottom
values (previous figure). ws acts to force the interior currents ui by conveying
the “curl of the wind stress”, while wb acts to retard ui by conveying a “curl of
the bottom drag stress”, as explained in the next slides. (There are many other
dynamical influences on the interior flow evolution in addition to these boundary
layer effects.)

With tropical Trade Winds (to the west) and mid-latitude Westerlies (to the east),
the meridional Ekman transports diverge at the Equator (implying upwelling for
mass balance) and converge in the subtropics (implying downwelling). (Also see
MOC below.)



Sverdrup Transport: Another simple transport relation comes from the vertical
vorticity equation (i.e., ẑ · ∇× operating on the horizontal momentum equation).
We retain only Coriolis, pressure-gradient, and turbulent mixing forces for the
low-frequency, large-scale flow:

ẑ · ∇ ×
[
f ẑ× uh +∇hφ+ ∂zu′hw

′
]
≈ 0 .

The ∇φ term disappears in a vorticity equation. The vertical integral is∫ η

−h

[
∇ · (fuh) + ẑ · ∇ × ∂zu′hw′

]
= 0 .

The vertically integrated continuity equation says that the horizontal transport is
non-divergent because there is no flow through the oceanic top and bottom,

∇h ·T = 0 ,

for T [m2 s−1] the total horizontal transport, T =
∫ η
−h uh(z) dz. This implies

that the part of the first term ∝ f∇ · uh vanishes in the vorticity balance, while
the part ∝ βv does not. Using the stress boundary conditions discussed above, we
obtain Sverdrup balance:

βT y =
1

ρ0
ẑ · ∇ × (τ s − τ b) , (∗)



(Define the “barotropic” velocity u0 as the depth-average of uh; i.e., u0(x, y) = T/h. The

“baroclinic” velocity is the vertically varying residual, u(x, y, z)−u0, unconstrained by the Sverdrup

relation.)

Because of its horizontal non-divergence, we can represent T with a transport streamfunction Ψ

[volume flux; m3 s−1],

T
x

= − ∂yΨ , T
y

= ∂xΨ .

Assume there is no transport through the eastern boundary of an oceanic basin, then the tangential

derivative of Ψ vanishes there, hence Ψ is a constant along the boundary (which we take to be

zero). We further neglect the bottom stress contribution, as is commonly done for flows away from

coastal regions. Thus, integrating (*) in the zonal direction gives the Sverdrup streamfunction,

Ψ(x, y) = −
1

βρ0

∫ xe(y)

x

curl[τ
s
] dx ,

where xe(y) is the location of the eastern boundary.

Sverdrup transport indicates the major wind-driven gyres in the oceans, away from the Equator where

f → 0 and hek → ∞ (disregarding limitation by stable stratification) and from the Antarctic

Circumpolar Current (ACC) where zonal basin boundaries don’t exist. Typical wind-gyre magnitudes

for Ψ are O(107) m3 s−1. The transport unit is commonly expressed as a “Sverdrup”, where 1 Sv

= 106 m3 s−1.
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Sketch of Sverdrup gyres in the Northern-Hemisphere. A zonal surface stress profile is on the left, with

a maximum westerly wind at middle latitudes. The associated Sverdrup transport streamfunction

Ψ(x, y) is on the right in an oceanic basin bounded on the west and east by xw and xe. Flow is

along isolines of Ψ as indicated by the black arrows. The subpolar gyre has Ψ < 0 (blue contours)

and counterclockwise circulation due to the positive wind curl, − ∂yτ s,x > 0, at high latitudes. The

subtropical gyre has Ψ > 0 (red contours) and clockwise circulation due to the negative wind curl,

− ∂yτ s,x < 0, in middle latitudes. The flow near the western boundary is not sketched because

it does not satisfy the Sverdrup balance. However, by transport non-divergence within a bounded

basin,
∫ xe
xw
v0 dx = 0, there must be meridional return flow for mass balance; this occurs in western

boundary currents (WBCs) indicated by the colored arrows.



Meridional Overturning Circulation (MOC): Another major global oceanic circulation mode is

the vertically overturning circulation. Because the primary wind systems are zonal, hence the surface

Ekman transports are meridional, and because the planetary-scale surface buoyancy flux differences

are primarily meridional, the overturning circulation of most interest is the one in the meridional

plane, i.e., (y, z). This is defined as the zonally-integrated meridional and vertical transport, which

is non-divergent in this plane, hence has an overturning transport streamfunction Φ(y, z) [m3 s−1

or Sv] analogous to the barotropic Ψ in the (x, y) plane; i.e.,∫ xe(y,z)

xw(y,z)

v dx = − ∂zΦ ,
∫ xe(y,z)

xw(y,z)

w dx = ∂yΦ .

xw and xe are, respectively, the western and eastern edges of a basin in a zonal transect, and

it is often true that there are multiple segments to a transect between continents. The MOC

non-divergence is derived by zonally integrating the 3D continuity equation and making use of the

kinematic bottom boundary conditions rewritten as, e.g.,

Dxe

Dt
= 0 at x = xe(y, z) ,

ue − ve(∂yxe)− we(∂zxe) = 0 ,

with the subscript denoting evaluation at the boundary. With the rigid-lid approximation and neglect

of possible transpolar transport (i.e., across the North Pole),

Φ = 0 at z = 0 , −maxx[h] ,

because there is no net (i.e., barotropic) MOC transport in a vertical integral.



(Left) Time-mean MOC transport streamfunction Φ [Sv] in the Atlantic Ocean. (Right) Time series

of the annual-mean maximum value of Φ within the box in the top panel centered around the North

Atlantic Deep Water transport cell. These are from a coupled climate simulation in modern-day

equilibrium (Danabasoglu, 2008). The maximum for Φ is > 0 and about 22 Sv, indicating the

dominant circulation cell with sinking in the far north Atlantic forced primarily by subpolar surface

cooling and deep convection in the Norwegian and Labrador Seas. Its abyssal southward outflow is

called the North Atlantic Deep Water (NADW) water mass. There is an opposite abyssal cell near the

bottom, called the Antarctic Bottom Water (AABW) which originates with sinking off Antarctica.

There are also several shallow MOC cells caused by Ekman pumping: a pair of subtropical cells

on either side of the Equatorial upwelling, and a weak northern subpolar cell. The dominant time

variability of the NADW cell is on a decadal times scale, in association with the North Atlantic

Oscillation (NAO) in tropospheric climate. The Atlantic MOC is part of the global “conveyor belt”

circulation, which has significant climate heat transport.



Ertel’s Potential Vorticity: With D = 0, Boussinesq equations have a conservative Lagrangian

invariant in addition to b:

DQ

Dt
≈ 0 , Q = (2Ω +∇× u) · ∇b .

Insofar as b and Q are independently configured, then knowledge of both provides a very strong

constraint on the circulation: trajectories must lie along the line that is the intersection of the

surfaces of constant b and constant Q as they flop around.
Planetary Geostrophy (PG): For large-scale circulation, geostrophic and hydrostatic balance are

valid. Neglecting D (i.e., neglecting eddy fluxes), the planetary potential vorticity balance is

[ ∂t + u∂x + v∂y + w∂z ]Qpg = 0 , Qpg = f∂zb = fN
2
.

∆ϕ can be large, with f(ϕ) beyond the β-plane. This can be combined with Sverdrup balance to

describe the 3D pycnocline circulation (a.k.a. “thermocline theory”).
Quasigeostrophy (QG): For mesoscale circulation, broadly defined as L ∼ Rd, where Rd =

NH/f is the baroclinic deformation radius. Again with goestrophic-hydrostatic balance (Ro ∼
Fr � 1) and D = 0, the vorticity and buoyancy equations can be combined to yield

[ ∂t + ug · ∇ ]Qqg = 0 , Qqg = (∂xvg − ∂yug) + f0 ∂z

(
b′

N
2

)
+ βy ,

where b′(x, y, z, t) is the fluctuation around the mean stratification b(z).
“Shallow-Water” (SW): For a layer of constant density and bounding interfaces ηtop and ηbot,

[ ∂t + u · ∇ ]Qsw = 0 , Qsw =
f(y) + ∂xv − ∂yu

h
, h(x, y, t) = h0 + ηtop − ηbot .



.

Concept: Oceanic circulation is multi-scale, spatially and temporally from 10−3 to
107 m and from 100 to 1011 s, and the fundamental equations are too hard to solve
in a general way, either analytically or computationally.

So oceanic theory and modeling is a game of approximations and compromises.

A powerful technique is scale estimation using typical numbers to represent relevant
components of the multi-scale fields and drawing conclusions about which simplifying
approximations are justifiable.

e.g., a mesoscale eddy might have V ≈ 0.1 m s−1 and L ≈ 50 km at a latitude
where f ≈ 10−4 s−1 with H ≈ 1000 m across the pycnocline and N ≈ 3 × 10−3

s−1; hence, Ro ≈ 0.02, Fr ≈ 0.03, Ld ≈ 30 km, and a QG model is probably OK.



Oceanic General Circulation Models (OGCMs)

Most of the elements of a modern, global OGCM have already been described, and
here we put them together. A somewhat dated review is in McWilliams (1996).

• The governing fluid dynamics are the Primitive Equations with the traditional
Coriolis approximation. The spatial coordinates are for a thin spherical shell
geometry.

• The PDEs are solved on a discretized spatial grid. The vertical coordinate is
differently geopotential, isopycnic, or sigma (terrain-following) in different OGCM
types. A typical grid resolution for a global model is dx = 100 km (without mesoscale
eddies, as in most climate models) or 10 km (with them) in the horizontal, and dz =
5 - 200 m in the vertical with the grid spacing increasing with depth, commensurate
with the expected profiles of u and C. (Regional and coastal circulation simulations
are made with much finer grid resolution; they have the added requirement for
boundary data at their open-ocean boundaries, taken either from climatological
analyses or larger-scale model solutions.)

• There is discretized time integration with a typical dt = 1 hr to resolve inertial and
some internal gravity wave currents. Initial conditions are either from climatological
data or from previous solutions. Integration to steady-state requires several 1000
yrs, but common practice is for shorter (cheaper) solutions, where most of the upper
ocean fields and barotropic currents come into a quasi-steady balance after several
ten yrs.



• The EOS is in the form of ρ(T, S, z), with T sometimes chosen as potential or
“conservative” temperature to diminish compressibility effects.

• The surface fluxes (τ s, Q, and F) are taken from meteorological data sets or are
calculated in a coupled ocean-atmosphere climate model. Usually F is converted
into a virtual salinity flux because most oceanic models assume constant oceanic
volume of seawater. River run-off is included in F .

• The surface kinematic boundary condition is a free surface, even though the
solution behavior is usually consistent with the rigid-lid approximation. It may also
include a coupled sea ice model floating on top.

• Bottom depth is taken from bathymetric data sets, with appropriate smoothing to
accommodate the model grid resolution. In global models a minimum side depth is
chosen for computational prudence (e.g., hmin = 50 m).

• Parameterizations are needed for unresolved (subgrid-scale) turbulent mixing,
usually as eddy diffusion. This is done separately for vertical mixing in top and bottom
turbulent boundary layers and for horizontal/vertical or isopycnal/diapycnal mixing
in the interior. The important horizontal mixing is contributed by mesoscale eddies,
which are either wholly or partly parameterized in coarse or fine resolution OGCM
solutions, respectively. Partial eddy resolution requires partial parameterization with
a reduced magnitude of the eddy-induced velocity and diffusivity, u∗ and κ.

• Tides are usually not included in OGCM formulations, although it is technically
feasible to do so. This is because tidal circulations are viewed as largely decoupled



from the general circulation and eddies. An exception, however, is that tidally
induced diapycnal mixing is a significant effect for long-lived tracers and the
thermohaline circulation (i.e., abyssal MOC), and this effect is parameterized in an
OGCM.

• Compatibly simplified biogeochemical and ecosystem dynamics are required for
computational feasibility, and boundary flux data sets are needed.

OGCM solutions are skillful in representing the surface boundary layer, seasonal
cycle, major wind gyres, equatorial zonal currents, thermohaline circulation, MOC,
and primary water masses including the biogeochemical tracers. In coupled mode
with an atmospheric GCM, they are skillful for large-scale heat and water fluxes,
interannual climate variability (e.g., El Niño - Southern Oscillation), and global
warming projections. With coarse grid resolution (a.k.a. climate models), OGCMs
have overly broad and weak WBCs and they lack mesoscale eddies, and even with
the presently feasible fine resolution globally with dx ≈ 10 km, they do not resolve
these phenomena very well, although finer resolution regional models can do so.

The ocean has many other important phenomena on even finer scales that are not
present at all in OGCM solutions, e.g., , high-frequency internal gravity waves, small
vortices, fronts, filaments, shoreline currents, and boundary-layer turbulence. They
are often calculated in local or even Large-Eddy Simulation (LES; i.e., with partial
resolution of the turbulent currents) models, usually as a process study with an
idealized problem formulation.
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