Impact of cloud-radiative processes on hurricane track

Robert G. Fovell, Kristen L. Corbosiero, Axel Seifert, Kuo-Nan Liou

Kristen L. Corbosiero, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 91361-1565, USA. (kristen@atmos.ucla.edu)

Robert G. Fovell, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 91361-1565, USA. (rfovell@ucla.edu)

Kuo-Nan Liou, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 91361-1565, USA. (knliou@atmos.ucla.edu)

Axel Seifert, German Weather Service, Frankfurterstr. 135, 63067 Offenbach, Germany. (axel.seifert@dwd.de)

1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California, USA.

2German Weather Service, Offenbach, Germany.
Idealized simulations of tropical cyclones suggest that previously established motion sensitivity to cloud microphysical processes may emerge through cloud-radiative feedback. When commonly employed radiation parameterizations and absorption treatments are used, microphysical schemes generate a variety of tracks, influenced by different, scheme-dependent convective heating patterns and magnitudes. However, these variations nearly vanish when cloud-radiative feedback is neglected, with storms becoming stronger and more compact. This study strongly motivates further research with respect to how condensation particles influence radiative processes and thus storm dynamics and thermodynamics.
1. Introduction

Atlantic tropical cyclone (TC) track forecasts have been steadily improving. The National Hurricane Center’s (NHC) website reports that average position errors at 24 and 48 h lead times were roughly 90 and 180 km in recent years. Yet, track forecasts simulated by numerical models can exhibit track sensitivities of this magnitude in response to model physics variations, such as microphysics parameterizations (MPs) and cumulus schemes. Fovell and Su [2007; “Paper 1"] showed that cloud processes could materially influence storm motion over periods as short as two days.

In a higher resolution, idealized experiment, Fovell et al. [2009; “Paper 2"] demonstrated that MP schemes tend to generate different storm structures, particularly with regard to the outer wind strength located several hundred km from the center. Fiorino and Elsberry [1989; “FE”] showed these winds influence motion owing to planetary vorticity advection, the “beta effect”. As explained by Holland [1983] and Chan and Williams [1987], “beta gyres” become established that impart a generally northwestward “ventilation flow” across typical Northern Hemisphere vortices. FE’s storms slowed and shifted direction from northwestward to northward as the outer wind strength diminished, and Paper 2 revealed that manipulating microphysics could alter these winds, and thus influence the storm track via differential beta drift.

This study extends Paper 2 by placing primary emphasis on cloud-radiative feedback (CRF), in which condensation particles influence the absorption and emission of longwave (LW) and shortwave (SW) radiation. We demonstrate that MP-related differences emerge
primarily through CRF. This has important implications not only for track forecasting but also for further model development priorities.

2. Model

As in Papers 1 and 2, an aquaplanet version of the Weather Research and Forecasting (WRF) v.2.2.1 model was used, incorporating the Jordan [1958] hurricane season sounding and a fixed (29°C) sea-surface temperature, the YSU boundary layer, and the RRTM and Dudhia [1989] radiation packages. Inserting a synoptic-scale warm bubble into an initially calm, horizontally homogeneous environment and integrating for a 1 day spin-up period created the coherent TC used as the initial state for simulations extending a further 72 h. The Kessler (K), Lin-Farley-Orville (L), and WRF single-moment 3-class (W) microphysics schemes were again examined. Kessler is an ice-free scheme, while W and L incorporate two and three classes of ice, respectively. L’s three frozen classes are free-floating ice crystals, low density snow aggregates and graupel.

Paper 2 utilized three telescoping nests down to 3 km horizontal grid spacing, but as the results indicated potential sensitivity to storm structure at radii that might extend beyond the inner fine grid, a single 2700 km square domain at 4 km resolution was used herein. No important impacts were noted. The model top was raised to the 10 mb level, another minor alteration. More importantly, Papers 1 and 2 used a 40% relative humidity (RH) above 400 mb, the highest level reported by Jordan [1958]. In this experiment, the RH was fixed at 40% in the 400-200 mb layer, consistent with Dunion and Marron [2008], but set to 0 farther aloft. This altered ice production in the L scheme, influencing its track. This study adds the WRF single moment 6-class (W6) scheme, as well as two
versions (S₁ and S₂) of Seifert and Beheng’s [2006] double-moment parameterization that
differ with respect to ice to snow conversion.

As further development took place over the 48 h following the spin-up period, analyses
herein focus on the final 24 h, employing vortex-following compositing to extract symmet-
tric and asymmetric components. All fields are averaged through this final period, unless
indicated otherwise. For CRF-off simulations (e.g., L*), radiation physics was included
but condensation particles were not permitted any influence on LW or SW radiation.

3. Results

Figure 1a presents model TC tracks over a period of 72 h beyond the spin-up period for
the CRF-on cases. As in the prior studies, the K storm moved swiftly to the northwest,
while W turned northward after 36 h and L tracked in between. The L track has been
shifted eastward relative to its Paper 2 counterpart, influenced by the reduced upper-level
humidity. The W6 and two Seifert tracks parallel K’s, although at about half the speed.

Taken together, the six storms could represent a “landfall” span of about 115 km after
3 days, mainly resulting from directional variations that appear after about 36 h rather
than speed differences. Neglecting K, again the group’s outlier, TC speed during the final
24 h varied little among the runs (4.1±0.4 km/h). However, the directions ranged between
-26 and 8 degrees relative to north, a span of 34 degrees (Fig. 1a inset). If started from
a common point using mature period motion characteristics, the S₂-L cyclone separation
would become 82.5 km after a single day, and storms S₂ and W would be 149.5 km apart.
These values are comparable to the recent average forecast position errors cited above.
Curiously, the microphysical sensitivity nearly vanishes when CRF is neglected (Fig. 1b). The MP schemes, even K, produced very similar tracks, all turning northward after 36 h. The relationship between the 850 mb symmetric wind component at 400 km from the storm center and the storm direction relative to north (Fig. 1b inset) reveals that CRF-off storms had weaker outer winds, which is significantly correlated ($R^2 = 0.95$) with a more northward translation. The CRF-off TCs also generated less diabatic heating in the 200-400 km radial annulus, also well-correlated ($R^2 = 0.88$) with motion direction (same inset). Wang [2009] identified heating in the outer rainbands as a principal factor influencing the azimuthally symmetric structure of TCs, and Paper 2 demonstrated substantial wind and track sensitivity to the manipulation of convective activity in that region.

It is also revealing to more directly inspect storm asymmetries that have been linked to TC motion. The CRF-on cases present a variety of vertical velocity patterns (Fig. 2): weak and symmetric for K (Fig. 2a); stronger ascent concentrated in the SE quadrant for W6 (Fig. 2b) and S$_2$ (not shown); and a rotation to east and northeast for S$_1$, L (Figs. 2c,d) and W (not shown). In contrast, the CRF-off storms (Figs. 2e-h) are strikingly similar, with relatively intense ascent located in the northeast sector and closer to the center. The prominent updraft asymmetry in these cases is likely due to vertical shear associated with the beta effect (cf. Bender, 1997), as the ventilation flow weakens with height in a warm-core vortex. Observations and theory [e.g., Frank and Ritchie, 1999; Corbosiero and Molinari, 2002] confirm that convection tends to be concentrated on the downshear and downshear-left flanks. CRF appears to weaken the updrafts and the asymmetry; this proceeds differently among the MPs, yielding the CRF-on experiment’s track variation.
The potential vorticity (PV) tendency equation has been shown to skillfully identify contributions to TC motion [e.g., Wu and Wang, 2000, 2001; “WW”]. The inviscid PV tendency (PVT) reflects advection (AD) and a contribution proportional to diabatic heating (Q) gradients here termed DH:

$$\frac{\partial PV}{\partial t} \equiv PVT \approx AD + DH,$$

where $DH = \rho^{-1} \left[(f + \zeta) \frac{\partial Q}{\partial z} + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right) \frac{\partial Q}{\partial y} + \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right) \frac{\partial Q}{\partial x} \right]$, ρ is density, f is the Coriolis parameter, and ζ is the vertical component of relative vorticity. In cyclonic vortices, PV is created where Q increases with height, and thus differences in the magnitude, distribution and vertical structure of diabatic heating around the storm can influence motion. WW noted that AD incorporates the indirect response to heating in addition to the beta drift and extracted the azimuthal wavenumber 1 components of these terms. We computed the more general asymmetric fields (Fig. 3), focusing on the 2-3.5 km layer to avoid surface friction and significant radiative effects, and estimated contributions to the storm motion vector C using least squares, as in WW.

Among these cases, the K storm (Fig. 3a) may best represent the beta effect in isolation, as its largely symmetric updraft (Fig. 2a) resulted in little diabatic contribution to asymmetric PV. Note the C and AD vectors nearly align and indicate rapid northwestern motion. For the other storms, DH is greater and its correlation with AD is significant and negative, making storm motion the small difference between large, opposing terms. The net motion might also be interpreted as a competition between the generally northwestern-directed beta drift incorporated in AD and the diabatic heating, with storm direction determined by their relative orientations and magnitudes. For the S_2
(Fig. 3b) case, \(DH\) points southeastward, directly opposing the expected drift. Thus, it appears that asymmetric diabatic heating was primarily acting to slow the storm motion in this case, which progressed at roughly half the speed of the K storm.

For the L storm with CRF active (Fig. 3c), \(DH\) is further rotated counterclockwise relative to the S\(_2\) case, ostensibly encouraging a more northerly net movement. The stronger and more concentrated updraft of the CRF-off L\(^*\) vortex apparently led to diabatic heating having more influence on motion. With the heating rotated to the eastern flank, the advection term is shifted to the west side, such that the two vectors remain largely in opposition. The combination of northwestward-directed beta and eastward-pointing \(DH\) appears to have imparted a motion that is slightly east of north in this case.

4. Sensitivity to absorption coefficients

How and why CRF influences storm dynamics, thermodynamics and structure is not completely understood. Moreover, this motivates a closer examination of how cloud-radiative feedback is implemented and its associated sensitivities. An initial investigation focuses on the LW component, which appears to be a primary driver. WRF’s RRTM scheme presently follows Dudhia [1989] and gives cloud droplets and ice crystals fixed absorption coefficients of \(\alpha_c=0.144\) and \(\alpha_i=0.0735\) \(\text{m}^2\ \text{g}^{-1}\), respectively. These are used to compute optical path lengths and altering them influences the magnitude and altitude at which LW cooling and heating take place. For rain and snow, the coefficients vary with concentration (although are not optimally tied to the MP schemes, especially the more sophisticated ones), and graupel mass is neglected. For a 1 kg m\(^{-3}\) mass content, the
snow ($\alpha_s = 2.34E-3$) and rain ($\alpha_r = 0.33E-3$ m2 g$^{-1}$) absorption coefficients are 3.2 and 0.5% of α_i, respectively.

One aspect that varies among MP schemes is the quantity and species apportionment of condensate, and this could produce different radiative sensitivities. For cases $W6^*$ and S_2^* (Fig. 4), the LW radiative impact of snow was neglected (i.e., $\alpha_s = 0$), as is done in some versions of RRTM and in the German Weather Service COSMO model. Storm $W6^*$ eventually tracked to the east of its unmodified counterpart, due in part to variations that occurred early in the simulation, while the S_2^* path was virtually identical to its control. The unmodified S_2 produced little snow beyond 100 km from the center, at least compared to $W6$ (Fig. 4a inset), which may be why neglecting snow had little effect.

For cases $W6^#$ and $S_2^#$, $\alpha_i = \alpha_s$. Although investigated merely as a test, this is tantamount to making ice particles denser or apportioning the mass among fewer, larger particles; both effects diminish the species’ ability to interact with LW radiation. The impact on both storm tracks is substantially greater. The $W6^#$ storm moved in a northerly direction after 48 h, which is more similar to the original L cyclone, while case $S_2^#$ tracked parallel to its CRF-off version. The larger S_2 response may reflect the fact that this MP produced more ice beyond the core than the other unmodified runs (Fig. 4b inset). Unlike the other cases, there is more ice than snow in S_2 for radius $r \geq 120$ km.

Finally, it is suggested that the uniqueness of the K scheme results from its areally extensive concentrations of cloud water, which has a very large radiative impact. As pointed out in Paper 2, K storms tend to support large, thick anvils owing to the lack of mechanisms for producing precipitation-sized particles from cloud droplets when concentrations
are too low to activate autoconversion. In contrast, all of the ice-containing schemes can transfer condensate to fast-falling graupel, which is routinely presumed not to influence radiation. Again, the pressing question is why CRF has acted to alter storm structure and strength. At least in these simulations, including CRF always resulted in the storms becoming less intense with respect to vertical motions and maximum horizontal winds.

5. Summary

Idealized simulations have demonstrated that cloud microphysical assumptions can influence TC motion and track forecasts, and here cloud-radiative feedback is shown to play a major role in this sensitivity. Vortex motion reflects a competition between beta drift and convective heating variations responding in part to beta-induced asymmetries. Beyond modulating the symmetric components of storm structure (Paper 2), MP schemes generated different heating patterns that apparently contribute to subtle but important track changes. When CRF was neglected, however, the convective asymmetries were not only more significant but also largely independent of the MP. For some reason, CRF appeared to act through MPs to weaken and/or “smear” out the diabatic effects in ways and degrees that were scheme-dependent. These MPs produce different amounts, types and distributions of particles they produce, and ostensibly impact storm dynamics or thermodynamics through LW absorption and emission. Idealized studies often neglect CRF, which may explain why MP sensitivity is not always encountered.

Future work will employ advanced radiation parameterizations that are more tightly linked to the MPs, and reconsider cyclone initialization. Although each simulation began with a coherent TC with tropical storm intensity, considerable further development oc-
curred in the first 36 h or so, which may have delayed and possibly limited structure and track differentiation. This intensification phase is of practical importance, as many models often start with TCs having structures and intensities different than what the model physics, resolution and environmental conditions can and will eventually support. That said, this study highlights the value of further consideration of cloud-radiative feedbacks in idealized and operational contexts.

Acknowledgments. This work was supported by NSF grant ATM-0554765, the Jet Propulsion Laboratory SURP program and The Aerospace Corporation.

References

Figure captions

Figure 1: Twelve hourly cyclone positions over 72 h for Kessler (K), LFO (L), WSM3 (W), WSM6 (W6), and two Seifert-Beheng (S1 and S2) simulations with CRF (a) on, and (b) off. The
72 h K position is beyond the subdomain depicted. U.S. Gulf Coast segment included for scale; the model has no land. Inset (a): storm motion vectors for the 48-72 h period. Inset (b): motion relative to North vs. symmetric 850 mb winds at radius \(r = 400 \) km from the eye and column sum microphysics heating averaged through \(200 \leq r \leq 400 \) km, and least squares fits.

Figure 2: Vortex-following composite fields of surface-12 km layer mass-weighted mean vertical velocity, averaged over the final 24 h in a 150 km square region, for schemes K, W6, S1 and L, with (top) and without (bottom) CRF. Vectors represent storm motion and dashed lines point towards the largest ascent.

Figure 3: Asymmetric components of \(AD \) (contoured) and \(DH \) (shaded) for cases K, S2, L and \(L^* \), averaged through the 2-3.5 km layer in a 96 km square region over the final 24 h, with storm motion vector \(C \). Vectors \(AD \) and \(DH \) were obtained using least squares minimization and the residual vector \(R = C - AD - DH \) represents missing terms and other errors. Similar motion vectors obtained from \(PVT \) are not shown.

Figure 4: As in Fig. 1 except for schemes W6 and S2 that demonstrate absorption coefficient sensitivity. Insets show radial profiles of column total (a) snow and (b) ice and represent time-averaged symmetric components; vertical axis is \(\log_{10} \) scaled.
Map for scale only; there is no land.

(a) and (b) show the trajectory of hurricanes W6 and S2, respectively, with data points indicating the spread of snow and ice crystals. The graphs show the column sum of the precipitation (in 10^12 kg m^-2) as a function of radial distance from the eye of the hurricane (km), with the data collected at 36 hours intervals. The graphs are labeled 'snow' and 'ice crystals' respectively.