Horizontal Convective Rolls

Asai papers &
Simulations w/ ARPS



Asai (1970a)

o Effect of vertical shear on roll orientation

» Boussinesq derivation - equations similar to
shear instability derivation

— Negative Richardson numbers (reported as positive
numbers) represent unstable environments

— Presumed solutions similar to before, but solved
numerically

* Figure 2

— Most unstable mode is stationary relative to flow and
becomes smaller in size as -Ri increases
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Amplification rate of perturbation as a
function of the Richardson number R;
(ordinate) and the wavenumber &*
(abscissa). Solid lines are isopleths of
amplification rate (in units of 10), dash-
dotted line indicates the maximum am-
plification rate, and dotted line separates
the stationary unstable perturbation from
the transitive one.

Asai (1970a) Fig. 2

* -Rivs. k (thermal instability increases upward;

wavelength increases to left)

« Left of dotted curve represents
waves (rolls) stationary with respect
to flow; propagating rolls to right

» Wavelength of most unstable
mode (fastest growing solution that
will dominate) becomes smaller as
environment becomes more
unstable [dashed curve]

» Most unstable solution is stationary
with respect to flow for all unstable
environmental conditions
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Variations of vertical momentum transfer
{U*W#*>% (solid line) and* amplification
rate of perturbation ¢* (broken line) with
the ratio between the wavenumbers in the
z and y directions., ky/k:, for different
values of R;. The numeral labelled at
each curve denotes the value of R;. These
are for the case of R.=10* and k*=2.

Campliﬁcation rate D

Asai (1970a) Fig. 8

 Consider roll wavelengths Lx and
Ly. Rolls aligned along x-axis have
Lx >> Ly.

» Consider vertical shear oriented
along the x-axis

* Horizontal axis is k /k, = L,/L,
representing roll orientation

- Large L,/L, means rolls parallel
with the vertical shear vector
(longitudinal rolls). Small L,/L,
means rolls oriented perpendicular
to shear (transverse rolls)

« Vertical axis (labeled at right) is
amplification rate for various roll
orientations

More...
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Fig. 8. Vanations of vertical momentum transfer

{U*W#*)1 (solid line) and+ amplification
rate of perturbation ¢* (broken line) with
the ratio between the wavenumbers in the
z and y directions., ky/k:, for different
values of R;. The numeral labelled at
each curve denotes the value of R;. These
are for the case of R.=10* and k*=2.

amplification rate >>>

Asai (1970a) Fig. 8 (continued)

« Amplification rate vs. roll orientation
for various values of -Ri (thermal
instability; dashed curves)

« Shear-parallel rolls always have
largest growth rate

* For marginally unstable
environments (-Ri = 0.5), shear-
perpendicular rolls are suppressed

 For very unstable environments
(-Ri > 10) all orientations are
unstable

* (Ignore solid curves)



Asai (1970a)

* Figure 8 summary

— Shear-parallel (longitudinal) rolls always
favored

— Small instability - shear-perpendicular
(transverse) rolls have very small growth rates

— Large instability - all possible orientations
grow quickly
 Cells?



Asai (1972)

Thermally unstable but -Ri not varied
Directional and speed shear

Case | - shear vector still constant w/ z
— Shear vector is NW-SE in example

— Figure 2: growth rate max for Lx = Ly

— Rolls still line up parallel to shear vector

Case 2 - shear vector turns with height

— Figure 6: three maxima (two shown)
« Parallel to shear in upper part of shear layer
 Parallel to shear in lower part of shear layer
« Perpendicular to shear (inflection point instability)



Asai (1972) sign convention

Rolls oriented NW-SE
Lx>0and Ly <0

Ly>0

Rolls oriented SW-NE
Lx>0butly <0
3

Wavelengths are Lx, Ly
Wavenumbers are Kx, Ky

Both can be negative
depending on roll orientation

For NW-SE rolls Kx, Ky >0
and Lx, Ly >0
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Asai (1972) Case I hodograph
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vector and not to winds at any level



Asai (1972) Case |

Ky

Fig. 2. Amplification rates in units of 0.1 as a
function of the wavenumbers, k: and ky,
for Case (I) with @;=1, Ri=1 and
Ra.=10% A dash-dotted line indicates a
maximum amplification rate for a given
wavenumber,

 Axes are E-W and N-S
wavenumbers

« Contoured is amplification
rate

e Shear oriented NW-SE

 Largest growth rate for rolls
with Lx = Ly > 0; i.e., aligned
along shear vector

 Growth rate max for inter-
mediate wavelengths




im)

Asai (1972) Case ||

Asai (1972) Case II
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Note V component has
inflection point(s)
[at z=.25 and .75] >>>

U component does not
(not shown)
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Asai (1972) Case |l

* Fig. 6 - largest amplification

rate again “nearly parallel” to
shear vector (i.e., Kx = Ky) in
upper part of layer

(actually, they’ re turned at

some CCW angle to shear vector)

* Rolls “parallel” to shear vector

in lower part of layer also
appeared but are NOT shown (Ky < 0)

Fig. 6. Same as in Fig. 2 but for : (1)
with =1 and. Sez. « Also a local max in amplification
rate for rolls parallel to y-axis
More. .. (Ky = 0) with long wavelengths

(unexplained by Asai)



Asai (1972) Case |l

* Another locally large

i __— amplification rate occurs
for Kx = 0 (rolls parallel to
x-axis, at angle to shear)

> That is inflection point instability which
produces rolls oriented perpendicular
to the wind component with the

inflection point (here, the v component)

Fig. 6. Same as in Fig. 2 but for Case (II)
with ag=1 and b=2.



Asai (1970a) Case |

Kx

Fig. 7. Same as in Fig. 6 but
Ri=10"2,

* Fig. 7 - when thermal
instability removed, only
dynamical instability (inflection
point instability) remains

* This proves the other local
maxima were due to thermal
instability



Revisit ARPS simulation

initial wind profile

2000

1800 1 initial hodograph

180D

1400

Y e
oo, 1200 > R

E - \
~
: 100D ¥ ‘ ‘E'
a / ¢ -
d
2 | V
80D

|'1'.ll
400 -8 -7 -6 -5 -4 -3 U -1
{f‘ u(m/s)
200 !

0 Y :? shear vector turns w/ z

Ll T o T 1 g g | 2L r n g
-10  -E -8 -4 -2 V] 2 4 & a 10

wind {m/s)




Vertical velocity at 1.5 km AGL

(above the shear layer)
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w (cm/s) time = 339 min
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Vertical profiles of 6
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What happens if the shear vector
varies with height?
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Shear vector veers with height
Little surface wind
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Lack of rolls in RUNOS3...

* Not enough shear?
 Too much directional shear?

* Not enough wind near surface? (Needed
for surface heat flux)



RUN11

same shear, added mean wind

RUN11 hodograph
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Smaller
domain;
same aspect
ratio

RUN11

same shear, added mean wind
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What happens if we have no
shear?



RUNOG - no (initial) shear
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RUNOG - no (initial) shear

RUNO6E profile at domain center
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RUNOY

no initial shear, no draqg
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no initial shear, no drag

RUNO7 wind speed at domain center
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Variation is very,
very small
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no initial shear, no drag

cross—roll wind at 60 min
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Rolls vs. cells

Monin-Obukhov length L

— Ratio of vertical momentum flux to vertical heat flux (negative for
strongly heated surface)

— L magnitude large when heat flux small (i.e., early in day);
decreases through afternoon

Boundary layer depth z
-z/L is large when PBL is very unstable
Deardorff (1972): rolls exist for -z/L between 0 and 45

— Other studies came up different ranges
— Generally, with larger -z/L rolls less likely
— Therefore, rolls can change to cells as surface heats up



Rolls vs. cells

Early in day: no structure

Nolan Atkins



Rolls vs. cells
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Rolls vs. cells

+  Stronger heating; cells
T replace rolls

Nolan Atkins
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Roll behavior as function of
surface heat flux Qy,

Plots at right show
autocorrelation rather than
vertical velocity

Small heat flux: rolls parallel
to wind and wind shear

Rolls less coherent as
surface heat flux increased:
Turn CCW a bit first...

Weckwerth et al. (1997)
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Weckwerth et al. (1997)



Roll wavelength

« Kuettner (1971) observations/theory

La; — 2\/527;

— So as boundary layer depth z grows,
horizontal roll spacing increases
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