A\&OS 101-Accelerations owing to sphericity

Fall, 2005 - Fovell

Before, we considered coordinate system rotation and divided the acceleration as seen from space $\left(\frac{d_{a} \vec{U}_{a}}{d t}\right)$ into these parts: the acceleration seen from the Earth $\left(\frac{d \vec{U}}{d t}\right)$ and terms relating to Earth rotation (Coriolis and centrifugal accelerations). Now we have a rotation of coordinates due to the sphericity of the Earth. This will entail splitting $\frac{d \vec{U}}{d t}$ into two parts, representing accelerations relative to a flat Earth and compensation for Earth curvature.

Velocity components

Our unit vectors \hat{i}, \hat{j}, and \hat{k} remain pointing east, north and up, but we need to move from Cartesian position x, y and z to spherical position λ, ϕ and z where λ is longitude and ϕ is latitude. Thus, we need to relate velocities u and v in terms of $\frac{d \lambda}{d t}$ and $\frac{d \phi}{d t}$.

Figure 1: Meridional velocity v as a tangential velocity.
Figure 1 shows that the north-south (meridional) velocity v along a given longitude λ can be interpreted as a velocity tangent to a circle of distance r from the center of the Earth. (This r $=a+z$, where a is the Earth's radius and z is distance above the Earth's surface.) Recall that tangential velocity is is angular velocity times radius. The angular velocity is $\frac{d \phi}{d t}$ since latitude is changing with time. Therefore, we have

$$
\begin{equation*}
v=r \frac{d \phi}{d t} \tag{1}
\end{equation*}
$$

Now look at east-west (zonal) velocity u, representing a longitude change $d \lambda$ with time along a latitude circle (Fig. 2). It is clear that u is also a tangential velocity. The radius of the latitude circle is R, distance from the spin axis, which may also be expressed as $r \cos \phi$. It follows that

$$
\begin{equation*}
u=R \frac{d \lambda}{d t}=r \cos \phi \frac{d \lambda}{d t} \tag{2}
\end{equation*}
$$

Finally, $w=\frac{d z}{d t}$ on both flat and spherical Earths.

Figure 2: Zonal velocity u as a tangential velocity.

Chain rule

With regard to 3 D vector velocity, $\vec{U}=u \hat{i}+v \hat{j}+w \hat{k}$, six aspects of this expression could change with time: the component velocities, and the coordinate axes. Thus the chain rule applied to $\frac{d \vec{U}}{d t}$ yields

$$
\begin{equation*}
\frac{d \vec{U}}{d t}=\frac{d u}{d t} \hat{i}+\frac{d v}{d t} \hat{j}+\frac{d w}{d t} \hat{k}+u \frac{d \hat{i}}{d t}+v \frac{d \hat{j}}{d t}+w \frac{d \hat{k}}{d t} . \tag{3}
\end{equation*}
$$

We need to find expressions for the coordinate axis accelerations.
This effort starts with identifying the dimensions in which each axis varies. The \hat{i} axis is simplest since it is a function only of longitude. Moving along any given latitude circle, \hat{i} changes direction owing to Earth's curvature, as shown in Fig. 3. The other two coordinate axes vary in both latitude and longitude, as shown in Figures 4 and 5.

Figure 3: The \hat{i} coordinate axis varies with longitude only.

Figure 4: The \hat{j} coordinate axis varies with longitude and latitude.

Figure 5: The \hat{k} coordinate axis varies with longitude and latitude.

The \hat{i} axis

The \hat{i} unit vector always points east, but what we define as "east" changes around a latitude circle. Indeed, \hat{i} can be interpreted as tangential velocity and its change $\Delta \hat{i}$ as a centripetal acceleration, as shown in Fig. 6. Recognizing that \hat{i} varies only longitudinally, the chain rule applied to $\frac{d \hat{i}}{d t}$ quickly reduces in the following manner:

$$
\begin{align*}
\frac{d \hat{i}}{d t} & =\frac{\partial \hat{i}}{\partial t}+u \frac{\partial \hat{i}}{\partial x}+v \frac{\partial \hat{i}}{\partial y}+w \frac{\partial \hat{i}}{\partial z} \tag{4}\\
& =u \frac{\partial \hat{i}}{\partial x} \tag{5}
\end{align*}
$$

We will need $\frac{d \hat{i}}{d t}$, and that is

$$
\begin{equation*}
d \frac{d \hat{i}}{d t}=u^{2} \frac{\partial \hat{i}}{\partial x} . \tag{6}
\end{equation*}
$$

The derivation continues to mimic that done for centripetal acceleration. The magnitude of $\frac{\partial \hat{i}}{\partial x}$ is $\frac{\Delta \hat{i}}{\Delta x}$, where $d x$ is the arclength over angle $d \lambda$ (i.e., $d x=r \cos \phi \Delta \lambda$). For small $d \lambda, \Delta \hat{i} \approx d \lambda$ (recall unit vectors have unit length). Therefore,

$$
\begin{equation*}
\frac{\Delta \hat{i}}{\Delta x}=\frac{\Delta \lambda}{r \cos \phi \Delta \lambda}=\frac{1}{r \cos \phi} . \tag{7}
\end{equation*}
$$

Just as with centripetal acceleration, we note $\delta \hat{i}$ points inward towards the spin axis, and has two components - northward and towards Earth's center - as shown in Fig. 7. The northward

Figure 6: An augmented version of Fig. 3, showing the change of the \hat{i} axis along a latitude circle is interpretable as a centripetal acceleration.
component is $\Delta \hat{i} \sin \phi \hat{j}$ and the other is $-\Delta \hat{i} \cos \phi \hat{k}$. As a result,

$$
\begin{equation*}
\frac{\partial \hat{i}}{\partial x}=\frac{1}{r \cos \phi}(\hat{j} \sin \phi-\hat{k} \cos \phi), \tag{8}
\end{equation*}
$$

leading to

$$
\begin{equation*}
u^{2} \frac{\partial \hat{i}}{\partial x}=\frac{u^{2}}{r \cos \phi}(\hat{j} \sin \phi-\hat{k} \cos \phi) . \tag{9}
\end{equation*}
$$

This creates a $\frac{u^{2}}{r} \tan \phi$ term for the v equation of motion and a $\frac{u^{2}}{r}$ term for the w equation.

Figure 7: $\Delta \hat{i}$ and its components.

The \hat{j} and \hat{k} equations
The other two coordinates are more complicated, owing to dependence on both longitude and latitude, but the accelerations are derived in a very similar way. For the \hat{j} unit vector, we obtain

$$
\begin{equation*}
u \frac{\partial \hat{j}}{\partial x}=-\frac{u \tan \phi}{r} \hat{i}, \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
v \frac{\partial \hat{j}}{\partial y}=-\frac{v}{r} \hat{k} \tag{11}
\end{equation*}
$$

for the latitudinal and longitudinal dependences, respectively. The \hat{k} component results in

$$
\begin{equation*}
\frac{d \hat{k}}{d t}=\frac{u}{r} \hat{i}+\frac{v}{r} \hat{j} \tag{12}
\end{equation*}
$$

Therefore, (3) expands into

$$
\begin{aligned}
\frac{d \vec{U}}{d t} & =\left[\frac{d u}{d t}-\frac{u v \tan \phi}{r}+\frac{u w}{r}\right] \hat{i} \\
& +\left[\frac{d v}{d t}+\frac{u^{2} \tan \phi}{r}+\frac{v w}{r}\right] \hat{j} \\
& +\left[\frac{d w}{d t}-\frac{u^{2}+v^{2}}{r}\right] \hat{k} .
\end{aligned}
$$

