Gravity waves derivation
 A\&OS IOI - Fall, 2008

Introduction

- Gravity waves describe how environment responds to disturbances, such as by oscillating parcels
- Goal: derive "dispersion relation" that relates wave characteristics (wavelength, period) to disturbance characteristics (oscillation period)
- Simplifications: make atmosphere 2D, dry adiabatic, flat, non-rotating

Starting equations

$$
\begin{aligned}
\frac{d u}{d t} & =-\frac{1}{\rho} \frac{\partial p}{\partial x} \\
\frac{d w}{d t} & =-\frac{1}{\rho} \frac{\partial p}{\partial z}-g \\
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z} & =0 \\
\frac{d \theta}{d t} & =0
\end{aligned}
$$

continuity equation

Expand total derivatives

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial z}+\frac{1}{\rho} \frac{\partial p}{\partial x} & =0 \\
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+w \frac{\partial w}{\partial z}+\frac{1}{\rho} \frac{\partial p}{\partial z}+g & =0 \\
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z} & =0 \\
\frac{\partial \theta}{\partial t}+u \frac{\partial \theta}{\partial x}+w \frac{\partial \theta}{\partial z} & =0
\end{aligned}
$$

Perturbation method

$$
\begin{aligned}
u(x, z, t) & =u^{\prime}(x, z, t) \\
w(x, z, t) & =w^{\prime}(x, z, t) \\
\rho(x, z, t) & =\rho_{0}+\rho^{\prime}(x, z, t) \\
p(x, z, t) & =\bar{p}(z)+p^{\prime}(x, z, t) \\
\theta(x, z, t) & =\bar{\theta}(z)+\theta^{\prime}(x, z, t) \\
\frac{d \bar{p}}{d z} & =-\rho_{0} g
\end{aligned}
$$

Calm, hydrostatic, constant density environment ("basic state")

Start w/ potential temperature

$$
\begin{aligned}
\theta & =T\left[\frac{1000}{p}\right]^{\frac{R}{c_{p}}} \\
\ln \theta & =\frac{c_{v}}{c_{p}} \ln p-\ln \rho+\mathrm{consts} \\
\ln \bar{\theta} & =\frac{c_{v}}{c_{p}} \ln \bar{p}-\ln \bar{\rho}+\text { consts } \quad \text { for basic state }
\end{aligned}
$$

used log tricks and:

$$
\begin{aligned}
c_{p} & =R+c_{v} \\
p & =\rho R T
\end{aligned}
$$

Apply perturbation method

$$
\begin{aligned}
\ln \left(\bar{\theta}+\theta^{\prime}\right) & =\frac{c_{v}}{c_{p}} \ln \left(\bar{p}+p^{\prime}\right)-\ln \left(\rho_{0}+\rho^{\prime}\right)+\text { consts } \\
\ln \left[\bar{\theta}\left(1+\frac{\theta^{\prime}}{\bar{\theta}}\right)\right] & =\frac{c_{v}}{c_{p}} \ln \left[\bar{p}\left(1+\frac{p^{\prime}}{\bar{p}}\right)\right]-\ln \left[\rho_{0}\left(1+\frac{\rho^{\prime}}{\rho_{0}}\right)\right]+\text { consts }
\end{aligned}
$$

Base state cancels... makes constants disappear... Useful approximation for \boldsymbol{x} small: $\ln (1+x) \approx x$

$$
\begin{aligned}
\frac{\theta^{\prime}}{\bar{\theta}} & =\frac{c_{v}}{c_{p}} \frac{p^{\prime}}{\bar{p}}-\frac{\rho^{\prime}}{\rho_{0}} & & c_{s}^{2}=\frac{c_{p}}{c_{v}} R_{d} \bar{T} \quad \text { speed of sound } \\
& =\frac{p^{\prime}}{\rho_{0} c_{s}^{2}}-\frac{\rho^{\prime}}{\rho_{0}} & & \text { for } c_{s} \text { large }: \frac{\rho^{\prime}}{\rho_{0}} \approx-\frac{\theta^{\prime}}{\bar{\theta}}
\end{aligned}
$$

Vertical equation

$$
\rho \frac{\partial w}{\partial t}+\rho u \frac{\partial w}{\partial x}+\rho w \frac{\partial w}{\partial z}+\frac{\partial p}{\partial z}+\rho g=0
$$

Do perturbation analysis, neglect products of perturbations

$$
\rho_{0} \frac{\partial w^{\prime}}{\partial t}+\frac{\partial \bar{p}}{d z}+\frac{\partial p^{\prime}}{\partial z}+\rho \partial+\rho^{\prime} g=0
$$

Rearrange, replace density with potential temperature

$$
\frac{\partial w^{\prime}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial z}-g \frac{\theta^{\prime}}{\bar{\theta}}=0
$$

Our first pendulum

 equation

 equation}

$$
\frac{\partial w^{\prime}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial z}-g \frac{\theta^{\prime}}{\bar{\theta}}=0
$$

We now know an oscillating parcel will disturb its environment and p’ plays a crucial, non-negligible role

Full set of linearized equations

$$
\begin{aligned}
\frac{\partial u^{\prime}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial x} & =0 \\
\frac{\partial w^{\prime}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial z}-g \frac{\theta^{\prime}}{\bar{\theta}} & =0 \\
\frac{\partial \theta^{\prime}}{\partial t}+w \frac{d \bar{\theta}}{d z} & =0 \\
\frac{\partial u^{\prime}}{\partial x}+\frac{\partial w^{\prime}}{\partial z} & =0
\end{aligned}
$$

Vorticity form of these equations

- Vorticity $==$ spin
- Vorticity defined by spin axis
- horizontal vorticity is spin in vertical plane
- Horizontal vorticity parallel to the y axis:

$$
\eta=\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}
$$

Recall sea-breeze circulation

negative horizontal vorticity by right hand rule

Obtaining the vorticity

 equation

 equation}
differentiate horizontal and vertical equations of motion

$$
\begin{aligned}
\frac{\partial}{\partial z}\left[\frac{\partial u^{\prime}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial x}\right] & =0 \\
\frac{\partial}{\partial x}\left[\frac{\partial w^{\prime}}{\partial t}+\frac{1}{\rho_{0}} \frac{\partial p^{\prime}}{\partial z}-g \frac{\theta^{\prime}}{\bar{\theta}}\right] & =0
\end{aligned}
$$

subtract top equation from bottom

$$
\frac{\partial}{\partial t}\left[\frac{\partial w^{\prime}}{\partial x}-\frac{\partial u^{\prime}}{\partial z}\right]-\frac{g}{\bar{\theta}} \frac{\partial \theta^{\prime}}{\partial x}=0
$$

where $\quad-\eta^{\prime}=\frac{\partial w^{\prime}}{\partial x}-\frac{\partial u^{\prime}}{\partial z}$

Sea-breeze circulation

$$
\frac{\partial \eta^{\prime}}{\partial t}=-\frac{g}{\bar{\theta}} \frac{\partial \theta^{\prime}}{\partial x}
$$

Temperature perturbation increases in $+x$ direction creates counterclockwise spin in vertical plane

Back up a step and

differentiate again

$$
\frac{\partial}{\partial t}\left[\frac{\partial^{2} w^{\prime}}{\partial x^{2}}-\frac{\partial^{2} u^{\prime}}{\partial z \partial x}\right]-\frac{g}{\bar{\theta}} \frac{\partial^{2} \theta^{\prime}}{\partial x^{2}}=0
$$

...differentiated $w / r / t x$. Since continuity implies

$$
\frac{\partial u^{\prime}}{\partial x}=-\frac{\partial w^{\prime}}{\partial z} \quad \text { then } \quad \frac{\partial^{2} u^{\prime}}{\partial x \partial z}=-\frac{\partial^{2} w^{\prime}}{\partial z^{2}}
$$

Since the potential temperature equation was

$$
\frac{\partial \theta^{\prime}}{\partial t}=-w \frac{d \bar{\theta}}{d z} \quad \text { then } \quad \frac{\partial}{\partial t} \frac{\partial^{2} \theta^{\prime}}{\partial x^{2}}=-\frac{d \bar{\theta}}{d z} \frac{\partial^{2} w^{\prime}}{\partial x^{2}}
$$

(differentiated twice $w / r / t x$, rearranged)

Final steps...

$$
\frac{\partial}{\partial t}\left[\frac{\partial^{2} w^{\prime}}{\partial x^{2}}-\frac{\partial^{2} u^{\prime}}{\partial z \partial x}\right]-\frac{g}{\bar{\theta}} \frac{\partial^{2} \theta^{\prime}}{\partial x^{2}}=0
$$

differentiate $w / r / t t$ again and plug in expressions from last slide

$$
\frac{\frac{\partial^{2}}{\partial t^{2}}\left[\frac{\partial^{2} w^{\prime}}{\partial x^{2}}+\frac{\partial^{2} w^{\prime}}{\partial z^{2}}\right]+N^{2} \frac{\partial^{2} w^{\prime}}{\partial x^{2}}=0}{\text { where } N^{2}=\frac{g}{\bar{\theta}} \frac{d \bar{\theta}}{d z}}
$$

Pendulum equation.... note only w left

Solving the pendulum equation

- We expect to find waves -- so we go looking for them!
- Waves are characterized by period P, horizontal wavelength L_{x} and vertical wavelength L_{z}
- Relate period and wavelength to frequency and wavenumber

$$
\omega=\frac{2 \pi}{P} \quad k=\frac{2 \pi}{L_{x}} \quad m=\frac{2 \pi}{L_{z}}
$$

A wave-like solution

$$
w^{\prime}=\hat{w} e^{i(k x+m z-\omega t)} \equiv E
$$

where...

\hat{w} wave amplitude

This is a combination of cosine and sine waves owing to Euler's relations

$$
\begin{aligned}
e^{i q} & =\cos q+i \sin q \\
e^{-i q} & =\cos q-i \sin q
\end{aligned}
$$

Differentiating the wave-like function

$$
\begin{aligned}
w^{\prime} & =\hat{w} e^{i(k x+m z-\omega t)} \\
\frac{\partial w^{\prime}}{\partial x} & =\frac{\partial}{\partial x}\left[\hat{w} e^{i(k x+m z-\omega t)}\right] \\
& =\hat{w} e^{i(k x+m z-\omega t)} \frac{\partial}{\partial x}[i(k x+m z-\omega t)] \\
& =\hat{w} i k e^{i(k x+m z-\omega t)}
\end{aligned}
$$

now differentiate again

$$
\begin{aligned}
\frac{\partial^{2} w^{\prime}}{\partial x^{2}} & =\frac{\partial}{\partial x}\left[\hat{w} e^{i(k x+m z-\omega t)}\right] \\
& =\hat{w} i^{2} k^{2} e^{i(k x+m z-\omega t)} \\
& =-\hat{w} k^{2} e^{i(k x+m z-\omega t)}
\end{aligned}
$$

Differentiating the wave-like function

now differentiate twice with respect to time

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial^{2} w^{\prime}}{\partial x^{2}} & =\frac{\partial}{\partial t}\left[-\hat{w} k^{2} e^{i(k x+m z-\omega t)}\right] \\
& =-\hat{w} k^{2} i \omega e^{i(k x+m z-\omega t)} \\
\frac{\partial^{2}}{\partial t^{2}} \frac{\partial^{2} w^{\prime}}{\partial x^{2}} & =\underline{w} k^{2} \omega^{2} e^{i(k x+m z-\omega t)}
\end{aligned}
$$

Do same $w / r / t z$, and the pieces assemble into a very simple equation

$$
\omega^{2}\left(k^{2}+m^{2}\right)-N^{2} k^{2}=0
$$

The dispersion
 equation

$$
\omega= \pm \frac{N k}{\sqrt{\left(k^{2}+m^{2}\right)}} .
$$

A stable environment, disturbed by an oscillating parcel, possesses waves with frequency (period) depending the stability (N) and horizontal \& vertical wavelengths (k, m)

Wave phase speed

$$
c_{x}=\frac{\omega}{k}= \pm \frac{N}{\sqrt{\left(k^{2}+m^{2}\right)}}
$$

Example:

Wave horizontal wavelength 20 km vertical wavelength 10 km and stability $\mathrm{N}=0.0 \mathrm{l} / \mathrm{s}$

$$
\begin{aligned}
k=\frac{2 \pi}{L_{x}} & =\frac{2 \pi}{20000}=3.14 \cdot 10^{-4} \\
m=\frac{2 \pi}{L_{z}} & =\frac{2 \pi}{10000}=6.28 \cdot 10^{-4} \\
c_{x} & = \pm 14.24 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Wave phase speed
 $$
c_{x}=\frac{\omega}{k}= \pm \frac{N}{\sqrt{\left(k^{2}+m^{2}\right)}}
$$

Note as you make the environment more stable waves move faster.
Does that make sense?
Note that TWO oppositely propagating waves are produced.

Wave phase tilt

$$
\begin{aligned}
\alpha & =\arctan \left[\frac{L_{x}}{L_{z}}\right] \\
& =\arccos \left[\frac{L_{z}}{\sqrt{L_{x}^{2}+L_{z}^{2}}}\right] \\
& =\arccos \left[\frac{k}{\sqrt{k^{2}+m^{2}}}\right] \\
& =\arccos \left[\frac{\omega}{N}\right]
\end{aligned}
$$

Wave tilt with height depends on forcing frequency and stability (e.g., smaller ω smaller $\cos \alpha$ larger tilt)

