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Introduction

• Gravity waves describe how environment 
responds to disturbances, such as by 
oscillating parcels

• Goal: derive “dispersion relation” that 
relates wave characteristics (wavelength, 
period) to disturbance characteristics 
(oscillation period)

• Simplifications: make atmosphere 2D, dry 
adiabatic, flat, non-rotating
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Starting equations

du

dt
= −1

ρ

∂p

∂x
dw

dt
= −1

ρ

∂p

∂z
− g

∂u

∂x
+

∂w

∂z
= 0

dθ

dt
= 0

continuity equation
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Expand total derivatives

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
+

1
ρ

∂p

∂x
= 0

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
+

1
ρ

∂p

∂z
+ g = 0

∂u

∂x
+

∂w

∂z
= 0

∂θ

∂t
+ u

∂θ

∂x
+ w

∂θ

∂z
= 0
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Perturbation method

u(x, z, t) = u′(x, z, t)
w(x, z, t) = w′(x, z, t)
ρ(x, z, t) = ρ0 + ρ′(x, z, t)
p(x, z, t) = p̄(z) + p′(x, z, t)
θ(x, z, t) = θ̄(z) + θ′(x, z, t)

dp̄

dz
= −ρ0g

Calm, hydrostatic, constant density environment
(“basic state”)
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Start w/ potential 
temperature

θ = T

[
1000

p

] R
cp

ln θ =
cv

cp
ln p− ln ρ + consts

ln θ̄ =
cv

cp
ln p̄− ln ρ̄ + consts

used log tricks and:

cp = R + cv

p = ρRT

for basic state
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Apply perturbation 
method

ln(θ̄ + θ′) =
cv

cp
ln(p̄ + p′)− ln(ρ0 + ρ′) + consts

ln
[
θ̄(1 +

θ′

θ̄
)
]

=
cv

cp
ln

[
p̄(1 +

p′

p̄
)
]
− ln

[
ρ0(1 +

ρ′

ρ0
)
]

+ consts

Useful approximation for x small: ln(1 + x) ≈ x

Base state cancels... makes constants disappear...

θ′

θ̄
=

cv

cp

p′

p̄
− ρ′

ρ0

=
p′

ρ0c2
s

− ρ′

ρ0

c2
s =

cp

cv
RdT̄ speed of sound

for cs large :
ρ′

ρ0
≈ −θ′

θ̄
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Vertical equation
ρ
∂w

∂t
+ ρu

∂w

∂x
+ ρw

∂w

∂z
+

∂p

∂z
+ ρg = 0

Do perturbation analysis,
neglect products of perturbations

ρ0
∂w′

∂t
+

dp̄

dz
+

∂p′

∂z
+ ρ0g + ρ′g = 0

∂w′

∂t
+

1
ρ0

∂p′

∂z
− g

θ′

θ̄
= 0

Rearrange, replace density with potential temperature
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Our first pendulum 
equation

∂w′

∂t
+

1
ρ0

∂p′

∂z
− g

θ′

θ̄
= 0

We now know an oscillating parcel
will disturb its environment

and p’ plays a crucial, non-negligible
role
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Full set of linearized 
equations

∂u′

∂t
+

1
ρ0

∂p′

∂x
= 0

∂w′

∂t
+

1
ρ0

∂p′

∂z
− g

θ′

θ̄
= 0

∂θ′

∂t
+ w

dθ̄

dz
= 0

∂u′

∂x
+

∂w′

∂z
= 0.
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Vorticity form of these 
equations

• Vorticity == spin

• Vorticity defined by spin axis

• horizontal vorticity is spin in vertical 
plane

• Horizontal vorticity parallel to the y axis:

η =
∂u

∂z
− ∂w

∂x
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Recall sea-breeze 
circulation

cold warm

! < 0

η =
∂u

∂z
− ∂w

∂x

negative horizontal vorticity by right hand rule

height
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Obtaining the vorticity 
equation

∂

∂z

[
∂u′

∂t
+

1
ρ0

∂p′

∂x

]
= 0

∂

∂x

[
∂w′

∂t
+

1
ρ0

∂p′

∂z
− g

θ′

θ̄

]
= 0

differentiate horizontal and vertical equations of motion

subtract top equation from bottom

∂

∂t

[
∂w′

∂x
− ∂u′

∂z

]
− g

θ̄

∂θ′

∂x
= 0

−η′ =
∂w′

∂x
− ∂u′

∂z
where
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Sea-breeze circulation

cold warm

! < 0

∂η′

∂t
= −g

θ̄

∂θ′

∂x

Temperature perturbation increases in +x direction
creates counterclockwise spin in vertical plane
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Back up a step and
differentiate again

∂

∂t

[
∂2w′

∂x2
− ∂2u′

∂z∂x

]
− g

θ̄

∂2θ′

∂x2
= 0

...differentiated w/r/t x.  Since continuity implies

∂u′

∂x
= −∂w′

∂z
then ∂2u′

∂x∂z
= −∂2w′

∂z2

Since the potential temperature equation was

∂θ′

∂t
= −w

dθ̄

dz

∂

∂t

∂2θ′

∂x2
= −dθ̄

dz

∂2w′

∂x2then

(differentiated twice w/r/t x, rearranged)
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Final steps...
∂

∂t

[
∂2w′

∂x2
− ∂2u′

∂z∂x

]
− g

θ̄

∂2θ′

∂x2
= 0

differentiate w/r/t t again and plug in 
expressions from last slide

∂2

∂t2

[
∂2w′

∂x2
+

∂2w′

∂z2

]
+ N2 ∂2w′

∂x2
= 0

where N2 =
g

θ̄

dθ̄

dz

Pendulum equation.... note only w left
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Solving the pendulum 
equation

• We expect to find waves -- so we go 
looking for them!

• Waves are characterized by period P, 
horizontal wavelength Lx and vertical 
wavelength Lz

• Relate period and wavelength to frequency 
and wavenumber

ω =
2π

P
k =

2π

Lx
m =

2π

Lz
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A wave-like solution

where...

ŵ wave amplitude

This is a combination of cosine and sine
waves owing to Euler’s relations

eiq = cos q + i sin q

e−iq = cos q − i sin q

w′ = ŵei(kx+mz−ωt) ≡ E
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Differentiating the 
wave-like function

now differentiate again

∂2w′

∂x2
=

∂

∂x

[
ŵei(kx+mz−ωt)

]

= ŵi2k2ei(kx+mz−ωt)

= −ŵk2ei(kx+mz−ωt)

w′ = ŵei(kx+mz−ωt)

∂w′

∂x
=

∂

∂x

[
ŵei(kx+mz−ωt)

]

= ŵei(kx+mz−ωt) ∂

∂x
[i(kx + mz − ωt)]

= ŵikei(kx+mz−ωt)
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Differentiating the 
wave-like function

now differentiate twice with respect to time

∂

∂t

∂2w′

∂x2
=

∂

∂t

[
−ŵk2ei(kx+mz−ωt)

]

= −ŵk2iωei(kx+mz−ωt)

∂2

∂t2
∂2w′

∂x2
= ŵk2ω2ei(kx+mz−ωt)

Do same w/r/t z, and the pieces assemble into
a very simple equation

ω2(k2 + m2)−N2k2 = 0
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The dispersion 
equation
ω = ± Nk√

(k2 + m2)
.

A stable environment, disturbed by
an oscillating parcel, possesses waves with 

frequency (period) depending the stability (N)
and horizontal & vertical wavelengths (k, m) 

21



Wave phase speed

cx =
ω

k
= ± N√

(k2 + m2)

Example:
Wave horizontal wavelength 20 km

vertical wavelength 10 km and
stability N = 0.01/s

k =
2π

Lx
=

2π

20000
= 3.14 · 10−4

m =
2π

Lz
=

2π

10000
= 6.28 · 10−4

cx = ±14.24 m/s
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Wave phase speed
cx =

ω

k
= ± N√

(k2 + m2)

Note as you make the environment more stable
waves move faster.  

Does that make sense?

Note that TWO oppositely propagating
waves are produced.
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Wave phase tilt
Lx

Lz

!

Wave tilt with height depends on
forcing frequency and stability
(e.g., smaller ω  smaller cos α 

larger tilt)

α = arctan
[
Lx

Lz

]

= arccos

[
Lz√

L2
x + L2

z

]

= arccos
[

k√
k2 + m2

]

= arccos
[ ω

N

]
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