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The Clausius-Clapeyron (C-C) equation can be thought of in terms of the Carnot cycle applied to a

water vapor/liquid mixture. The system consists of a plunger-equipped piston filled with vapor and

liquid in equilibrium (i.e., at saturation). Two adiabatic and two isothermal steps are performed.

The isothermal steps involve changes of phase. The system is not isolated with respect to energy

transfer – the phase changes will require heat exchange with the environment outside of the piston

– but the total mass of water substance is conserved.

The figure below sketches a cyclic path on a diagram of saturation vapor pressure and volume.

Here, volume refers to the total space occupied by the vapor/liquid mixture in the piston. We

presume to know that the saturation vapor pressure is a function only of temperature. Thus,

the vertical axis is really temperature. The C-C equation demonstrates this is an exponential

relationship.

In this cycle, the adiabatic steps involve compression and expansion that push the system out

of equilibrium, into a state of subsaturation or supersaturation, and the isothermal steps are the

adjustments back to saturation. Suppose we start at A with the saturated mixture occupying

volume VA with vapor pressure eSA. If we squeeze the volume a little, down to volume VB, the

temperature should go up owing to adiabatic compression. This would make the initially saturated

state subsaturated, since the temperature (and thus the saturation vapor pressure) increases.
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Figure 1: Conceptual es-V diagram for the vapor/liquid Carnot cycle. Not to scale. Variation on
vertical axis (effectively temperature) is small; volume variation is huge.

So, some liquid has to evaporate for the system to regain equilibrium. During this process,

which takes place at constant temperature and saturation vapor pressure, high density (small
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volume) liquid is being replaced by low density vapor. Thus, even though we put the system out of

saturation by squeezing it, regaining saturation at a higher temperature requires the volume of the

system to get larger, to value VC . The path from B to C on the figure represents the adjustment

back to the saturation conditions represented by C.

Evaporation is a cooling process – for the environment hosting the system. Energy input is

required to break bonds among the water molecules to permit the creation of vapor. The heat

required enters the system from outside of the piston, so step B to C involves heat input QIN .

Now, disturb the equilibrium at C via adiabatic expansion. The temperature and saturation

vapor pressure decrease back to the original values, and the volume increases to VD. As the system is

cooler, it is now supersaturated, and step D to A accomplishes conversion of excess vapor to liquid.

During this step, low density vapor is replaced by high density liquid, and volume regains value

VA. This process is again isothermal, without change of saturation vapor pressure. Condensation

warming is lost to the environment, QOUT . As in the Carnot derivation, we take the magnitudes

of these two heats to be positive.

If this process is reversible (and phase changes are), the required entropy conservation is
QIN

TB
=

QOUT

TD
.

We know two things: First, for the Carnot cycle, W = QIN −QOUT . Thus, we can write

W = QIN

[
TB − TD

TB

]
=

QIN

TB
∆T.

Second, we know that work W =
∮

pdV is also the area on a pressure-volume diagram such as

shown above. The area of a parallelogram is the base times the height, or

W = (VD − VA)(eSB − eSA) = (VD − VA)∆es.

These two expressions for work are equivalent, so equate them. We can get
QIN

TB
∆T = (VD − VA)∆es,

which after rearranging and writing in differential form is
des

dT
=

QIN

TB(VD − VA)
.

Time to simplify. Suppose we have a unit mass system (total water 1 kg). Further suppose state

D represents virtually all vapor and state A almost all liquid. Owing to the far lower density of

vapor, VD >> VA, so we can neglect VA. QIN will be equal to Lv, the latent heat of vaporization.

The ideal gas law for vapor for a unit mass is esVD = RvTD, but TD ≈ TB and thus we can write

the C-C equation more generically as:
d ln es

dT
=

Lv

RvT 2
.
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