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• While representation of bottom drag term is essential for coastal modeling, the
basic mathematical dilemma of handling an implicit no-slip bottom boundary
condition in a mode-split model (whether split-explicit or implicit free-surface) is
not satisfactorily solved within the oceanic modeling community, and, moreover,
most current oceanic codes do not even allow this without a major algorithmic
redesign.

• The essence of the problem is the splitting of two stiff operators – one is associ-
ated with the Barotropic Mode splitting, the other is due to the implicit no-slip
boundary condition at the bottom – a situation reminiscent to the classical
dilemma in incompressible flows, e.g., Dukowicz & Dvinsky, 1992.

• Vertical grid refinement toward the bottom – a standard modeling practice
motivated by the need to resolve turbulent bottom boundary layer – exacerbates
the splitting dilemma resulting in poor convergence.

• This presentation overviews the current modeling practices and proposes self-
consistent algorithms to address both the errors due to time splitting and han-
dling of the discrete of no-slip bottom boundary condition in the turbulent case
where regularization length (viscous sublayer) is only marginally resolved or not
resolved at all.



Bottom drag: Physics and Discretization Issues
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known as ”log-layer”

• overall there is nothing unexpected

• smooth transition between resolved and unresolved

• avoids introduction of ad hoc “reference height” za, e.g., Soulsby (1995) formula
STRESS = [κ/ln (za/z0)]2 · u2
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where u
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is hard (or impossible) to
estimate from discrete variables

• in practice this differs by a factor of 2 from published formulas, e.g., Blaas
(2007), with za = ∆z1/2, due to finite-volume vs. finite-difference interpretation
of discrete model variables

• near-bottom vertical grid-box height ∆z1 is an inherent control parameter of rD,
making it impossible to specify “physical” quadratic drag coefficient, rD = CD·|u|
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Typical high-resolution ROMS practice hmin ∼ 25m, N = 30...50, hence ∆z ∼ 1m,
∆x = 1km, and z0 = 0.01m, κ = 0.4 estimates the above as 7.5.

• ∼ 50...100 in Bering Sea in our ∆x = 12.5km Pacific simulation, even more
in a coarser 1/5-degree

It is mitigated by the bottom-most velocity Courant number ∼ 0.1 but, still exceeds
the limit of what explicit treatment can handle

• sigma-models are the most affected, but they are the ones which are mostly
used when bottom drag matters

• vertical grid refinement toward the bottom makes this condition stiffer



Implicit treatment of −∆t ·rD ·un+1
1 term: include it into implicit solver for vertical

viscosity terms, however this interferes with Barotropic Mode (BM) splitting:

• Bottom drag can be computed only from full 3D velocity, but not from the
vertically averaged velocities alone.

• Barotropic Mode must know the bottom drag term in advance as a part of
3D→2D forcing for consistency of splitting. This places computing vertical
viscosity before BM, however, later when BM corrects the vertical mean of
3D velocities, it destroys the consistency of (no-slip like) bottom boundary
condition.

• If BM receives bottom drag based on the most recent state of 3D velocity before
BM, but the implicit vertical viscosity terms along with (the final) bottom drag
are computed after BM is complete (hence accurately respecting the bottom
boundary condition), this changes the state of vertical integrals of 3D velocities,
interfering with BM in keeping the vertically integrated velocities in nearly non-
divergent state.

• Current ROMS practice is to split bottom drag term from the rest of vertical
viscosity computation. This limits the time step (or rD itself) by the explicit
stability constraint.



Ekman layer in shallow water:
h = 10m , f = 10−4 , Av = 2× 10−3m2/s
u∗ = 6× 10−2m/s (≈ 5m/s wind),
non-slip at z = −h, N = 30

Top: Explicit, CFL-limited, bottom drag
before Barotropic Mode (BM) for both
r.h.s. 3D and for BM forcing (⇒ no split-
ting error); implicit step for vertical viscos-
ity after with bottom drag excluded (⇒
undisturbed coupling of 2D and 3D);
need rD < ∆zbottom/∆t3D for stability

Middle: Unlimited drag before BM ap-
plies for BM forcing only; implicit verti-
cal viscosity after with drag included into
implicit solver (i.e., the drag term is re-
computed relative to what BM got be-
fore ⇒ splitting error)

Bottom: Bottom drag is computed as a
part of implicit vertical viscosity step be-
fore and for both 3D and BM forcing

In all cases BM has bottom drag term
which captures its tendency in fast time

∂tU = ... [ −rD · ubottom︸ ︷︷ ︸
drag from 3D mode

+rD · um=0]︸ ︷︷ ︸
3D→BM forcing

−rD ·u

so when ubottom is updated/corrected by
BM, so does the −rD · ubottom term com-
puted from it; above U = (h+ ζ)u
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Key components for small splitting error:

• No-slip B.C. and bottom drag term must be included into implicit vertical
viscous solver

• Both the total bottom stress term and bottom drag coefficient must be available
to BM (i.e. must be precomputed before BM)

• As BM advances vertical integrals of u, v, it should also take into account the
incremental changes to bottom drag term, so after u, vn+1 are are adjusted
by BM, the resultant adjusted bottom drag term is still in balance with the
remaining terms as it was before BM run

∂tU = ...

3D→BM forcing, ”slow”︷ ︸︸ ︷ −rD · ubottom︸ ︷︷ ︸
drag from 3D mode

+rD · um=0

−rD · u︸ ︷︷ ︸
”fast”

Note: −rD ·u cannot simulate bottom drag by itself. The sole purpose of its presence
is to make BM “feel” the incremental change in −rD · δu = −rD ·

(
u− um=0

)
, so the

subsequent correction of 3D u, v’s by BM (which unavoidably changes the bottom
drag if recomputed from the updated u, v’s) nevertheless is able to predict the change
in −rD · ubottom.



Flowchart of POM code: pom2k.f
Mellor, 2004 POM User’s Manual

bottom friction coefficient

cbci,j = κ2
/[

ln
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∆zi,j,kb

z0b

)]2

restricted to 0.0025 < cbcmin < cbci,j < cbcmax = 1.0

profu,v compute quadratic drag coefficients,

tpsi+1/2,j = cbc
x
i+1/2,j

√
(un)2 +
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v
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i+1/2,j,kb

at u-location i+ 1/2, j (similarly at i, j + 1/2) and
solve implicit vertical viscosity problem together with
no-slip bottom B.C.

momentum fluxes at the bottom 〈wu〉, 〈wv〉

wuboti+1/2,j = −tpsi+1/2,j · u
n+1
i+1/2,j,kb

are computed at the very end of profu,v

wuboti+1/2,j and wvboti,j+1/2 are applied to the r.h.s. of
BM during the next time step, where they are kept
constant in fast time (no adjustment to bottom drag
term within BM)

• built-in delay between bottom drag and BM
• subject to splitting error (BM disturbs bottom
B.C. after enforcing vertical integrals u, v at next step)
• can be partially repaired by introducing adjustment
of bottom drag term into BM
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Test problem: Upwelling response

Based on traditional ROMS “Upwelling test” configuration:

• EW periodic channel, 80 km wide;

• hmax = 25m hmax = 150m;

• f-plane, f = −8.26× 10−5 southern hemisphere;

• initially flat stratification in T ;

• spatially uniform wind, 0.1N/m2 stress,

modulated by sin
(π

4
· t[days]

)
for 0 < t < 2 days;

thereafter constant

• ”salinity” is a passive tracer just to illustrate flow, and

either

• analytical vertical viscosity profile, constant in time

or

• KPP, both top and bottom, dynamically changing
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• same, but with KPP, top and bottom
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Realistic example: USWC L4 Palos Verdes configuration



USWC L4 Palos Verdes
grid configuration

∆x = 75m

h, logscale,
min = 1.5m
max = 900m

rD, max=0.01

hbbl by KPP
max=50m

u, ±0.2m/s



Summary:

• Overall classical operator splitting dilemma

∂tu = R(u) where R(u) = R1(u) +R2(u) both are stiff, but

un+1 = un + ∆t · R
(
un:n+1

)
is not practical because of complexity (implicitness), so instead

u′ = un + ∆t · R1(un:′) followed by un+1 = u′ + ∆t · R2(u′:n+1)

un+1 = [1 + ∆t · R2(.)] · [1 + ∆t · R1(.)] un

[1 + ∆t · R2(.)] · [1 + ∆t · R1(.)] 6= [1 + ∆t · R1(.)] · [1 + ∆t · R2(.)]

resulting in O(∆t) operator splitting error.
Especially inaccurate in near cancellation R1 ≈ −R2 situation (balance).

• reminiscent of implicit no-slip boundaries + pressure-Poisson projection method
for incompressible flows

• Requires substantial redesign of ROMS kernel

• somewhat encourages anti-modular code design

• Possible only in corrector-coupled and Generalized FB variants of ROMS kernels

• Incompatible (or at least hard to implement) in Rutgers ROMS because of forward extrapolation
of r.h.s. terms for 3D momenta (AB3 stepping) and extrapolation of 3D→BM forcing terms
which is not compatible with having stiff terms there

• Incompatible with predictor-coupled variant of ROMS kernel (currently used by AGRIF), because
of extrapolation of 3D→BM forcing, and having BM too early the computing sequence (implicit
vertical viscosity step is done only after predictor step for tracers which is after BM)

• Must have, long overdue


