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Abstract

The purpose of this study is to find a combination of optimal numerical algorithms for time-
stepping and mode-splitting suitable for a high-resolution, free-surface, terrain-following
coordinate oceanic model. Due to mathematical feedback between the baroclinic momen-
tum and tracer equations and, similarly, between the barotropic momentum and continuity
equations, it is advantageous to treat both modes so that, after a time step for the mo-
mentum equation, the computed velocities participate immediately in the computation of
tracers and continuity, and vice versa, rather than advancing all equations for one time
step simultaneously. This leads to a new family of time-stepping algorithms that combine
Jforward-backward feedback with the best known synchronous algorithms, allowing an in-
creased time step due to the enhanced internal stability without sacrificing its accuracy.
Based on these algorithms we design a split-explicit hydrodynamic kernel for a realistic
oceanic model, which addresses multiple numerical issues associated with mode splitting.
This kernel utilizes consistent temporal averaging of the barotropic mode via a specially
designed filter function to guarantee both exact conservation and constancy preservation
properties for tracers and yields more accurate (up to second-order), resolved barotropic
processes, while preventing aliasing of unresolved barotropic signals into the slow baro-
clinic motions. It has a more accurate mode-splitting due to redefined barotropic pressure-
gradient terms to account for the local variations in density field, while maintaining the
computational efficiency of a split model. It is naturally compatible with a variety of cen-
tered and upstream-biased high-order advection algorithms, and helps to mitigate compu-
tational cost of expensive physical parameterization of mixing processes and submodels.




1 Introduction

Realistic oceanic circulation models are usually based on Boussinesq, hydrostatic momentum and
mass balances, material tracer conservation, seawater’s equation of state, and parameterized subgrid-
scale transports. Their time integration is made with a decomposition of the 3D fields into barotropic
(depth-averaged) and baroclinic (the residual) parts to facilitate the calculation of the pressure-gradient
force (Bryan, 1969). The motivation to build a free-surface oceanic model is twofold. From a physical
point of view, it is desirable to recapture processes lost or altered by the rigid-lid assumption. These in-
clude tidal motions, altered dispersion relations for the Rossby waves, efc. The other motivation comes
from computational economics: as pointed out by Killworth et al. (1991), there is a natural physical
ratio of phase speeds for the external and internal gravity-wave modes. Once the model time step is
chosen from the CFL criterion based on the fastest baroclinic wave speed, the external mode has to be
treated by either (i) a streamfunction method using rigid-lid approximation; or (ii) a two-dimensional
(2D) pressure Poisson equation for pressure on the rigid-lid or due to free-surface elevation; or (iii) a
special 2D barotropic submodel that uses a smaller time step chosen from a CFL criterion based on
the barotropic speed. Approaches (i)-(ii) require solution of a 2D elliptic problem (Dukowicz, 1994;
Dukowicz and Smith, 1994) at every time step that, with a conventional Successive Over-Relaxation
(SOR) or similar method, requires a number of iterations on the order of the number of grid points in
the longest direction of the computational domain. Since on this path the number of operations needed
at every grid point at every time step tends to increase with the resolution, on finer grids the approach
(iii) tends to be more efficient than the others with a threshold set by the ratio of phase speeds of the
external and the fastest internal gravity waves compared to the number of grid points in the longest
dimension ',
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(1.1)

Despite the long-time existence of split-explicit versions for all three major classes of oceanic
models — z-, sigma-, and density-coordinate — there are few published studies about the mathematical
aspects: consistency, accuracy, and stability associated with mode splitting (e.g., Higdon and Bennett,
1996; Higdon and de Szoeke, 1997; Hallberg, 1997; Higdon, 2002; an earlier theoretical work of Ya-
nenko, 1971; and Skamarock and Klemp (1992) more related to atmospheric modeling). Even within
the limits of numerical stability based on the usual CFL condition, mode splitting may introduce ad-
ditional sources of numerical instability not present in models with uniform time steps nor in rigid-lid
models.

The purpose of the present study is to reconsider the computational kernel of an oceanic model,
including the optimal choice of time-stepping algorithms for the barotropic and baroclinic momentum
and tracer equations, and their mutual interaction. Here we advocate an integrated approach whose
main focus is on the time-step limitation coming from the system as a whole that, as we will show,
is typically more restrictive than the CFL limitations coming from each equation taken individually.

L This criterion may be shifted in favor of the rigid-lid model if a more efficient (e.g., conjugate gradient,
direct, or multigrid; NASA, 1981) elliptic solver is used instead of SOR. These kinds of solvers are available
for relatively simple geometries but not for complex geometry and topography. Similarly, if the rigid-lid is
abandoned in favor of an implicit free-surface approach, the associated elliptic operator becomes diagonally-
dominant: this alleviates the requirements for the solver and ultimately helps to reduce the computational cost
(Dvinsky and Dukowicz, 1993; Dukowicz et al., 1993; Dukowicz and Smith, 1994).



We design a new finite-volume, finite-time-step discretization for the tracer equations to eliminate
the conflict between integral conservation and constancy preservation properties associated with the
variable free surface. We generalize the barotropic mode to take into account the non-uniform density.
Collectively, these steps reduce the mode-splitting error and improve the stability, robustness, and
efficiency of the model.

1.1 A Generalized Topography-Following Coordinate

The topography-following vertical coordinate system implies that there is a transformation,
z=z(z,y,0), (1.2)

where z is the Cartesian height and o is the vertical distance from the surface measured as the fraction
of the local water column thickness (i.e., —1 < o < 0, 0 = 0 corresponds to the free surface, z = (,
and 0 = —1 corresponds to the oceanic bottom, z = —h(z, y)). The resulting system of coordinates is
nonorthogonal and leads to a set of chain rules for derivatives,

In the case of the classical o-coordinate, (1.2) reduces to
z=o0-h(z,y). (1.4)
This may be combined with nonlinear stretching, S(o),
2(z,y,0) = S(0) - h(z,y) . (1.5)

and further generalized into the S-coordinate of Song and Haidvogel (1994) — which in essence behaves
like (1.4) in shallow regions and (1.5) in deep.

Past experience with o-coordinate models and intercomparisons with z- and isopycnic-coordinate
models (Beckmann, 1998; Willebrand et al., 2001) reveal that the solutions from o-models exhibit
stronger topographic sensitivity than the other two classes of models. This is attributed to the fact
that the iso-surfaces of the vertical coordinate intersect the isopycnals at some angle, even in the case
of horizontally uniform stratification, which causes pressure-gradient error. One way to address this
problem is to redesign the model algorithms making them less sensitive to such errors (Shchepetkin
and McWilliams, 2003). It is also desirable to allow the possibility of a smooth transition from o
to z-coordinates, such that the top-most isosurfaces are nearly flat while the bottom-most are still
aligned with topography. For example, one can chose a set of z-levels, {zz +1/ |k=0,1,...N } where

z;*/Q = —Nmax 1S chosen to be the maximum depth and 23, S 0 is the unperturbed free surface 2.

2 For notational consistency throughout this study, Zpga /o have half-integer indices to reflect the fact that these
z-levels are placed between the tracer point levels on a vertically staggered grid. Specifically, these z-levels
correspond to interfaces between two adjacent grid boxes in the finite-volume discretization.



Then, starting from the bottom, for £ = 0 set

21/2('];7 y) = —h<l',y) ) (16)

and foreachk =1,..., N — 1 set

Zhtya(@,y) = max (21 s 2po1sa(2,y) + Az

(1.7
where Az, is the chosen minimal vertical grid
spacing (n.b., to avoid surfacing of coordinate
isolines, Azyin < hmin/N, where Ay, is the
minimal depth). In principle, Az,,;, may be cho-
sen as infinitely small, so the resultant system is
equivalent to a z-coordinate with the necessity
of handling the layers near the bottom as “mass-
less” layers. Its disadvantage is the non-smooth
transition from z-level to topography-following
regions. This non-smoothness can be repaired by
applying 2D diffusion to zj,./,, with a variable
diffusivity coefficient — zero for the bottom and
increasing toward the surface. The resultant
coordinate systems are shown in Fig. 1(b-d) for
the cases of two different degrees of smoothing:
case (b) is closer to the stretched o-coordinate,
while (¢) retains more features of the original z-
coordinate (d). Unlike the o-coordinate, in both
cases the coordinate surfaces near the top are al-
most horizontal and have less resemblance to the
bottom topography.

Throughout this study we assume that our ver-
tical system of coordinates is no longer separable
in the sense that it cannot be generated by the
simple relationships (1.5) where S(o) is inde-
pendent of horizontal coordinates, but involves a
full three-dimensional (3D) transformation (1.2).
Consequently, the applicability of the methods
developed here is not limited to just a o- or S-
coordinate class of models.

1.2 Perturbed Vertical Coordinate System

Discretization of vertical coordinate introduces
a set of coordinate surfaces,

{zk+1/2 = Zgyip(z,y), k=01, N } .
(1.8)
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Fig. 1. Examples of vertical coordinate systems: (a)
S-coordinate of Song and Haidvogel (1994) with
0s = 3 and 6, = 0.01; (b,c¢) hybrid z — ¢ coordinate
systems obtained by relaxing the (d) z-coordinate
system toward the S-coordinate.

If the ocean is at rest, the free-surface elevation
is ¢ = 0, hence zy41, = 0, and the whole set
corresponding to zero free-surface {zl(;i)l /2} isre-

ferred as an unperturbed coordinate system. In



the case of a non-zero ¢, all z;1/, are displaced by a distance proportional to ¢ and the distance from
the bottom as the fraction of unperturbed local depth,

(0)
z
Rk41/2 = Zl(c(—)gl/z +¢ (1 + k—}:l/z) (1.9)
(recall that 21, = 2’1(72) = —h and 2y, = (). As a result the perturbed grid-box height, Az, =

Zk41/2 — Zk—1/5, 18 T€lated to the unperturbed height, Az,(f) = z,(jzl P z,go_)l /2 according to

Az = Az (1 + i) , (1.10)

where the multiplier (1 + ¢/h) is independent of the vertical coordinate. This choice is similar to
Higdon and Bennett (1996) and Higdon and de Szoeke (1997), with the exception that they applied it
for an isopycnic coordinate model. But it is different from Killworth et al. (1991) and Dukowicz and
Smith (1994), where free-surface elevation affects only the top-most grid box, as well as from Song
and Haidvogel (1994), where each grid box receives the same increment (hence Az, = Az,(co) + (/N)
regardless of its unperturbed size Az,io). Later we show that (1.10) has several consequences, including
the fact that vertical mass fluxes generated by a purely barotropic motion vanish identically at every
interface, zj1/,.

1.3 Conflict Between Integral and Constancy Preservation for Tracers

Combining the tracer equation in advective form,

9 (u-9)g=0 (L11)

with the nondivergence equation,
(V-u) =0, (1.12)

we derive the tracer equation in conservation form,

219 (ug) =0. (1.13)

As a consequence of (1.11), if the tracer is specified as a spatially uniform field at the initial time, it
remains so regardless of the velocity field. On the other hand, as a consequence of (1.13), the volume
integral of the tracer concentration is conserved in the absence of incoming and outgoing fluxes across
the domain boundary. The continuity equation (1.12) provides the compatibility condition between
these two properties. Both properties are valuable and should be considered in constructing numerical
oceanic models.



The discretization of (1.13) is usually done using a finite-volume approach,

n+1 n+1 __ ~ ~
AV i = AV e — A\ Givipagh - Uitipo gk — Qi * Uik
+Eji7j+1/27k ’ ‘[l:7j+1/27k - qi»jil/%k ’ ‘/;;7.]'71/2’]C (1.14)
+qv’£7j7k+1/2 ’ Wi7j7k+1/2 - Zjivjvk_l/2 ’ m7j7k_1/2j| )

where ¢; ; . is understood as a volume-averaged concentration over the grid-box A7 ; i,

1
i3 = / i (1.15)
77A41/_n

0,5,k

The g1/, 1 (¢ with one index half-integer) are the interface values of tracer concentration. Upper-
case® Uisi/a ks Vijyzmk and Wi 11, are volumetric fluxes ¢ in the two horizontal and vertical di-
rections. These are defined as velocity components multiplied by the contact area between two adjacent
grid boxes,
Uiprjo ik = Wigrf2jkAZig1/aj kit g (1.16)
‘/;,j+1/2,k = Ui,j+1/2,kAzi,j+1/2,kA€i,j+1/2 )

where Az 1k, Anijyige, and Az i1 g, A& iy, are vertical and horizontal measures of the corre-
sponding grid-box interfaces (A&, An are assumed to be non-uniform because of curvilinear horizontal
coordinates). The superscripts n + 1 and n denote new and old time steps. The time step for the flux
variables in (1.14) is not specified yet (must be effectively at n +! /5 to achieve the second-order tem-
poral accuracy), but the flux form by itself guarantees exact conservation of the global volume integral
of the advected quantity as long as there is no net flux across the domain boundary. Setting ¢; ;, = 1
in (1.14) yields the discretized continuity equation,

APt = AV = At Usrgan = Uicyagn + Vigroges — Vigoyak

(1.17)
Wikt — Wijk—1p

Once it holds, the conservative form of the discrete tracer equation (1.14) also has the property of
constancy preservation in addition to global content conservation.

In a hydrostatic model the discrete continuity equation (1.17) is needed to compute vertical velocity
rather than grid-box volume A”//-Z-j,;l. (The latter is entirely controlled by change of ¢ via (1.10).) Hence,

)

Wiy =0, at the sea floor, and (1.18)

3 We use uppercase letters to denote finite-volume fluxes, while the corresponding lowercase letters are reserved
for the velocity components. The same convention holds for the barotropic fluxes and velocities that are indicated
by an overbar.

4 We make a Boussinesq approximation that implies density is constant and equal to the background density
po everywhere except in the gravitational force. This implies that mass conservation is equivalent to volume
conservation, and in the present study these two terms are used interchangeably.
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for all =1,2,.., N,

which, in fact, defines the meaning of W ;41 as a finite-volume flux across the moving grid-box
interface z; j y11/,. Vertical summation of (1.17) for different £ leads to the equation for the free surface,

+ Ui+1/2,j,k:’ — Ui—1/2,j,k;’ + ‘/i,j—f'l/ka, - V;’j_l/27k/} (1.19)

At — — _ —
Gt =G - A Tisveg = Uicyas + Vigore = Vigorp| » (1.20)
i.J

’,

where Ad7 ; is the horizontal area of the grid box ¢, j;

N N
Uz’+1/2,j = Z Uz‘+1/2,j,k ) Vi,j+1/2 = Z ‘/z',j—&-l/z,j; (1-21)
k=1 k=1
are vertically integrated (barotropic) volume fluxes; and we have used the identity
N
(Gig +hig) Ay =3 Wi (1.22)
k=1

where /; ; is independent of time. Obviously, setting k& = N in (1.19), consistently with (1.20)—(1.22)
results in

Wi jinty, =0, (1.23)
as required by the kinematic boundary condition at the free surface.

Thus far we have assumed that the time step and time-stepping algorithm for the tracer (1.14) and
for ¢ (1.20) are the same. This would be the case if the barotropic and baroclinic components were
advanced using the same small time step dictated by the stability criterion for the barotropic mode;
or if the barotropic mode were treated implicitly with a special care to construct finite-volume fluxes
Uitz ks Vijsizns and Wi i1, such that the (1.17) holds exactly and is compatible with (1.21) and
(1.23), (Dukowicz and Smith, 1994). In a split-explicit, free-surface model (cf., Blumberg and Mellor,
1987; Killworth et al., 1991), the equation for free-surface (1.20) and the vertically integrated (2D)
momenta are advanced using a much smaller time step than the tracer equations. Each baroclinic
time step starts with computation of the r.h.s of the 3D momentum equations. The r.h.s components
are integrated vertically to provide forcing terms for the barotropic mode. During the barotropic time
stepping, the free surface and the barotropic velocity components are averaged over the sequence of the
barotropic steps and the averaged values are feed back into the 3D momenta. The averaging is needed
to prevent temporal aliasing of the signals resolved by the barotropic, but not by the baroclinic step, and
[in some models, cf., Nadiga et al., 1997; Hallberg, 1997; Higdon and de Szoeke, 1997; Higdon, 2002,
where no dealiasing (averaging) of (-equation is actually performed] to provide vertically integrated
fluxes consistent with finite-time-step “baroclinic time” free-surface equation (1.20). Then the 3D
momenta are advanced to the baroclinic time step n + 1 (with violation of the external mode CFL
criterion), and vertical integrals of the new fields are subtracted from the similar values from the
barotropic submodel. The resultant differences is then uniformly distributed throughout the vertical
column to make sure that the corrected 3D velocity components have the same vertical integrals as the
barotropic ones. At the same time, free surface ¢ at the new baroclinic step is assigned to its new state
from the the barotropic submodel.



Perhaps the most delicate matter here is the replacement of free-surface ¢ at n 4+ 1 with its fast-
time-averaged value: not doing so leaves room for aliasing error, while the replacement makes the
”slow-time” discrete 2D continuity equation (1.20) hold only within the order of temporal accuracy,
but no longer exactly (even thought it is exact at every fast time step). Consequently, it is no longer
possible to reconstruct vertical velocity via (1.19) in such a way that the top kinematic boundary
condition (1.23) is respected ® . As the result, a conservative update of the tracer fields (1.14) looses its
constancy preservation property.

2 Accuracy and Stability of Time-Stepping Algorithms

Table 4 in Griffes et al. (2000), provides a comprehensive overview of time-stepping and mode-
splitting algorithms for virtually all oceanic models currently in use. Despite the large diversity of mod-
els, the time-stepping algorithms are mainly limited to applications of classical methods — Leap-Frog
(LF), Adams-Bashforth (AB), and Forward-Backward (FB, used almost exclusively for the barotropic
mode). In this section we will show that, for oceanic modeling specifically where the time step is re-
stricted mainly by internal or external gravity waves, it is advantageous to use more general algorithms
that introduce FB-type feedback into the terms responsible for wave motions while treating other terms
differently, with special care to ensure that different algorithms can be combined.

2.1 Simple Time Stepping

Consider the one-dimensional (1D) linear hyperbolic equation,

dq 9q
A 2.1
o~ “ox @
and 1D hyperbolic system of equations,
a¢  Ou ou I
a = C% a = Caaj s (22)

where c is phase speed. This is a simple analog for the barotropic mode in the absence of Coriolis
force and topography. In the free-surface equation, barotropic mass fluxes are the product of vertically
averaged velocities and total depth that depends on (; the nonlinear barotropic system (3.46)-(3.47) is
similar to both (2.1) and (2.2) in the sense that ( may be advected by the flow as well as be changed
by its divergence ©. Therefore, our goal is to design an accurate and stable algorithm to advance both
(2.1) and (2.2). We focus on achieving the greatest stability for the system (since the waves usually
propagate faster than the advection speed), while at the same time minimizing dissipation for the
advection equation.

5 Alternatively on might distribute the mismatch in (1.23) throughout the water column, so that the top boundary
condition holds, but at the expense of discrepancy in (1.19), Song and Haidvogel (1994).

6 A similar duality exists in the baroclinic case, where temperature and salinity fields are advected directly
by the flow as well as coupled with the momentum equations via the background stratification. This results in
internal-wave propagation.



A Fourier transform of (2.1)—(2.2) respectively yields

aq . .
8qtk = —1Wg " Gk (2.3)
and R
0 o 2
(;tk = —iwy, - U % = —iwy - Ck » (2.4)

where wy = ck and, in the continuous case, k is a spatial wavenumber. In the case of spatial second-
order finite differences on a staggered grid, (2.2) becomes

06 _ Wiy~ Ui Qujpyy GG

ot Az ot Axr 25

The Fourier transform has the same form as (2.4), except that wy, is replaced with wy, = ck where

. sin (kgﬁ) k. kEAx < 1
2 2/Ax, k=m/Az,

which has its maximum value %max = 2/Az. This means that if a time stepping algorithm for (2.4) has
a stability limit, wA¢? ., it translates into maximum allowed Courant number,
cAt 1

— - W Atmax ) 2.7
Az max 2(*‘} ( )

if the same algorithm is applied to (2.5).

Explicit time-stepping algorithms for a single oscillatory equation (2.3) are well studied (e.g.,
Canuto et al., 1988; Durran, 1991, and Appendix A). The same algorithms can be applied to the
system when the r.h.s. terms for both equations in (2.4) are computed at the same time and then added
to their respective prognostic variables. This results in the same order of accuracy and stability limit
as for the single equation. Let

¢t = F(q", ¢, ) —ia-9(q", ¢, ), (2.8)
where o« = wAt, and
F(q" ") =D B G(q" ") =D g™
m=0 m=0

be an explicit time-stepping algorithm for (2.3). Its amplification factors are the roots of the character-

istic polynomial,
T

PA) =N =3 (B — i ) AT (2.9)
m=0

Similarly, the same algorithm applied to the system (2.4),

n+1 n n—1 n n—1

¢ ¢ 0 —ia ¢ ¢

¢ -7 : R s 7 , . (2.10)



gives
F(L,AL )= —ia- 41,271 L)
=0 (2.11)
—ia- 41,271 L) FA,N )=

or

(F(LA ) = A2 +a2@2 (1,07 = (A S (B — i me)

m=0

- (2.12)
X [ A— Z(ﬂm—l—z’a-vm)/\_m) =0.

m=0

This obviously has the same set of roots as (2.9) as well as their complex conjugates, since the coef-
ficients 3, and 7, are real numbers. Eq. (2.8) is the most general form that covers both single-step
(e.g., LF and AB (AB2, AB3)) and multistage algorithms (e.g., Runge-Kutta (RK2, RK3), and various
predictor-correctors). In the last case, (3,,, and +,,, also depend on «, but they are still real-valued.

Egs. (2.8)-(2.10) are not the most efficient way to advance the system (2.2) since none of them has
an efficiency factor exceeding unity (Appendix A) 7. In contrast, a simple FB step,

gnJrl :C"—Zau"

(2.13)
un+1 —u® —ia - Cn—l—l
retains its stability up to a = 2. The FB algorithm may be rewritten in matrix form as
n+1 n
1 —ix
) _ ‘) (2.14)
U —ia 1 —a? u
leading to characteristic equation
M—(2-a))A+1=0. (2.15)
This has roots
a2 ] a?
)\i:1—?:|:2a 1—1. (2.16)
Obviously |[A+| = 1 as long as the expression under the square root remains positive (i.e., « < 2).

Substitution of the “ideal” value of A\ = e into (2.15) and subsequent expansion in Taylor series for

small « results in a mismatch between the left and right sides. To cancel the leading-order term of this
Oé3

. +i (1+i 2) L .
mismatch, 5, we set A = e “\"22% ) this indicates that the phase approximation has second-order
accuracy. The positions of the roots AL on a complex plane are shown in Fig. 2. As predicted, they
show a positive dispersion.

7 The efficiency factor is defined as the maximum allowed Courant number « divided by the number of com-
putations of the right side per time step.

10



Fig. 2. Roots of the characteristic equation for the FB
algorithm (2.13) on the complex plane. Tickmarks
on the outer side of the unit circle point to the lo-

______ cation of “ideal” amplification factors e~*®, where
o= {—%, —%, —% ) e etc}. Tickmarks on the

inner side indicate the location of the actual roots
(2.16) corresponding to the same values of a. The
mismatch between inner and outer tickmarks indi-
cates the phase error, also illustrated here by the
shaded sectors.

The FB algorithm has been successfully used in many models for the barotropic mode (Bleck and
Smith, 1990; Killworth et al., 1991; Hallberg, 1997). Its efficiency is explained by the fact that (" is
immediately used in the computation of u"*!, while in (2.10) it is used only during the next time step
(or sub-step if a predictor-corrector scheme is used). Compared with LF, FB is twice as efficient, and it
does not have computational modes since both roots correspond to physical waves traveling to the left
and right. Furthermore, because one needs to suppress the computational modes of LF, the efficiency
contrast is even larger.

An difficulty in using FB comes from the fact that the forward step is unconditionally unstable for
(2.1). In the context of a free-surface model, this implies that unless the actual free-surface equation is
linearized,

U=(h+¢u — U=hu, (2.17)

the algorithm is unstable due to the advective features of in the free-surface equation. The lineariza-
tion is undesirable because it destroys the consistency of the 3D continuity equation and eventually
results in loss of conservation or constancy preservation for the tracers. In (2.17) U is the vertically
integrated (barotropic) mass flux; U is the vertically averaged velocity; h is topography; and (h + ()
is the total thickness of the water column. A similar obstacle occurs for the Coriolis force where a
special treatment is required (e.g., , an AB3; an implicit time step; or treating %, U-components using
FB in an alternating sequence, Bleck and Smith, 1990). Additionally, FB and LF are quite inaccurate
in terms of phase error at the second half of their ranges of stability, and neither provides any damping
for motions it cannot accurately represent. Therefore, we seek to generalize the FB algorithm such that
the first sub-step — the update of { —is stable if applied to single oscillation equation (2.3). A secondary
goal is to improve on the phase error of FB.

2.2 Generalized Predictor-Corrector Algorithm

The simplest predictor-corrector algorithm is the second-order RK2 step modified by introducing
terms with coefficients 5 and e to make the predictor sub-step,

11



(M= i " (2.18)
un+1,* —u" — i - (ﬁcn—i-l,* + (1 _ ﬁ)gn>’ (219)

and the corrector sub-step,

Cn+1 — Cn o % X (UITH-L* + u”) (220)
uH g % _ <€<n+1 b (1= et 4 C”) , 2.21)

The case 5 = e = 0 corresponds to the original RK2 that is second-order accurate and is known
to have a weak instability for a hyperbolic problem. The presence of the new terms with 3 and €
makes it similar to FB in the sense that as soon as each prognostic variable is updated, the new values
participate immediately in the update of the partner variable (cf., the synchronous time step (2.10)
where it happens only during the next step).

Algorithm (2.18)-(2.21) can be rewritten in matrix form as a single step,

2 2
n+1 (67 . o B n
11— — — 1 - —
¢\ 2 “ ( 2 ) ¢
N a’e a?  otfe ’
U _ 1— —— 1— — u
“ < 1 ) > 4
which leads to the characteristic equation,
4 4
P()\):)\Q_ (2—a2+a 6€>A+1+Z(1_2ﬂ_6+66):0’ (2.22)

where coefficients 3 and e are yet to be specified. The order of approximation of A = ¢* + & (™),
when a — 0, can be estimated by the order of smallness of P (¢*) = & (a™), however it should be
noted that for all settings of coefficients 5 and e,

82

9 py)

o £0, (2.23)

0
1

a= a=
A= A=

therefore to achieve a certain order of accuracy for A, we must ensure that P (¢'*) is one order smaller.
To chose 3 and € we substitute A\ = €’ into (2.22) and expand it in Taylor series for small «, after

Wthh lt becomes
4 5 6

Setting € = % — 23 eliminates the &(a*)-term, transforming the above into

2
+ia® l316 + ; <B - ;) ] +6(a%) =0. (2.25)

No choice of real-valued 3 can eliminate the &'(a”); however, § = % minimizes it. The resultant

algorithm is third-order accurate for the approximation of A(a) = €' with a dissipative leading-order
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Fig. 3. Roots of the characteristic equation for the
modified RK2 algorithm (2.18)—(2.21) with coeffi-
cients set to achieve the smallest possible truncation
error among all third-order schemes, ¢ = 4/3 — 23
(bottom). This sets 5 = 1/3, € = 2/3, result-
Ing in auyax=2.140932539. As in Fig. 2 tickmarks
on the outer side of the unit circle point to the loca-
tion of “ideal” amplification factors e ~**. These are
connected with the actual roots corresponding to the
same values of .

truncation term. Location of its characteristic roots relatively to the unit circle is shown in Fig. 3,
indicating a much smaller phase error in comparison with the classical FB. Stability of algorithms of
this family is always limited by one of its physical modes leaving the unit circle along the negative real

axis, so substituting A = —1 and € = % — 20 into (2.22), we obtain
4o |2 (6 1)2 t=0 (2.26)
— _ —_ — o = .
36 3 ’

which is to be solved for a. The form of this equation suggests that the largest stability limit is achieved
by setting § = 1/3 — remarkably, the same value, as to minimize the truncation error. The correspond-

Ing max = 1/6 (3 — \/5) ~ 2.140932539 exceeds the limit of all algorithms of similar computational

costs (i.e. predictor-corrector type) shown in Fig. 20, Appendix A, but is quite modest relatively to FB,
given that twice-as many computations required. Due to the fact that this algorithm does not require
any knowledge of past time steps, it is a good choice for the beginning time step since it cures the
usual problem of accuracy loss associated with a forward Euler step.

Another commonly used algorithm is the Leap-Frog—Trapezoidal Rule (LF-TR) predictor-corrector
step. Following the same methodology, we introduce FB-feedback (- and e-terms) between the equa-
tions during both the predictor stage,

Cn+1,* — Cnfl — % - u" (227)
W =0 2ia - [(1-268) ¢+ B (¢ ¢ (2.28)

and the corrector stage,

=" — o {(; — ’y) THRE (; + 27) u” — vunl} (2.29)
wt=—ia- {(5-9) [+ =g + (G 2) =t (230)

When 8 = € = v = 0, this is equivalent to the familiar LF-TR algorithm with the stability limit
Oax = V2. f =€ =0and~y = 1/12 result in LF-AM3, which is third-order accurate and has the
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slightly larger stability limit of 1.587 (Appendix A). The presence of S-terms in the LF-step (2.27)—
(2.28) used alone (without corrector) is known sometimes as Shuman’s averaging (Brown Jr. and
Campana, 1978). As follows from their analysis, 5-terms do not cause any numerical damping (despite
the obvious visual similarity with Asselin filter), but rather change phase behavior of the algorithm.
The meaningful range of § is 0 < [ < 1/4, with the maximum stability achieved at the upper end.
And, similarly to LF, Shuman’s algorithm possesses non-decaying computational modes.

The algorithm (2.27)—(2.30) may be rewritten in matrix form,

n+1 n n—1
A —iB E —iF
¢ = ¢ + ¢ (2.31)
U —iC D U —iG H U
where
! 1 5 (1

o=alderec(b-a) i (3-) a-20)]
D:1—2a2(;—7) {1—6[2—7+2a2 (;—v)ﬁl}
et (31) -~ (3-) G-

G:a{;_m_g(;_glumz(;_)5]} Poaflon).

This leads to the characteristic equation,
N —(A+D)\+AD+BC—-H—-E+(AH+ED+BG+FO)\ '+ (EH+FG)\? =0, (2.32)
which we rewrite as

22 4 (—2+a2p’+a4p"> AN+ 1 +042q’+0z4q”—|— (azrl —1—0447"”) ANl ra?d 2 =0 (2.33)
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to facilitate further analysis. Unlike A, B, ..., H above, the new coefficients p/, p”, ..., s’ in (2.33),

O] R b
-3 (o)

r=1G-) ) 0-20-0- ()

<affe) b-n-5(-)] -4

GG - G e

do not depend on «. (It should be noted that in the derivation above products BG and E'D contain
0 (a®) terms which cancel each other, resulting in no appearance of a r”’a® term. Similar cancellation
occurs between the & (a*) terms in £H and F'G, hence there is no s”a* in (2.33).)

Substitution of A = €' into (2.33) and subsequent Taylor series expansion for powers of « yields,

AW +qd+r+s—1)+ia® (p —r —28 1)

7 / /
+a/4 (—p+p//+q/,—T+T,/—28/>

12 2 2 .
1 p/ T/ 4 (' )
) I /! o " !
+ia (4 6+p—|—6 r—|—35>
aﬁ 31 p, /! T, ! 4/
- == = - _ O (o =0
+2<180+12 Pty ) tele)

where it can be immediately verified that, after the substitution of p’,p”, ..., s, the & (o) and & (o)
terms identically vanish for any choice of values of v, /3, and ¢, while the & (a4) term becomes

—at (5-27). (2.35)

This indicates that setting v = 1/12 ensures third-order accuracy, regardless of the settings of 3 and e.

Once v = 1/12is chosen, p/, p”, ..., s’ become

5 ¢ 25
2 (1-85_°% n_ _ =2
P 3< 8 3) 367
11 10 35 2% /1 9 ¢
r_ 1t Y 09 n_ 2 (L _Za &
g o T3/t 3¢ 18(2 50 2+ﬁ6)
41 5 5 5 5
/ /i
—-_25_ =2 °g(1-2
r=5737 ¢ 65( 66)
1.5
= — —¢€.
9 36
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After substituting these into (2.34), we derive that 5 and e must satisfy

7 €

— - 2.36
p 30 6 ( )
in order to eliminate the &(a®) term, and
1 11
=T 48+ 5Be =0 (2.37)

to eliminate &(a®). Satisfying the first only or both of these conditions result respectively in the fourth-
and fifth-order accuracy approximation for the phase multiplier. Using (2.36) to exclude (3 from (2.37),
one can derive a single quadratic equation for e. It does not have a real-valued solution, so one can only
minimize the error in (2.37) by choosing ¢ = 11/20 and § = 17/120 (hence (2.36) is satisfied). This
results in fourth-order accuracy with the minimum possible truncation error (among all possible 3, v,
and €) and in the stability limit a,,,x = 1.851640, (Fig. 4). Remarkably, this setting of (3, € in not far
away from the largest stability limit among the fourth-order schemes with 3 and e related via (2.36),
(Fig. 5, top).

Fig. 4. Roots of the characteristic polynomial for al-
gorithm (2.27)—(2.30) with v = 1/12, § = 17/120,
e = 11/20, corresponding to the minimal possible
truncation error among all settings of -y, 3, and e. Its
stability limit is auyax=1.851640.

Thus far, we have explored the possibility of achieving the best possible accuracy. For the barotropic
mode in a split-explicit model, the design goals are different: the truncation error is of lesser priority,
but it is desirable that the algorithm have a large stability limit and be dissipative for high frequencies.
Arguably, the same is true for the baroclinic mode, but to a lesser extent, because in most cases ac-
curate representation of the phase speed of internal waves is not the main objective but they impose
a CFL limitation onto the time step. For the next step in our exploration we treat 5 and e as inde-
pendent free parameters and produce a two-dimensional map of the stability limit cuax(€, ), while
still maintaining third-order accuracy, v = 1/12 (Fig. 5, bottom). There are two maxima of stability
at (e, 5)=(0.83,0.126) and (0.39, 0.044). Their characteristic roots are shown on Fig. 6. Though only
formally third-order accurate, the algorithm shown on the upper panel exhibits very small phase error
— virtually indistinguishable from that in Fig. 4 — and, it has remarkably small numerical dissipa-
tion for almost the whole of its stability range. This is not surprising, since its (e, 3) are not far away
from the minimum of truncation error. The primary maximum on Fig. 5, lower panel, is located on
the edge asymptotic instability, which explains its small dissipation: the stability for the algorithm in
the vicinity of this point is restricted by one of the computational modes leaving the unit circle along
the negative direction of the real axis, and the limit increases when increasing both e and 3. However,
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BT y=1/12

gl

Ml

Fig. 5. Left: Stability limit cyyax as a function of e for algorithm (2.27)—(2.30) with v = 1/12 for two different
settings of 3: (solid) along the line of vanishing & (a5) term (2.36) and (dashed) 5 = 0. Right: ay,.x as
function of ¢, 5 with fixed 7 = 1/12. Contours below o = 1.75 are shown in dashed lines. The empty area
in the upper-right corner corresponds to schemes with an asymptotic instability of the physical modes. Note
the appearance of two maxima of stability, at (e, 5)=(0.83,0.126) just on the edge of asymptotic instability,
and (0.39,0.044). The straight dashed line approximately parallel to the edge corresponds to a zero & (a5)
truncation term. The asterisk * and cross + on this line denote locations of the minimal truncation error and
maximum stability limit among the forth-order algorithms.

v =1/12, B=0.126, ¢=0.83,  (ma=1.958537 = 1/12, 5=0.044, =039, =] 908525

Fig. 6. Characteristic roots of algorithms corresponding to the primary (left) and secondary (right) maxima of
stability limit in Fig. 5.

after crossing the edge, the physical modes became weakly (asymptotically) unstable due to changes in
higher-order truncation terms (recall that regardless of (3, € all these schemes are at least third-order ac-
curate). Consequently, the location right on the edge on (3, €)-plane corresponds to a delicate balance
in these terms, resulting in a overall extremely low and delayed dissipation. In contrast, the algorithm
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0.9

0.85

0.8

0.20

0.16

v=0,8=0.166,€ = 0.84, aupax = 2.4114

v=-0.025, 5=0.130, €=0.84,  ;ax=2.6078 A
v=-0.05, 5=0.105, €=0.84,  nx=2.8010

Fig. 7. Top left: maximum achievable stability limits cy,ax as function of ~ for the algorithm (2.27)-(2.30)
with 3 (plotted in long-dashed line) and e (short dashes) optimized for stability range for each value of ~. The
associated ranges for [3, € are shown on the right axis. Note that with the departure from v = 1/12 (hence loss
of third-order accuracy), it is possible to expand significantly the stability range at the expense of accuracy. The
three remaining panels show the location of the roots of the characteristic polynomials for three sets of (v, 3, €)
taken from the curves on the upper left.

corresponding to the secondary maximum possesses no special properties, and its behavior in phase
error and dissipation rate is typical for a common third-order accurate scheme (cf., Fig. 3 or LF-AM3
step on Fig. 20, Appendix A).

Giving up third-order accuracy allows us to threat v as a free parameter and makes it possible
to achieve a much greater stability limit. To do so, for each v from the range of —0.07 < v <
1/12 we scan the (f3, €)-plane in a manner similar to Fig. 5, bottom, to find values that produce the
largest ay,a.x. The outcome is summarized in the top left panel Fig. 7. The other three panels show
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Fig. 8. Geometrical interpretation of reformulated LF-AM3 predictor—
2 corrector step (2.38)—(2.41) with 8 = € = 0. The initial data at n — 1
j T and n is linearly interpolated to n — 1/2 + 2~y (bold dashed arrows) and
~ . advanced to n + 1/2 using r.h.s. at n (light gray curved arrow, predic-
n-1 21/, n n+t/, n+1 tor). The resultant values participate only in the computation of r.h.s. at
n—+1/2 to advance prognostic variables from n to n + 1 (dark gray arrow,
corrector), and they do not need to be stored from one time step to the
other.

examples of algorithms from this sequence. When ~ decreases and then becomes negative, the arms
corresponding to the physical mode contract, allowing a larger stability limit. At the same time, the
roots corresponding to the computational mode became closer to the unit circle, and finally touch it at
~v = —0.055. Although this shows the possibility of a dramatic increase of ., up to 2.8, algorithms
with negative v do not behave well in practice because of poor damping of the computational mode.
This leads to a compromise choice of 4 = 0, resulting in ., = 2.41 that is still 70% more efficient
than the standard LF-TR.

As the final remark, we note that the system (2.27)—(2.30) may be reformulated as

¢ = (; — 27> ¢+ (; + 27> ¢" —ia (1 —2y)u" (2.38)

Y = (; - 2fy> u" (; + 27) u" —ia (1 —27) [Q” + ﬁzg%lh 1__3g;+ Cn_l] , (2.39)
followed by

=" — -t (2.40)

W =" — i {(1 —e) ("t K; — 7> ¢t (; + 27) " — 7{"‘1] } , (2.41)

after which the provisional values ¢("*"/* and u™*"/* are discarded. This algorithm can be interpreted as
a combination of linear interpolation and two LF-like steps (Fig. 8), and in the case of a linear system
it gives the same result as the original version (2.27)—(2.30). The key distinction between the two
is that a temporal interpolation of the complete r.h.s. is replaced with an interpolation of prognostic
variables, with subsequent computation of right-side terms from the interpolated values; this leads
to a slightly different result in the nonlinear case, but consistent within second-order accuracy. The
practical advantage of the alternative form (2.38)—(2.41) is that it leads to a more efficient code because
it eliminates the need to store time tendencies for the prognostic variables from one time step to the
next.

2.3 Generalized Forward-Backward Algorithm

We first consider an AB2-like two-point extrapolation of r.h.s for (-equation in combination with a
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three-point AM3-like interpolation for pressure gradient term in u-equation,

("=t —ia[(1+ Bt — fun ]

(2.42)
u" =" —da (1 — 7y — )"+ (M + e
where 3, v, and € are not specified yet. The corresponding characteristic equation is
MN-R-a?1—y—e)A+]A+1—-a?(B—v—28y— Be
[ (1=v=¢(1+p5) (B =7 =28y - Be) (2.43)

+a? (e+ Be— By) A —a?Bed 2 =0.

As it is done previously, (2.22)—(2.24) and the discussion there, we substitute A = ¢ into (2.43) and
Taylor-expand for small «,

(5—7—2e)ia3+<1—ﬁ+v+57+2ﬁ6>0¢4

12 2 2 (2.44)
1 B8 v € . .

(mogrgrgm)ereo(@) =0,

which leads to a set of conditions for coefficients 3, v, and e. To ensure that the numerical algorithm
is at least second-order accurate, one must respect the relation 5 = v + 2¢, which puts constraints of
time-placement of r.h.s. of the two equations of (2.42): if the r.h.s. for (-equation is time centered at
t, + (/2 — 0) At, then r.h.s. for u-equation must be centered at ¢,, + (/2 + §) At with the same offset
0. This property is respected for all algorithms discussed here, including the classical FB (2.13), which
corresponds to 3 = v = ¢ = 0. To simultaneously cancel out & (a?) and & (o) terms in (2.44), one

must set
1

7—5—2ﬁ2—é and e:ﬁ2+ﬁ, (2.45)
where (3 can still be arbitrary, giving raise to a monoparametric family of third-order accurate schemes ® .
Fig. 9, left, shows characteristic roots for the S=0 algorithm, which is the simplest of this kind. Despite
the similarity with the classical FB (shown in Fig. 2), the new algorithm has very different properties:
its leading-order truncation term is dissipation-dominant, and the step multiplier is approximated with
third-order accuracy. Detailed examination of properties of algorithms of this family within the range
of 0 < 8 < 1/2 reveals that their stability is always restricted by one of the computational modes leav-
ing the unit circle in along the negative direction of real axis. Substituting (2.45) into (2.43), setting
A = —1, and solving it for « yields

amaxzﬂ/\/wgwﬂ?’, (2.46)

which indicates that the stability range decreases with increase of /3, if one wishes to maintain third-
order accuracy.

8 To derive these relationships we first exclude € from a*-term via substitution ¢ = (3 — 7)/2, and then solve
for ~ via 3.
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B=0,v=—1/6, e=1/12, amax = V3 B = 0.3737076, ~,evia(2.45),  Oumax = V2

Fig. 9. Left: Characteristic roots for algorithm (2.42), with 5 = 0, but respecting both conditions (2.45). In
comparison with the classical FB, Fig. 2, it is third-order accurate and has much smaller phase error. Its stability
limit is apax = V/3, which is only 12% less than that of FB; right: Same as on the left, but 8 = 0.3737076,
which satisfies (2.47), in addition to (2.45). This results in a fourth-order accurate scheme, the only one within
this family.

Fig. 10. Characteristic roots for algorithm (2.42),
with 5 = 1/2, v = —1/6, € = 1/3, which cor-
responds to AB2 step for (-equation; 7, e are set
via (2.45). amax = 3/2 =~ 1.2247 limited by
computational mode. In addition this algorithm has
very weak asymptotic instability of physical modes,
|A| = 1.0015 at « = +0.58.

— - = - p=0. (2.47)

This has a unique solution 5=0.3737076. Correspondingly, v = —0.0722738 and ¢=0.2229907, which
yields a fourth-order accurate algorithm, Fig. 9, right. As expected, it has small phase error, and in
addition to that smaller dissipation relatively to one on the left. Detailed examinations of the algorithms
from this family in the vicinity of 5=0.3737076 reveals that the small dissipation is achieved by a
delicate cancellation of high-order truncation terms, which makes algorithms with /3 exceeding this
value be asymptotically unstable (cf. 5 = 1/2, Fig. 10), although the instability is extremely weak: the
maximum amplitude |\| = 1.0015 at o &~ $0.58.

For practical reasons it is advantageous to set § = 1/2, hence to use AB2 time step for (-equation
(2.42), because it naturally combines with the computation of other terms in shallow-water equations
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(Coriolis and advection). Although AB?2 is still asymptotically unstable for terms of purely hyperbolic
nature, the instability is much weaker than for forward Euler step, or 5 < 1/2-steps. To explore this
possibility, we fix § = 1/2, and now treat ¢ as a free parameter, but still respecting the property
B —~ — 2¢ = 0 to cancel & (o) term in (2.44). Substitution of this into (2.43) transforms it into

| 1 !
A2 4 [2 _ (;6 n i)] At 1+ a? (2 _ ;e) _ (4 _ 26) N - e P20, (248)

where we are interested in properties of algorithms in the vicinity of ¢ = 1/3. Once again, stability is
limited by one of the computational modes leaving the unit circle along negative real axis. Substituting
A = —1, we find that it occurs at ayay = 1/ V/2¢, i.e., it decreases with e. On the other hand, setting
€ < 1/3 results in asymptotic instability of the physical modes. Combination of these conditions
defines ¢ = 1/3 as yielding the largest possible stability range among all second-order accurate settings
with § = 1/2. Overall it is more accurate than the classical FB: Fig. 10 vs. Fig. 2, and illustrates
the principle that the order of accuracy of representing the phase speed and rate of dissipation of
the propagating wave (ideally should none) can be made greater than the formal order accuracy of
discretization of individual equations — the third and the second orders respectively in this case.
However, its largest possible stability limit o = \/% ~ 1.2247 is significantly less than 2 of FB.
In addition to that, this algorithm still has a weak asymptotic instability of physical modes.

The next possibility is to use an AB3- and AM4-like time step for the (- and u-equations,

=" i Kg + 5) u" — (; + 25) w4 ful

"t =" — i [5@”“ +(1=8—y—e)("+¢" + EC"_Q] )

(2.49)

Obviously it differs from (2.42) by the presence of 3- and e-terms associated with the use of prognostic
variables at n — 2 step. Setting 5 = 5/12 corresponds to an AB3 step for (. We will show that this
choice is not optimal for the widest stability range; so for now [ is viewed as an adjustable parameter.

Algorithm (2.49) has the characteristic equation,

3 3 3 3
A — {2—a2<2+ﬁ>(5})\+1—a2 |:—2+2(5+2’Y+26—5<1—35—’7—6>}

T o . a5 o -1 2{ s a7 3} “2(2.50)
a [2 52 2+5(2 36 — 3y —2¢) | A +a? |B(1 -6 - 37) 55 A
+a? [5(7—26)—;} A3+ a?Bed ™ =0.

Similarly to (2.44), we substitute A = e’® and expand (2.50) in a Taylor series,

1
+ﬁoo¢6 [—77 + 600 — 180 — 480¢ + 603 (7 — 66 + 18 + 486)] +6(a") =0.
(2.51)
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All terms of orders &(1), O(ic) and &) cancel out for any choice of the coefficients 3, 7, 4, and e.
To eliminate &'(a3) terms in (2.51) we must satisfy

1
(5:§+’)/+26, (2.52)
which in essence centers the r.h.s. terms of u-equation (2.49) at n+ 1/2. This condition will always be
respected in the subsequent analysis in this section. Substituting (2.52) into (2.51) turns it into

1 1 1
a4(—5—’y—36)+ia5<+6—’y—6>
3 2 \6 (2.53)
47 1 1 1
6|20 2, = - G(a’) =0.
+a { 0 67 2e+5(3+7+3e)}+ (') =0

At first we explore the possibility to achieve the highest order of accuracy. To eliminate both &'(a?)
and O (o”) terms in (2.53), we need to satisfy
! 2 d g ! (2.54)
=- - an = — — .
TEyT 12 °
which automatically sets 6 = 3/4 for any e. In principle e can be chosen from the condition of cancel-
lation of &(a®) terms in (2.53) which, after substitution of (2.54), becomes

7 2
6 2 7\ _

—a (m+36+e>+ﬁ(a)_o. (2.55)

This leads to

1 /190
=——3x —. 2.56

T3 60 (2-56)
As expected the resultant algorithm has extremely small phase and amplitude errors (Fig. 11, where we
have chosen the “+” sign in (2.56) since the “—" results in a much smaller stability limit). But it is not
attractive overall because of its modest stability limit of a,,x ~ 1 (limited by one of the computational
modes leaving unit circle at A = —1) and it also has asymptotic instability of the physical modes. Here

it should be noted that unlike for the quartic equation (2.43), there is no general analytical method
for finding roots of a fifth- or sixth-order polynomial. However, the roots of (2.50) corresponding to
physical modes are always isolated and can be found using an iterative Newton method. Once two
physical roots are known, the power of the polynomial is reduced by two, and the remaining roots are
found using conventional Cardano or Ferrari solutions.

Abandoning the cancellation of & (a®) terms while retaining both conditions in (2.54) yields
asymptotically stable algorithms as long as € > —0.03655 (corresponding to av,.x = 1.187). A further
increase of ¢ results in an increase of the stability range until it reaches its maximum at o, = 1.727
when e = 0.083; at this point the computational mode touches the unit circle (Fig. 12). This algorithm
formally maintains fourth-order accuracy since it eliminates both & (o) and & (o) terms in (2.53).

Further relaxing the order of accuracy by abandoning the cancellation of & (a°) terms makes two
parameters available for tuning while formally maintaining third-order accuracy. Thus we choose

1
725_5_367 (2.57)
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Fig. 11. Characteristic roots for algorithm (2.49)
with coefficients selected to achieve the largest pos-
sible order of accuracy. It has asymptotic instabil-
ity of the physical modes, (reaching |A| = 1.014 at
a ~ 1) and amax = 1.014512 limited by the compu-
tational mode leaving the unit circle at A = —1.

Fig. 12. ¢ = 0.083, while maintaining (2.54) and
(2.52). This yields the largest possible stability range
Qmax = 1.727 among the e-family of fourth-order
accurate schemes. The computational modes “’touch”
the unit circle at the place where they meet at
A = —1. It should be pointed out that despite the
visual appearance, there are actually four computa-
tional modes here: two of them depart from the ori-
gin heading to the positive direction of real access,
hence they are seen as a single line.

and treat [ and € as adjustable parameters.

An obvious choice of (e = 0, f = 5/12) resultsiny = —1/12 and 6 = 5/12 that can be identified as
the AB3 coefficients for ( and AM3 coefficients for u. This has third-order accuracy for each equation
in (2.49) taken separately. Its stability limit is qu. = 1.0039, with the instability of the physical mode
occurring first (Fig. 13, top left).

In this procedure we select (3 first, then for each beta we choose an € to provide desirable properties
of the resultant algorithm. The meaningful range for 5 is

kl

<p<
=B8=15,

(2.58)

=

with 3 = 0 correspond to AB2 and § = 5/12 to AB3 time steps for the { equation. Because of
the advective properties of the nonlinear free-surface and tracer equations, it is also undesirable to
choose § < 1/6 because of the weak instability of AB2 (Appendix A, Fig. 22). Setting 5 = 0.281105
corresponds to the best stability range for the AB2—AB3 family.

A two-parameter optimization for the maximum stability range on the [3-¢ plane results in § =
0.232 and € = 0.00525, hence a.x = 1.939 (Fig. 13, top right). This is only insignificantly smaller
than for the classical FB algorithm (2.13), but the order of accuracy is now raised to third, and the
phase lead of FB is eliminated for small values of «. Still, the new algorithm has the same drawback as
the classical FB: the second half of its stability range (approx. a > 7/3) is too inaccurate (phase error)
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AB3-AM3: 8 = 3.7 = -1 =0, £=0.232, €=0.00525, v = L — 3 — 3¢
Cmax=1.0038. Omax=1.939.

pB=0.21, e=0.0115 , ~ = % — B — 3¢, £=0.281105, €=0.013, ~v=0.0880,

Omax=1.875. Omax=1.7802.

Fig. 13. Complex roots for generalized AB3-AM3 FB algorithms with different settings of coefficients. Although
the choice with v # 1/12 no longer maintains the third-order accuracy of the AM3 step for the (-equation taken
alone, the phase speed of the wave system can still be approximated with third-order accuracy.

and does not provide sufficient damping (roots for physical modes touch the unit circle at o« ~ +27/3).
A slightly modified choice of (5 = 0.21, e = 0.0115) corrects the problem at the expense of a minor
reduction of the stability range, a,.x = 1.875 while maintaining third order accuracy (Fig. 13, bottom
left).

It may be advantageous to choose § = 0.281105 (the largest possible stability limit among all
AB2-AB3 family algorithms for a single equation; Appendix A) that leads to a simplification of the
algorithm because separate coefficients for the advection terms in the nonlinear free-surface and tracer
equations and for the pressure gradient in the momentum equations can be avoided. However, it is
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then no longer possible to maintain (2.57) and achieve a stability range comparable to 1.8, as in the
two previous algorithms. A compromise choice of (3 = 0.281105, v = 0.088, ¢ = 0.013) results in a
slightly more dissipative algorithm (Fig. 13, bottom right). In a split-explicit model the fastest gravity
waves are filtered out anyway, so this is the algorithm of choice for the barotropic mode.

3 Barotropic Mode

In this section we address specific aspects of the barotropic mode as part of a coupled barotropic-
baroclinic system.

3.1 Barotropic Mode for a Stratified Ocean

In a split-explicit method a la Blumberg and Mellor (1987) or Killworth et al. (1991), after the
vertical integration of 3D momentum equations is performed, the Shallow Water Equation (SWE)
pressure gradient (computed using the same free surface, (, and a constant reference density, pg) is
added and subtracted to it, resulting in

oDu
W‘l‘... :—gDVxC+{gDVJ;C+ﬁ}. (31)
g is acceleration of gravity; D = h+( is total depth; @ is depth-averaged velocity (hence Du barotropic
mass flux); V,( is a shorthand for 9 /0x; and
¢
1 fOP
P LN (3.2)
po’, Ox

is the vertically integrated pressure gradient. The latter is a functional of the topography, free-surface
gradient, and free surface itself, as well as the vertical distribution of density and its gradient,

F =F [Vl ¢, Vup(2), p(2)] - (3.3)

The term in curly brackets in (3.1) is interpreted as barotropic-baroclinic mode coupling. It is kept
’frozen” during the barotropic time stepping while the first term on the right side — the SWE-like
term — is evolving in barotropic time.

The disadvantage of this approach is that after the barotropic time stepping is complete and the
new free-surface field is substituted into the full baroclinic pressure gradient, its vertical integral will
no longer be equal to the sum of the SWE-like pressure gradient (computed using new free surface)
and the original coupling term (still based on the old free surface),

—gDV,¢" + {gDVzCJrg" VaC, ¢, Vip(2), p(Z)]} # F [V,  Vap(z), p(2)] . (34

(' is the free-surface elevation after the sequence of barotropic time steps corresponding to one baro-
clinic time step. This type of discrepancy is usually known as a mode-splitting error.

The usual argument for the use of (3.1) is based on the fact that the difference is usually very small
(since model density p(z,y, z) = po + p'(x,y, z) is always close to py). However, the primary concern
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here is that it affects the stability of the split-explicit model. The error (3.4) is discovered during the
next baroclinic time step, and it plays the role of a disturbance causing the vertically integrated pressure
gradient to be not in equilibrium with the barotropic mass flux. The barotropic time stepping drives the
barotropic part toward an equilibrium, but it is disturbed again due to the redefinition of the vertically
integrated baroclinic pressure gradient.

Higdon and Bennett (1996), and later Higdon and de Szoeke (1997), analyzed the stability of a
coupled linearized system in an isopycnic vertical coordinate and show that, if non-dissipative time
stepping algorithms (LF or FB) are used for both modes, the resultant model is unavoidably unstable ? .
As a remedy they proposed an alternative definition of the barotropic mode in an isopycnic model
that eliminates the mode splitting error, resulting in an effectively uncoupled (in linearized system)
barotropic mode.

One may replace both ¢ DV,( terms in (3.1) with

0F 0F

z , 3.5
5 (%0) ‘ )

where, for the purpose of partial differentiation, ¢ and V,( are treated as independent variables and
derivatives exist in variational sense. After this replacement, (3.4) becomes

0F , 0.F o 1L
7 V€, €, ---]+m% (¢ —C)+8T(C -~ F [Vl ¢ (3.6)

i.e., the left side formally appears as Taylor-series expansion of the right side. This removes the dom-
inant portion of the splitting error, and it also implies linearization with respect to the increment in ¢
between baroclinic time steps (but it does not require smallness (/h << 1).

We now show that without significant increase of the computational cost, one can take into account
the non-uniform density field in the barotropic mode, resulting in a more accurate mode splitting
method that is free of the shortcoming mentioned above and is suitable for use in a terrain-following
model. Consider a fluid element bounded horizontally by two vertical lines corresponding to the lo-
cations of (; and (;,; and vertically by the free surface and bottom (Fig. 14, left). The horizontal
component of the pressure-gradient force acting on this element is calculated by the integration of the
pressure along the contour surrounding the fluid element (c¢f., Lin, 1997):

G Git1 Tit1 8h(a7)
E+1/2 = / P(QT“ Z) dz — / P(xi-i-la Z) dz _/ P (I’, —h(I)) - or dx (3 7)
_hi —hi+1 xT; .

S WA

where we have neglected the effect of atmospheric pressure applied to the slopping surface of the

9 This is evident from Fig. 3.1 from Higdon and de Szoeke (1997), and the associated discussion. In the case
where the roots corresponding to the barotropic mode receive a phase increment during one baroclinic time
step equal to the baroclinic roots + an integer times 27, the barotropic mode is aliased to be in phase with the
baroclinic mode. So any 2-way coupling between the modes (i.e., a perturbation due to the mode-splitting error)
causes at least one root from each pair to go outside the unit circle.

27



= p(z)
Fis1
— Fig. 14. Left: Fluid element showing placement of
Hita Okt B different terms in (3.7). Right: Reconstruction of the
S H, Pk vertical density profile by parabolic segments (3.16):
_ for each k = 1,2,..., N, p, are density averaged
Hy Pr—1 over grid boxes Hy, of a vertically non-uniform grid.
A The shaded area is the same as the area of the diago-
nally hatched rectangle.

ocean. In (3.7) P(z, z) is the hydrostatic pressure,

Gi
P(z,z) = g/p(ac, 2y dz . (3.8)

Assuming a finite-volume approach to approximate (3.8) and eventually (3.7) at the discrete level, the
barotropic pressure-gradient force at the velocity point i + 1/2 is a function of the density in the vertical
columns ¢ and 7 + 1, as well as the free-surface elevations (;, (;.1. Hence,

Fipyy=F (Cz’+17 Pit1,15 -+ Pit1,Ns Gis Pits "'7pi,N) ) (3.9)

where the structure of the functional .% depends upon the discretization details of the baroclinic pres-
sure gradient, typically involving nonlinear interaction of ¢, and p,  fields,

PF
——F— #0 (3.10)
0C O

where i’ ;7" = 4,7 4 1 in arbitrary combination and & = 1, ..., N. Consequently, one cannot split .#
into

F # F1 (Ga1, G) + P (pz’—&-l,la s Pig1,N Pits "~7pi,N) ; (3.11)
where %, does not depend on (.

In the mode splitting technique proposed here, we assume that ¢ is changing during the barotropic
time stepping while the density values, {ﬁa k} remain frozen and change only during the baroclinic
time step. However, the nonlinear relation (3.9) holds in barotropic time. Of course, it would be pro-
hibitively inefficient to recompute .% in (3.9) at every barotropic step by vertical integration of the
whole 3D pressure gradient. Instead, in each vertical column, once at every baroclinic time step before
the barotropic mode calculation begins, we compute a vertically averaged density,

1 ¢(=)
pa) =3 [ ez, (3.12)
h(z)
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and a vertically averaged dynamical density,

1 C(@) [ (=)
p(z) = D22 / p(x,2)dz" 3 dz, (3.13)
—h(x) z

where D = D(z) = ((z) + h(x) is the total thickness of the water column. Changing the integration
variable to o = (z — () /D yields

ple) = [ pla,o)de, p(a) =2 / { / p(m,a'>da'} dor,

g

which implies that p and p* are actually independent from ( as long as density profile p = p(o) stays
the same. Expressed in terms of p and p*, (3.7) becomes

Tit1

* D2 * D2 oh
FZ‘+1/2 :g{p’L 1 _ p’L+1 ’L+1 +/ pD } . (314)

2 2 P

This is a finite-volume discretization of the pressure-gradient term in the vertically integrated momen-

tum equation,
0 B 1 o0 ([ p*D? NG

1 o¢  Dop* oh
- _ D * 7S - x* =\ 77 )
pog {p 8x+ 2 Oz + (" =7) 8x}
If p* = p = py, the right side of (3.15) reverts back to the familiar SWE pressure-gradient term of (3.1),
but in the general case non-uniformity of p and p* leads to the appearance of two extra terms that are

baroclinic in nature. The problem therefore reduces to the search for a suitable method of calculation
of p and p* from the 3D density field {ﬁi, k} and an appropriate discretization of (3.14)—(3.15).

(3.15)

To address the first issue, consider, e.g., a piecewise-parabolic reconstruction of the vertical density
profile from a set of discrete values {ﬁk |k=1,..,.N } that is interpreted as a set of grid-box averages

within each vertical vertical grid box Hj *°, (Fig. 14),

12

N — Pk+1/2 — PE—1/2 (pk+1/2 + Pr-12  _ ) z 1
=g+ D2 TPk (PR TR G N S 3.16

Here the local vertical coordinate 2’ spans within the grid box Hj, so that —% <2 < —i—%, and

Prtis = P (i%) are the density values at at the upper and lower grid box interfaces, z = i%
computed via an appropriate reconstruction algorithm. Regardless of the details of computing pj41/,

10 For simplicity of notation, we dropped the horizontal index 4 in (3.16) and throughout the following part of this
section. We use index k exclusively for the vertical coordinate while ¢ and j refer to the horizontal coordinates.
We will allow indices to disappear and reappear. In the particular context where k is the only present, all related
operations are being performed within the vertical column independently from other columns.
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(3.16) guarantees that
+Hy /2

. p(2) d2 = p, (3.17)
—Hy/2
and leads to the discretization of vertically averaged density,

N N
D= PixHix |/ D Hiy. (3.18)
k=1 k=1

To compute p* we note from (3.16)—(3.17) that the hydrostatic pressure in (3.7) can be expressed
as a continuous function within each grid box Hy,

Hy /2 2
1 z — Dp— 1 72
P(¢) = Pryy+ g / p(2") d2" = Preyapo + ng{Pk [ - ] + Phtijs — Phja [ ]

J 2 Hy, 2 4 H?
3
Prtifs + Pr—vps > Z 2
o (PRl T FR=12 _
" ( 2 Pr [4Hk ml(
(3.19)
where P 1/, is the pressure at a depth corresponding to the interface between Hj, and Hj, 1,
N
PN+1/2 =0 and Pk,1/2 =g Z P Hir s k=1,...,N. (3.20)
K=k

It can be verified from (3.19) that P(—H}/2) = Pj_., and that the pressure distribution and its
first derivative are continuous across the grid box interfaces. (In the finite-volume approach, (3.20) is
understood to be exact rather than a discrete approximation to the hydrostatic equation.)

Subsequent integration of (3.19)—(3.20) leads to

gi= [P dz=3 [ R()d =3 HPu, (3.21)

where

Pix = Py + Y29 H, (Pz‘,k +

Pik+1/2 — ,Oz‘,k—l/2> _ P gy1pp + Py v gHiy Pik+1/2 — Pik—1/2

6 2 12
(3.22)

is pressure averaged over H; ;. This further leads to the definition of vertically averaged dynamical
density as

* 1 N N _ 1 _ Pik+1/2 — Pik—1/2
pi = ﬁ . Z H’Z,k Z pi’k/HiJg/ -+ 5 i,k p,L"k + 6 . (323)
% <Z Hi,k) k=1 k'=k+1
k=1
Using the identity,

DN | —

N 2
< H'Z,k) )
k=1

N N 1
Y Hip|| > Hiw |+ S i
k/

k=1 =k+1
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one can interpret (3.23) as just a weighted average. Furthermore, since

N
k=1
(3.21) may be expressed as
1
S = 5907 D} (3.25)

This is consistent with (3.13)—(3.14), as expected.

To approximate .%; ,1/,, we assume that D, p, and h are linear functions of the horizontal coordinate
between points x; and x;1:

Ti+1

AR A A Tip1 — 2 ' —x;\ hiz1 — R
Swn=9 | (Pilx“wm) <Dz‘2\x+Dz‘+l A ) A

Ty

(3.26)
(ﬁz‘ + E‘H) (D; + Diy1) + p;Di + 0i 1 Diga

= hisi = by
g 6 ( +1 )

After some algebra that repeats the transition from the first to the second line of (3.15) for the discrete
formulation, (3.25) and (3.26) yield

Di+ Dy ) pi + P D} + D22+1 (p* * )

Fiyp=9 B B (G —Gy1) +yg 4 i — Pit1
D;+ Dy (07 = 7)) + (Pl — i
+g . +1 g +1 +1) (s — his) (3.27)
(pi—i-l - ﬁz‘) (Dit1 — Di) (hip1 — hi)
+g .

12

The terms on the first, second, and third lines are obviously similar to the first, the second, and the
third terms on the second line in (3.15), respectively. The term on the fourth line in (3.27) is on the
order of & ((Aa:)3) while all three preceding terms are & (Ax), so the former is negligible relative to
the others as Az — 0.

In the case of (; = (;11 = 0, hence D; = h; and D; 1 = h;11, (3.27) becomes

© _ e R Nk
Fivy, = 9007 = i) 5 9 (051 = Pia) 5 +9(p = Pin1)

h? + hihiv1 + h?+1

5 (3.28)

Unlike the SWE pressure gradient, this does not vanish unless there is a special balance between the
densities pj, p;. 1, p;» Pit1» and the unperturbed thicknesses, h; and h;,. For example, if density is a

linear function of depth, p = p(z) = —az resulting in
0
1 h;
m:m/(ﬂaﬁzz (3.29)
0 0
m=%{!Fw%M=3. (3.30)
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Then Fz(f)l /o

We therefore split (3.27) into

vanishes, as verified by direct substitution of these expressions into (3.28).

P1i+1/2 = Fz(—g)l/z i,+1/2 ) (3.31)

where ]
i’+1/2 = —29{(hz‘ + hiy1) (p:+1Ci+1 - P?Ci) + i G — PG
+ (hiv1 — hi) (ﬂfﬂ - ﬁz‘+1> Giy1 + (] —7) G (3.32)
1/ _
+§ (pi+1 - Pz‘) (Gip1 — Q)}}

contains all the terms of (3.27) with (. The transition from (3.27) to (3.28)—(3.32) has no approxima-
tions.

We now summarize several properties of (3.28)—(3.32):

(i) The first two lines of (3.32) constitute a generalization of SWE pressure-gradient (3.1) with p*
playing role of “effective” density that is somewhat similar to the multiplicative split of Bleck and
Smith (1990). In the uniform density case, p; = p; = p;,1 = P; 11 = po, it turns back to

Di+ Dy
2

as expected. The remaining two lines in (3.32) correspond to the response in pressure-gradient force
to a perturbation of ( in the presence of stratification and topography (n.b., these terms vanish if either
the density field is uniform, or bottom is flat, or there is no free-surface perturbation). The appearance
of this term is a fundamental property of stratified flows over topographic slopes and is related to the
fact that it is no longer possible to split the motion into orthogonal vertical eigenmodes (including
barotropic), even for waves (Munnich, 1993; Maas, 1997b,a). The full analysis of the consequences
of this term is beyond the scope of the present study, but we point out that it is a potential source of
splitting error of the type analyzed and eliminated in Higdon and de Szoeke (1997).

Fiyis = —gpo (Git1 = G) (3.33)

(ii) For any given set of grid-box-averaged densities, p; ;, in a vertical column i, the values of p; and
pi do not depend on the free-surface elevation, ¢;. (1.9)—(1.10) imply that the disturbance of the
free-surface field causes proportional stretching of all Hy,

Hip = HY) - (1 + 2) , (3.34)

within each vertical column (here Hi(f;c) are the grid-box heights corresponding to an unperturbed free
surface). Consequently, replacement of Hﬁ) with H; , in (3.18) and (3.23) causes both the numerator
and denominator to be multiplied by (1 + (;/h;) and (1 + (;/h;)? respectively. This discrete-system
property is consistent with a similar one for its continuous prototype, (3.12) and (3.13)); ultimately it

guarantees the avoidance of splitting error of the kind in (3.4).

(iii) When the in situ density increases with depth !,
p; <P (3.35)

'In the case of an incompressible fluid, this condition is equivalent to stable stratification. However, once
compressibility effects are taken into account, it becomes less restrictive than stable stratification since the latter
requires an increase of potential density with depth, rather than just in situ density.
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This implies that the effective barotropic pressure gradient (i.e., the contribution due to ) of a stratified
fluid is systematically less than that for uniform density with the same (.

(iv) If the density field is a function only of depth (i.e., horizontally uniform stratification), the baro-
clinic pressure gradient should vanish. However, in order to make Z(f:)l = 0 in (3.28), there must
be cancellation between its terms that can be achieved only by having a special relation between p;
and p,. Except for a few special choices of the density profile (constant, linear, or quadratic in z), this
cancellation is not exact, but rather relies on the numerical accuracy of the integration method. This is
often referred as hydrostatic inconsistency, Haney (1991) . The use of a high-order integration method

does not offer an escape from inconsistency; it just reduces the error. For example, dropping the term,

gH, e — PRz (3.36)
12
in (3.22) is equivalent to switching from a parabolic to a trapezoidal rule in integration of the hy-
drostatic equation. Because in stable stratification we expect all these terms to be negative, there is a
systematic bias in p; caused by this reduction of the order of accuracy.

3.2  Temporal Averaging of the Barotropic Mode

The fluxes Uiy 1/ j ks Vi j11/2,0, and Wi ;15 in (1.14)—(1.17) are defined in finite-volume and finite-
time-step senses (i.e., during a time interval At, the sum of fluxes across the moving facets of the
grid element AY; ; ;, produce a change in the volume of fluid inside that is equivalent to the difference
of A%ZZI — AV} this in turn is determined by the free-surface equation advanced in time with a
different time-step size and time-stepping algorithm). Given the initial conditions for the free-surface
elevation, ¢, and the vertically integrated velocity, U, at the time corresponding to the baroclinic
time step n, as well as the baroclinic forcing functions (i.e., the vertically integrated right side of
the 3D momentum equations), the requirements on the 2D barotropic sub-model are to compute (i)
(¢)™*1 and (U)"*! at the new baroclinic time step n + 1, properly averaged to filter out and avoid

aliasing of barotropic time scales not resolved by the baroclinic time step, and (ii) barotropic mass
_ n+1/

flux, <<U>> 2, integrated over the barotropic time stepping, satisfying the slow-time, free-surface
equation (1.20).

To fulfill task (i), we must choose an appropriate weighting shape function {a,,} (Fig. 15, top

n n+1
n n+1

Fig. 15. Structure of the fast-time-averaging filter. Top: primary weights, {a,,}, for computing (¢)**! and
(U)"*1; and Bottom: corresponding secondary weights, {b,,}, to compute <<ﬁ>>n+1/ ?. Small tickmarks sym-
bolize the fast (barotropic) time steps, and large ones labeled by n and n + 1 are the old and new baroclinic

steps.
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panel) that satisfies discrete normalization and centroid conditions,

M* * m
Z m =1, Z am— =1, (3.37)
m=1

Here M denotes the barotropic-baroclinic mode-splitting ratio; m and n are fast and slow time indices
(n.b., it takes M barotropic steps to advance the barotropic mode for the time interval corresponding to
one baroclinic step; m = 0 corresponds to the baroclinic step n, while m = M corresponds to the step
n + 1); M* is the last index at which a,,, # 0, where M < M* to ensure that {a,, } is time centered at
n + 1. Once {a,,} is specified, we define the slow-time quantities (denoted by angle brackets),

M*

<C>TZ~_1 Z am ZZ ?_:_1}2] Z am +1/2J n;;:}l/g Z am 23-1—1/27 (338)

m=1
where ¢™, U™, and V' are “instantaneous” barotropic variables. To satisfy the slow-time continuity
. . . =\ /2
equation (1.17), we have to construct another set of fast-time-averaged barotropic fluxes, <<U >>

—\\ /2 ) . ) ) .
and <<V>> , which are consistent with the change in sea level between the two consecutive slow-
time steps,

——\\ n+1/2
m oy = At div (TN 3.39
(Ot = iv((T)), (3.39)
where
. ——\\ n+1/2 1 ——\\ nt+1/2 —\\ nt+1/2 —\\ n+1/2 —\\ n+1/2

div <<U>>ZJ - AQ{” [<<U>>i+l/2,j N <<U>>i—1/2,j T <<V>>i,j+1/2 N <<V>>i,j71/2 (3.40)

Assume that the fast-time sea level is advanced by

At ——m41/2

(= ¢ = T divD =1, M (3.41)
where divO™"”” is similar to (3.40) except that it is applied to instantaneous barotropic fluxes, U, J:/Q/ 2]

and V;T;i 1//2, that are time-centered between fast steps m and m + 1 as indicated by the half-integer in-

dex, m+1/2. Their relationship to the whole-indexed, barotropic prognostic variables, U", depends on
the particular time stepping algorithm (Section 3.3). Successive summation of (3.41) with consecutive
m yields
At
e e DX
m’=0

which after application of the time-averaging procedure (3.38) to the both sides turns into

(3.42)

n+1 m 0 At = < FTm' —1/2
ZamC —C—M dlvz:[amZU 1,
m=1 m/=1

where we have incremented the summation index m’ by 1 relative to that in (3.42) to keep it within the
range of index definition for {a,,}, and moved the operation of horizontal divergence outside of the
summation. To simplify the r.h.s., we substitute

fm —1/2 fm" 1/2
= 5 e

/I 1
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L, m' =m"
where 0,1 = ’ is the Kronecker symbol, and rearrange the double summation above
0, otherwise

as
M U ’ 1/ M~ m M " 1/ M* " 1/ M* m
T /2 =—m/' —1/2 —m! —1/2
SIS Sl D oD ol SRR Sl SR N o) opt
m=1 m/=1 m=1m/=1m/"=1 =1 =1 i1
M* 7 1/ m”—l m M* m
>m' —1/2
SOk Ll SR SY MIEINED S SR A
m/'=1 m=1 m/=1 m=m/" m/—=1
=0, SINCE m’'<m” =1, aS m'=m’ €%
M* =y M*
(S 2
=2 an ||
m'’=1 [ ( >]

from which we see that by introducing a new set of weights,

1M*

Z Gy VYm=1,..,M". (3.43)
we obtain .
(O =0 — At-div Y b,y TV (3.44)

m/=1
(i.e., as a single weighted sum). The relationship between the two sets of weights is illustrated in Fig.
15. Once {a,,} is chosen, the other set {b,,} is uniquely determined by the the first set. Finally, we
define

n+1/2 o ﬂn 1/2 n+1/2 —m—1/2
<< >>H—1/2,] Z b z+1/2j << >> 12 - Z b Vz J+L/20 (345)
to satisfy (3.39) as long as the integration of (3.41) starts with (* = (C )™. This implies that at every
baroclinic step, after the barotropic time stepping is complete, the instantaneous values of ¢ and U are

replaced with their fast-time averages in the sense of (3.38). These averaged values are used as initial
conditions for the barotropic mode during the next baroclinic step.

After the completion of time stepping for the barotropic mode, the vertical coordinate system is
updated via (1.10) using (¢)"*'. The new set of H] ”+1 becomes available to complete the 3D time
step. This is followed by computatlgn of uﬁl% J’k,ivfﬁl /o and their subsequent vertical integration.
The integrals are subtracted from (U >:f1}2 ; and <V>?;ﬂ1 /,» and the difference is divided by the depth
corresponding to ({)"*! and the local topography h. The resultant correction term is then distributed
uniformly throughout the vertical column to ensure that vertical integrals of updated uﬁﬁ% ;) and

n+1

gi’ ]1 Jél 12 are exactly the same as (U >Z:“1}2 ;and (V);‘;jl /,- This completes the update of the 3D velocity
eld.

The update of the tracer fields begins with interpolation of 3D velocities between time steps n and
n + 1 to compute the mass fluxes U"*"/? and V"2 that are then corrected in the way just described

—\\ n+1/2 —\\ n+1/2
to ensure that their vertical integrals are exactly equal to <<U >> Y and <<V>> o . This guarantees

that after computation of the vertical velocity W "*"/2 via (1.19) and substitution of H", H"*', U"+"/?,
V2 and W2 into (1.17), the later condition holds exactly. Tracer fluxes are then computed
by an interpolation of the tracer values in space and in time to the placement of the corresponding
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velocity component that it is multiplied by (Section 4). The resultant time step for the tracer field is
both conservative and constancy preserving.

3.3 Barotropic Time Stepping

Since the actual time-stepping algorithm for the barotropic mode is more sophisticated than (3.41),
we need to show in more detail how to combine it with the averaging procedure. The barotropic
equations are

a
5t div((Du) =0 (3.46)
gt(pu>+pkau:F(g>+..., (3.47)

where F'(() is the barotropic pressure-gradient term (3.32). The dots in (3.47) denote slowly varying
terms (i.e., baroclinic-mode, nonlinear, and viscous terms), most of which are kept constant during the
barotropic time stepping within one baroclinic step. Given the barotropic time step size, At, = At/M,
two non-dimensional numbers are

1

1
At, — 4+ — At, . 4
thh (Ax2 + Ay2> and fAt (3.48)

These are respectively the Courant number for external gravity waves 2 and the ratio of the time step
to an inertial period. For any reasonable choice of parameters, the former is much more restrictive
than that the later (e.g., for a horizontal grid spacing of Az = Ay = 45 km and a characteristic depth
h = 5000 m, it reaches unity at At, = 150 s, while fAt, does not exceed 0.01). Their contrast is
even larger for finer spatial resolution. Consequently, the barotropic time step is stiffly limited by the
phase speed of external gravity waves, while other factors — Coriolis and advection terms — impose
no further restriction. In this case the efficiency of time stepping algorithms can be predicted from a
linear theory: auy,.x ~ 2.4 for the predictor-corrector (2.38)—(2.41), and ay,ax ~ 1.8 for the generalized
FB (2.49). In practice this translates into permissible Courant numbers (cf., (2.7) and (3.48), left) of
1.2 and 0.9 respectively. Since FB requires only one computation of the right side of each equation per
time step, it is 1.5 times more efficient than the predictor-corrector in the computational cost per unit
simulation time.

The practical barotropic time-stepping algorithm is based on generalized FB algorithm (2.49)
and utilizes temporal interpolation of prognostic variables, rather than complete right-side terms (cf.,
(2.38)—(2.41) and discussion thereafter). It begins with an AB3-extrapolation of free-surface elevation
and barotropic velocities,

et = (S+8) ¢m = (5+28) ¢t 4 e
amt? = @ + 6) a”— (; + 26) ™+ punt e,

12 The left expression in (3.48) is derived assuming a non-rotational (f = 0), constant-depth, shallow-water
model discretized on a C-grid and using a FB time step.
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with a subsequent flux computation,
T2 DY gm2 Ay R DmHagmti Ag
where D™+'/2 = p 4 (™2, The free surface update,
¢ = ¢ — AtdivO" T (3.49)

is followed by an update of the momentum equations,

1
ot = Tt {Dmum + At,

F(C') = D™ fle x w2 + } } , (3.50)
where F'((’) uses backward-interpolated free surface,
¢ = 0¢™ (1= 6=y — )" " ¢

involving the newly computed values (!, D™ = h + (™, and D™ = h 4 (™,

The spatial discretization of the Coriolis term D™+"7/2 fk x W™*"/? ensures no contribution to the
kinetic energy integral (Holland and Lin (1975), see also Arakawa and Lamb (1977), Egs. (262)-(263),
(281)-285) for the curvilinear-coordinate version): the velocity components, (u, v), are interpolated
first to the location of (-points on the C-grid, where they multiplied by Coriolis parameter f (with
advective cross-terms due to curvilinear coordinates added in), multiplied by total depth D, and the
products are then interpolated further to the locations of the partner component. In all computations
presented here here, we use the parameter values, 5 = 0.281105, v = 0.088, § = 0.614, and ¢ = 0.013,
specified at the end of Section 2. The computation of fast-time averaged barotropic variables, (¢)"**
and (U)"*!, is done by (3.38) applied to (3.49)(3.50). <<U>>"+l/ * is computed by (3.45) just after

U™ becomes available.

3.4 Choice of Filter Shape

The analytical study in Higdon and de Szoeke (1997), reveals a probable scenario for computational
instability in a split-explicit model where the eigenvalues '* of the uncoupled baroclinic and barotropic
modes coincide on the complex plane, and the perturbation due to inaccurate splitting and subsequent
coupling moves some of the eigenvalues outside the unit circle. This coincidence is possible when
the baroclinic mode gets a phase increment wy At while the barotropic mode gets 27n + wi At (i.e.,
aliasing). Temporal filtering of the barotropic variables excludes this possibility, but, as criticized by
Hallberg (1997), it also results in additional numerical inaccuracy and requires an integration of the
barotropic mode significantly beyond n + 1 in order to place the averaged values at n + 1. Although
split-explicit models without temporal averaging of the fast mode are known to exist, their numerical
stability is most likely attributable to some kind of implicit dissipation. For example, our time-splitting
algorithm becomes equivalent to the method of averages (Nadiga et al. (1997)) if we set {a,,} to the

13 Eigenvalues are roots of the characteristic polynomial that are also Fourier component phase multipliers cor-
responding to one time step of the slow (baroclinic) mode.
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delta function, a,, = 6(M —m). This method relies on a Smolarkiewicz advection scheme that is suffi-
ciently dissipative and stable when used in combination with a forward time step. Our experience with
ROMS shows that the model becomes weakly unstable with a delta-function weighting. In contrast,
Hallberg (1997), uses centered spatial differencing, no time-averaging, and a time-stepping algorithm
that provides a controllable amount of dissipation through its truncation term within second-order
accuracy. Our approach is to construct filters that resolve these issues.

Assuming M > 1, we neglect the truncation error in the barotropic time-stepping for the present
analysis. Then an unfiltered Fourier component, wy, of the barotropic mode gets a phase increment
a = wy At in one baroclinic time step At. If the same component is subject to the weighted averaging
in (3.38), its step multiplier is

Ma) = / e~ A(7) dr (3.51)
0
where we have replace the discrete summation over m with an integral over 7 (n.b., A(7) is analogous
to a,,, and 7 plays the role of m/M). Ideally, A(a) = e~ for small v, and A(a) — 0 for large a. A
Taylor series expansion for small « is

i _ g a’r? N 373
e =1—iar —
2 6
leads to ) . .
, Q o Q
)\(Oé) = 1—20&—?f2+?j3+ﬂj4+... (352)

where .

7, = /TnA(T) dr,  n=23 .. (3.53)

0
This takes into account that .%, = .#; = 1 due to the normalization and consistency conditions (3.37).

An analysis of (3.52) shows that any choice of a positive-definite shape function, A(7), results in
at most a first-order accuracy for the time stepping of the barotropic mode, i.e., A\(«) agrees with e~
only up to &' (a?): using the identity, 72 = (7 — 1)? + 27 — 1, we find that

Tx

Sz = /(T —1)?A(r)dr + 25 — Sy =1 +e, (3.54)
0

where we have used the relation, 2.%; — %, = 1. Unless A(7) is a delta-function, §(7—1), the integrand
is positive definite, and € > 0. Substitution of .%; into (3.52) leads to the appearance of ¢ as a coefficient
in the leading-order truncation term at second order. € > ( corresponds to numerical dissipation.
If (3.51) can be represented as

Ma) = Z(a)e™™, (3.55)
where the response function % («) is real-valued, the resultant filter is non-dispersive (i.e., it has zero
phase error). The simplest way to achieve non-dispersion is to choose a shape function symmetric
about 7 = 1. Indeed, substitution of 7 = 1 + &, hence A(7) = A(1 4 &) = A(1 — &), into (3.51) leads
to

+AT +Ar
Moy = [ e—“‘“*@A(H@;A(l_g)dfﬂ‘“‘ | Al+)-cos(ag) dg = R(a)e ™, (3.56)

—AT —AT
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assuming that A(7) is distinct from 0 only within the interval, 1 — A7 <7 <1+ A7, with A7 < 1.

For computational efficiency it is advantageous to use a non-symmetric shape because it shortens
the extent of integral portion beyond n + 1. But we are interested in minimizing dispersion in the more
general, non-symmetric case. To do so we must construct A(7) in such a way that it results in

2 ot ia®

o)
Zao)=1—€e—+0——x—— + ... 3.57

where there are no i« and io®-terms (their presence would respectively cause the zeroth-order error
in phase speed and the second-order dispersive error). Hence, Z(«) is allowed to deviate from a real-

valued function only in & (ia®)-terms. Multiplication of the above by e~ and Taylor expansion yields

2 R} 4

Z(a)e @ =1 —ja — (1 + e)% (14 36)% + (1 + 6€ + 9)% . (3.58)
In comparison with (3.52), this implies that
Sz =395 — 2 (3.59)

is the necessary condition to cancel out the & (ia®) dispersive term.

n n+1
M.
n n+1

n n+1 n ”ﬂm n+1
. [
n n+1 nt1

n
Fig. 16. Comparison of differently shaped filters. The left portion of each panel shows the primary and secondary
weights (cf., Fig 15). The circles on the right portion show the complex roots for the physical mode of the filtered
barotropic mode. The solid curve turns to dashed when entering the aliasing range, wAt > 7. The roots must be
well within the unit circle to prevent numerical instability.

Fig. 16 shows A\(«) for several filters in common use. Rectangular-shaped filters are characterized
by the large dissipation for small values of o and relatively slow, oscillatory decay for large « in
comparison with a smooth filter that has rapid decay after « = 27. As inaccurate as it may appear, flat
averaging over 2At (Fig. 16, left top) results in

Aa) = ——ete (3.60)




which has a truncation error comparable to that of a weighted implicit time step,

Cn—i—l — Cn — i [5un+1 + (1 _ 5)U”]
un-‘rl = u” — i [ﬁ(n—i—l + (]_ _ ﬁ)cn] ,

(3.61)

with » )

Ma) = 1 —ia— 51— 0
1+ B2%a?

and § = 2/3. This means that the commonly used Backward Euler (BE) time step (5 = 1) is even

less accurate for an implicit free-surface model. In contrast with both of these, the cos-shaped filter

historically used in ROMS 4,

) (3.62)

1—i-cos<27r(7— 1)), T<r<

A(r) = (3.63)
0, otherwise,
is characterized by
71.27 a2
sin%-e‘m . 1—(2477?2706%07
ANa) = N =e
%(1—5?) 0(1/a?), a— oo,

with removable singularities at &« = £27. Although it is still only first-order accurate, its leading-order
dissipation, € = (72 — 6)/(1272) = 0.0326, is one-and-half orders of magnitude smaller than for the
BE implicit scheme.

To further improve the temporal accuracy of the filtered barotropic mode, we define a shape func-
tion with some of the weights allowed to be negative,

o= {(2 - ()] +5)

where p, ¢ are parameters and Ay, 7y, and r are then chosen to satisfy normalization, consistency, and
second-order accuracy conditions,

Tx

I, = /TnA(T) dr=1, n=012 (3.65)

0

using Newton iterations. 7, is the upper limit of 7 with A(7) > 0. In practice we initially set '°

(p+2)(p+q+2)
(p+1)(p+q+1)

compute A(7) via (3.64), normalize using (3.37), and adjust r iteratively to satisfy the n = 2 condition
of (3.65). The results are shown in Fig. 17, left side.

=1 r=0, and 79=

14 A “raised” version of it, A(7) = 1 + 0.85 - cos(27(r — 1)), is known as a Hamming window (Hamming
(1989)).

15 This choice results in a center of gravity for {a,,} at m/M = 1 in the limit M — oo, where 7 = m/M in
(3.64) with r = 0.
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r=0.23463 r=0.15766
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Fig. 17. Shape functions and corresponding step multipliers A(«) for the filter (3.64) with different choices for p
and q. (Left side): second-order accurate filters; (right side): optimized for minimal numerical dispersion (3.59).

Alternatively to targeting .%> = 1, one might chose to satisfy (3.59) to minimize numerical disper-
sion. No choice of r eliminates both &'(a?) and O (ia?) truncation terms, but the r-term can reduce
both of them relative to the » = 0 choice. Allowing negative weights in the left portion of the filter
is also beneficial for computational efficiency because it shortens the required number of barotropic
time steps. All filters on the left side of Fig. 17 extend no farther than At/4 or At/3 beyond the baro-
clinic time step n + 1. A comparison with time-stepping schemes available for an implicit free-surface
model *® shows that, with a proper choice of A(7), the split-explicit model is inherently more accurate
for time-resolved barotropic motions. The choice of parameters p and ¢ controls the damping of the
unresolved barotropic frequencies that determine the stability and robustness of the model. A complete
quantitative analysis in a manner of Higdon and de Szoeke (1997), is beyond the scope of the present
study; our practical experience indicates that filtering is generally required for stability (one cannot set
a,, to a delta-function), but even the least dissipative filter in Fig. 17 result in a stable model for our
applications without any need for explicit viscosity in the barotropic mode.

4 A Hybrid Predictor-Corrector for the Baroclinic Time Step

Because of the mathematical similarity of their equations, time-stepping algorithms for the baro-
clinic mode are generally similar to the barotropic ones. The differences arise from the necessity for
a conservative, constancy-preserving algorithm for tracers. We will show how this makes it necessary
to update the velocities before the tracers. Similar to (3.48), the allowed time step is limited mainly by
internal gravity waves, but the contrast with the Coriolis restriction is not so dramatic. In addition, the
advective Courant number is not expected to be very small; e.g., for typical oceanographic conditions,
the phase speed of internal gravity waves may be 2.5 m/s, while the advection speed may be as large

16 Since the implicit AM3 is only conditionally stable, these are limited to a weighted backward Euler step (cf,,
(3.61)).
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as 1 m/s. For coarse to moderate horizontal resolution, the baroclinic time step may be as large as
2 hours, which is close to 1/ f outside the tropics. Although the generalized FB algorithm is a clear
favorite for the barotropic mode, we find that it more favorable to chose a predictor-corrector approach
for the baroclinic mode.

Most oceanic models use a single-step algorithm for the 3D equations: either LF (MOM and its
derivatives, MICOM, and POM) or AB3 (SPEM/SCRUM family). This choice has two weaknesses:

(i) Since the temperature and salinity are responsible for the stratification, hence the baroclinic pressure
gradient, and since both momentum and tracer equations are advanced simultaneously for one time
step, the momentum equations feel feedback from the changed tracer distribution only during the next
step. Within the stiffest part of the system (i.e., propagation of internal gravity waves), the even-step
velocity is coupled predominantly with the odd-step tracer field, and vice versa, while the odd-odd
and even-even couplings are much weaker. In fact, for a linearized system and an LF time step, these
two modes are completely independent. The use of AB3 mitigates this effect, but does not completely
eliminate it.

(ii) In a free-surface model the grid-box heights, Z";r ., are set by the barotropic mode using an entirely

different time-stepping algorithm. As the result, in the case of LF it is difficult to build a conservative
and constancy-preserving advection scheme for tracers, because LF advances tracer fields from step
n — 1 to step n + 1 with tracer fluxes computed at time step n, while the discrete continuity equation
(1.17) relates Hf]+ + with H}'; . (instead of H;'; ), and the associated mass fluxes are time-centered
at n + 1/2. In the case of AB3, this problem may be addressed if a forward extrapolation of the pre-
computed right side for the tracer equations is replaced with an extrapolation of velocity components
and a subsequent correction of their vertical averages, with a multiplication by the extrapolated tracers
to compute tracer fluxes.

To make (1.14) and (1.17) consistent with their continuous counterparts with at least second-
order accuracy, the mass fluxes, (U1 j x> Vijr1/o6s Wijk+1/2), and interface tracer values, (qit1/2 .k
Gi,j+1/2,k> and q; j 1.41/,), must be time-centered at n + 1/2. Hence (1.17) becomes

A, = HY, Ad — AU U ViR vl

7"7j7k i+1/2’j’k B i71/27j7k i:j+1/2»k B 7‘7.j71/2>k (4 1)
n+1/2 n+1/2 ’
tWigwrye = Wigatis|
and (1.14) turns into
n+l noopmnoo_ At ~n+l/2 U”+1/2 _ sntl2 U”+1/2
qivjvk; - ql’.]7k ivjvk M . qi+1/21j1k i+1/21j1k: qi_1/27j7k 7:_1/27j7k
1/7]
~n+1/2 n+1/2 ~n+1/2 n+1/2
+qi7j+1/27k ) V;,j-i-l/ﬂf o qivj—l/%k ' Vivj—l/%k (4.2)

~n—+1/2 n+1/2 ~n+1/2 n+1/2 n+1
Tijrre Wigkie = Gyrre Wija—ie Hi% -

Here (4.1) is not to be interpreted as a method for computing f;r,i, but rather as a constraint imposed

on the set of mass fluxes, (U"+"/?, V42 JW/"+'/2) satisfied by enforcing that the vertical integrals

n+1 —\\ n+1
of (U2, V™ +112) are equal to ((T))"" " (v ") defined by (3.45). Once this is satisfied,
building a tracer advection scheme is just a matter of spatial interpolation of tracer variables to compute
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interface values and temporal extrapolation/interpolation to n + 1/2 to achieve at least second-order
accuracy and maintain numerical stability.

The simplest possibility is to extrapolate ¢ forward in time before doing the spatial interpolation
using a second- or third-order accurate Adams-Bashforth extrapolation rule for the right hand side,

n+1 3 n 1
qi,;k/Z = <2 + 5) Qi7j7k‘ - (2 + 26) Qz] k + qu,] k - (43)
f = 0yields AB2, and 8 = 5/12 yields AB3 (Appendix A). This is preceded by a similar AB3-like
update for the velocity field so that velocities at n + 1 participate in interpolation to compute mass
fluxes at n + 1/2 as in (2.49), except that now ¢ and u switch roles.

As an alternative to using local grid points in the previous time steps, one can chose an UTOPIA
or COSMIC-like algorithm (Leonard et al. (1996)). There is no need for forward extrapolation in
time since only tracer values at time step n are used. This is potentially the most accurate approach
because it uses a more compact stencil, and by its design the dispersive errors of time and space
differencing compensate each other. However, the resultant schemes are unavoidably upstream-biased
in all three spatial directions. This is undesirable for long-term simulations because of its vertical
hyper-diffusion in the leading-order truncation error, and this causes excessive artificial diapycnal
mixing if temporal oscillations are present in the vertical velocity field (as is quite common in oceanic
models). This algorithm is a single-step method, but its operational complexity is similar to a predictor-
corrector’s. Since a fully 3D UTOPIA algorithm is impractical, COSMIC is the most likely candidate.
This algorithm includes computation of multi-dimensional finite-volume fluxes in each direction via
successive 1D, non-conservative, advective updates in both transverse directions to get provisional
tracer fields, after which the 1D QUICKEST algorithm is applied to compute fluxes.

The provisional field, ¢"*"/?, also can be obtained by an advective-form predictor sub-step, where
abandonment of the conservation principle is acceptable because ¢"*"/* are used only for the computa-
tion of fluxes in (4.2) and thereafter discarded. Conversely, since the set of mass fluxes satisfying (4.1)
exists only between time steps n and n+ 1 (but not between n — 1 and n +1/2), a conservative predictor
sub-step cannot be made constancy preserving; hence, the resultant predictor-corrector algorithm will
not be so either. A centered scheme for spatial derivatives in combination with a LF time step yields

qf;r,i = q” —2A¢t U(qu +v6,q" + wd.q }

ik 4.4)

The symbols ¢ and overline denote differencing and interpolation in the direction designated by their
sub- and superscripts (in principle, these operators can be higher-than-second order accurate), and u,
v, and w are velocity components computed from the interface fluxes Uz, ; ., Vi1 p and Wy

Once ¢"'* becomes available, ¢"*"/* is computed using a three-point interpolation,

n 1 1k 1 n e
¢ = (2 — 7) @+ (2 + 27) @ik = VL 4.5)

after which a high-order spatial-interpolation scheme (described below) is used to compute the flux

values at the interfaces, %:1 /22 e 'q“ln;i/ljz o and g ;rkfl 1, in (4.2). Since ¢" 1" is needed only to compute

¢"*"*, the operations (4.4) and (4.5) can be combined into a single step,

n+1/2 1 N 1
Qi,I;/ - (2 + 27) Qi+ (2 — 27) a4, k — (1 —27) At {same asin (4.4)| . (4.6)
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Overall the combination of (4.6) and (4.2) is similar to LF-AM3 (with v = 1/12) or LF-TR (v = 0)
predictor-corrector step (cf., (2.38)—(2.41) and Fig. 8).

Finally, instead of using the advective form of the tracer equation, the predictor step employs a
pseudo-compressible algorithm to achieve constancy preservation. In this approach we compute two
auxiliary grid-box height fields, H;;, and H, f] «» by stepping backward and forward in time,

1 At
HE = H" ( — ) ur., .. —yur. . n —_yn
lv]vk Zvjvk :F 2 7 M,j [ Z+1/2:]7k 1_1/2).7)]‘7 + Zvj+l/27k l’J_l/ka (47)

1

+M/i7,lj,k+1/2 - W'??j,k—l/J

Then we perform a flux-divergent update of the tracer field, ¢, using a LF step combined with three-
point interpolation (cf., (2.38)),

qi,;&i/z - { [(2 i 27) Gijk (2 N 27) Qi,jyli] ik T T A
irj

— g Ul + Goppoge Vi — Ggoroge Viooe (48

~N n
Tiyipzge Uitjo

~n n ~n n +
+qi’j’k+l/2 ) Wi7j7k+l/2 B qi7j»k71/2 ' Wivj’kfl/Q /Hzﬂ,k .

After this step H; , and H;'; ; do not participate in any further computation and are discarded.

n—1 —

The construction of (4.7)—(4.8) makes the constancy preservation property clear: if ¢ =q" =
const, then ¢"*"> assumes the same constant value, regardless of the divergence of mass fluxes
s g Vi e and W1 However, since H *and H* have no relation to the actual grid-box
height field by the barotropic mode (i.e., HZ";“ . determined from (¢ >?;F1 via (1.10)), this update is not
conservative. In fact, the use of the artificial divergence equation (4.7) just provides a way of trading

in the conservation property in favor of constancy preservation, following the continuous identity,
V(qu) = (u-Vq) +¢Vu, (4.9)

and dropping the last term. At the same time, the pseudo-compressible time step is numerically similar
to the conservative update during the corrector sub-step and therefore is preferable over the advective
form (4.4).

Once the tracer concentration is available at the proper time, either n or n + 1/2, it needs to be
interpolated to grid-box interfaces to compute tracer fluxes. Three options are available in ROMS for
doing so. The first is a centered, fourth-order-accurate interpolation (cf., Dietrich et al. (1997)),

- i1k T TQjk + TQr1jk — Qiv2jk
qz‘+1/27j,]g _ 1,5 7 - +1,5 +2,7 ’ (410)

that can be expressed as a mid-point average enhanced by a curvature term,

~ Qi ik T Qi+1,5.k b _Ez
Gitrjoje = 2 2*“ - “““6 Jk (4.11)
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where 0¢; ;. and 9, ;, are averaged elementary differences,

50, — 0Gi—1jojk + O0Giy1/o ik
45k = 9 )

(4.12)

and 0G;y1/55k = Qi+1,5k — Gi,j,k- The second option is to replace (4.12) with harmonic averaging (cf.,
Shchepetkin and McWilliams (2003)):

0q; iy = 20Gi11/2,5,k0i—1/2,.k
bk 0Git1jojk + OGi1/oji ’

(4.13)

as long as 0¢; 41 5 and d¢;_y, ;. have the same sign, and dg; ;,, = 0 if their signs are different. In
this case (4.11) has the property that the interpolated value, g;11/, ;. is bounded by the values at the
two neighboring points, ¢; ;1 and g;11 ;. regardless of the values at the two extreme points of the
stencil. Although this measure by itself does not strictly guarantee monotonicity preservation for the
whole advection scheme, because the time stepping is done independently from spatial discretization,
it tends to reduce spurious oscillations that arise with non-smooth advected fields. The third option is
an upstream-biased, parabolic interpolation,

/"
~ Qi gk + Qit1,jk 1 Qijks Witif2jk > 0
Qiv1/2,5,k = - 5 "5

(o)

1!
Qit1,4k > Wit1/zgk < 0

where

Qi jp = Qi1 — 2Gigk + Qi1 -
This results in a dissipatively dominant (i.e., hyper-diffusive) truncation error. The overall performance
of the advection scheme is similar to that reported in Farrow and Stevens (1995). Vertical interpolation
is done using either a centered fourth-order scheme or, preferably, an interpolation based on conserva-
tive parabolic splines as in (3.16) (Fig. 14). Use of an upstream-biased scheme in the vertical direction
is avoided to diminish artificial diapycnal fluxes.

The time stepping for the momentum equations follows the same approach as above: a non-conservative
(pseudo-compressible) predictor sub-step followed by a conservative corrector. Spatial discretization
of the advective and Coriolis terms generally follows the framework of Lilly (1965), and Mesinger and
Arakawa (1976), adapted for curvilinear horizontal grids 7.

S Time Stepping the Coupled Baroclinic-Barotropic System

We now summarize the time-stepping algorithm in ROMS, focusing on the discrete-time interac-
tions between the modes (Fig. 18).

Stage 1: Compute the right side for the 3D momentum equations at time step n (i.e., pressure-gradient,
Coriolis, and advective terms only; no viscous terms are computed at this time). Apply this right side

17 n essence this is done in POM (Blumberg and Mellor (1987)) and SCRUM (Song and Haidvogel (1994)),
with the exception that mid-point averaging is replaced with high-order interpolations: third- (upstream-biased)
or fourth-order (centered) schemes are applied in the horizontal directions and fourth-order or parabolic splines
in the vertical.
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Fig. 18. Barotropic-baroclinic mode data exchange in ROMS: Curved horizontal arrows symbolize the predictor
LF step combined with AM3 half-step-back interpolation of the result (light shading) and corrector sub-steps
(dark shading). The four ascending arrows denote the 2-way, vertically averaged densities, p and p*, and the
vertically integrated right side for 3D momentum equations [the last two meet with the two small arrows sym-
bolizing computation of barotropic mode r.h.s. from barotropic variables; so that asterisks (* *) denote the
computation of baroclinic-to-barotropic forcing terms, two small arrows ascending to the right]. The five large
descending arrows symbolize 2-way, fast-time-averaged barotropic variables for backward coupling. Each ar-
row originates at the time when the data is logically available, regardless of the temporal placement of the
corresponding variable.

to advance the 3D momenta using a LF step combined with a half-step, backward interpolation with
AM3-like coefficients (the result is time-centered at n + 1/2). Since at this moment no meaningful
values of H™"*! are available and it is impossible to satisfy exactly the discrete continuity equation, use
the artificial continuity equation (i.e., the pseudo-compressible algorithm). In addition to that, because
this predictor step violates CFL for the barotropic mode and no meaningful barotropic mass fluxes
time-centered at n + 1/2 are available yet, set the vertical averages for the newly computed fluxes back

to (U)".

Stage 2: Advance the tracer variables in a similar manner with a pseudo-compressible LF step com-
bined with an AM3 interpolation, placing the resultant values at n + 1/2. (This algorithm is constancy
preserving, but not conservative, which is acceptable because the resultant tracer values at n + 1/2 are
used only for computation of advective fluxes during the subsequent corrector step. The same comment
applies to the predictor update for the momentum equations at Stage 1.)

Stage 3: Compute the right side for the 3D momentum equations (i.e., pressure-gradient, Coriolis, and
advective terms) from the mass fluxes and tracers (via density) at n + 1/2 and the lateral viscosity terms
from the old-step velocities, u”. Vertically integrate everything and also compute and store vertically
averaged densities, p;,p, using (3.18)-(3.23) time-centered at n + 1/2. Apply the right side to the 3D
momentum variables, but do not finalize the time step since H"™! and (U)""! are not available yet.

Stage 4: Compute the right side terms for the barotropic mode from barotropic variables using (3.32)
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Configuration Grid Size Resolution | Time Step | Mode Splitting | Primary Time Step
deg or km sec Ratio Limitation by

Atlantic DAMEE | 128 x 128 x 20 0.75°% 8640 60 (Gen. FB) Coriolis force

Atlantic DAMEE | 256 x 256 x 20 0.375% 5760 92 (Gen. FB) Coriolis/internal

Pacific 384 x 224 x 30 0.5° 7200 78 (Gen. FB) Coriolis force

US West Coast 83 x 168 x 20 15 km 2880 50 (LF-TR) internal waves

US West Coast 126 x 254 x 20 10 km 2160 60 (LF-TR) internal waves

Monterey Bay 93 x 189 x 20 5 km 960 60 (LF-TR) internal waves

Table 1

Permissible time step sizes and mode splitting ratios for several practical applications of ROMS. “(Gen. FB)”
and “(LF-TR)” in the Mode Splitting Ratio column indicate the type of time stepping algorithm used for the
barotropic mode.

for the pressure gradient and subtract it from the corresponding vertical integrals of the 3D right side
computed in Stage 3 (i.e., convert them into baroclinic-to-barotropic forcing terms) '®. Advance the
barotropic variables by M, time steps (slightly beyond the baroclinic time step n + 1, depending on
the shape of the fast-time filter), performing a 2-way, fast-time averaging of barotropic variables on the
way. (The baroclinic forcing terms are kept constant during this procedure, but the barotropic pressure-
gradient terms are recomputed by (3.32) with participation of p; and p; at every barotropic step.) Once

.. . . n+1 .
this is complete, update the vertical coordinate system, {zm-,k, 2§ k4129 H,-7j7k} , to be consistent

with (C)™+1.

Stage 5: Finalize the computation of the 3D mass fluxes begun in Stage 3 using the now available
H™1, and set the vertical average to (U)™*! from the barotropic mode.

Stage 6: Interpolate the 3D velocity components back in time to n + 1/2 using a combination of
the new time-step values (from Stage 5), values from the predictor step (Stage 4), and old-time step
values. (This introduces forward-backward feedback between the momentum and tracer equations as
in (2.38)-(2.41) but with the roles of u and ( switched.) Set the vertical average of the resultant fields

n+1/2 .
to <<U>> . Use the resultant velocity field and tracers at n + /2 to compute the tracer fluxes and
advance the tracers to n + 1. (This step is both conservative and constancy preserving.)

6 Conclusions

We have designed a robust computational kernel for a split-explicit, terrain-following-coordinate
oceanic model, ROMS.

We use time-stepping algorithms with forward-backward feedback between the pairs of variables
responsible for gravity wave propagation (surface or internal) that combine an extended range of sta-

18 There is no need to compute the F(9)-part of the barotropic pressure gradient defined by (3.28) because it

is already accounted for in the vertical integral of the 3D right side. Since it does not depend on , it remains
constant during barotropic time stepping. Because of the “add-subtract” procedure for baroclinic-to-barotropic
forcing, this term identically cancels out when the forcing terms are added back to the barotropic right side
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bility with the temporal accuracy of the best known algorithms: in effect, generalizing the FB schemes
to higher orders of accuracy. Among these schemes, the Euler step (2.13) can be viewed as the first
member of the family, AB2-AM3 (2.42) as the second, and AB3—AM4 (2.49) as the third. A similar
classification applies to the modified RK2-LF-AM3 family.

Although we use LF-AM3-type predictor-corrector algorithms for the baroclinic mode (generally
three-time-level schemes, motivated by comparative linear stability analysis for wave motions), it
should be noted that the predictor sub-step is only needed to obtain provisional variables time-centered
at n 4 1/2 for subsequent computation of right-side terms subsequently used in the corrector sub-step.
Mode-splitting occurs during the corrector only, which is always a two-time-level scheme in our ap-
proach. In this respect our method differs from POM (perhaps the most widely used o-coordinate
model) and is more similar to ones advocated by Nadiga et al. (1997), and Higdon (2002), both of
which are RK2-type predictor-corrector algorithms that seem to be a more natural choice for layered
models because of the need for positive-definite advection with vanishing layer thicknesses.

We redefine the barotropic mode equations to account for the non-uniform density field to reduce
the mode-splitting error — in essence following the methodology of Higdon and de Szoeke (1997),
but here in the context of terrain-following coordinates. The pressure-gradient force for the barotropic
mode is derived as a vertical integral of 3D pressure-gradient due to fluctuations in the free-surface
elevation, (. This ensures accuracy of the mode splitting even in the presence of topography. The
computationally efficient implementation of this method involves a special 2-way vertical averaging
procedure for density field once per baroclinic time step.

We assure simultaneous conservation and constancy preservation properties for tracers in the evolv-
ing coordinate system due to changes in (. This is accomplished by 2-way temporal averaging of the
barotropic finite-volume fluxes to ensure that the 3D discrete continuity equation holds exactly be-
tween two subsequent baroclinic steps even as the whole vertical system of coordinates changes with
C.

We incorporate a temporal weighted-averaging of the barotropic mode that allows an accurate
representation of the barotropic motions resolved by the baroclinic time step (e.g., tides and barotropic
Rossby waves).

Finally, our treatment of computationally expensive processes that are not critical for numerical sta-
bility (e.g., lateral and vertical mixing parameterizations) is placed outside the main predictor-corrector
procedure to mitigate their computational cost.

Built around this kernel, ROMS has been applied to several oceanographic studies of basin-scale
and coastal circulation (e.g., Haidvogel et al. (2000); Marchesiello et al. (2003)). It has been verified
to allow the time step sizes and mode splitting ratios summarized in Table 1 for these configurations.
ROMS allows significant increases of the time step size relative to its terrain-following prototypes
(SCRUM/SPEM and POM), as well as to other z- (MOM, POP) and isopycnic-coordinate (MICOM)
models that use simpler time-stepping algorithms (e.g., single step, synchronous, mostly LF or AB3
for SCRUM). Furthermore, our analysis and practical experience indicate that this gain is achieved
without major increase of computational cost due to the predictor-corrector algorithm, in part because
most of the computationally expensive processes are still computed only once per time step. Nor do
we observe any degradation in the quality of our solutions due to the increased time-step size close to
theoretical limits of stability.
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Appendix A: Simple Time-Stepping Algorithms

One of the most commonly used time-stepping algorithms is Leap-Frog (LF) accompanied by an Asselin
filter (Asselin (1972)). For (2.3), it may be written as

qn+1,* — qnfl — Y% - qn,* ’ (Al)

followed by
q" = eq" T + (1 — 2€)¢"* +eq" 1, (A2)

where o = wAt; ¢"T1* and ¢™* are “preliminary” values of ¢"*! and ¢" and € > 0 is an adjustable parameter.

Substitution of ¢"*1* from (A.1) into (A.2) yields

n,* qn B 26qn71
A== A3
T T 12— 2¢ian &
Since a similar relationship exists between ¢"+1* and ¢"*!, one can exclude the preliminary variables from
(A.D),
anrl o 2€qn _— . qn o Qeqnil
- = -2l —————— A4
1—2¢—2cia ° T 2 2¢ — 26ia’ (A4
and further rewrite it as
"= (1 - 2¢) "1 4 2e¢™ — 2icx (" — eqnfl) (A.5)
(i.e., a single-step version of (A.1)-(A.2)). This leads to a characteristic eigenvalue equation,
A 42> — )X — 1+ 2¢(1 —ia) = 0, (A.6)

with roots (cf., eq. (12) in Asselin (1972)),

A= —ia+et/(1—e2—a2, (A7)

and the stability limit,
lomax(€)| = 1/V/14+2e —e2~1—¢. (A.8)

This approximation is valid for € < 1. A Taylor series analysis of (A.5) leads to a modified equation,

0q eAtw? q

e ciwg - o (wAr?) A9
ot T et eiw At + (wA?) (A.9)
indicating that the formal accuracy drops to first-order if € > 0 and the leading-order truncation term is dissipa-
tive. An Asselin filter introduces the desired damping of the LF computational mode at the expense of a reduced
stability range, some dissipation of the physical mode, and a further increase of the phase-lead error of already
strongly dispersive LF (Fig. 19). For example, with o = 7 and a typical value of ¢ = 0.1, adding an Asselin

filter almost doubles the LF phase error.

The properties of a LF—Asselin filter time step are well known. Durran (1991), provides a comprehensive
review of this and other commonly used time-stepping algorithms for the first-order hyperbolic problem (2.1).
This analysis includes Taylor series expansions for both phase and amplitude errors. However, it is instructive
for the algorithmic decisions presented in this paper to trace the location of the amplification factors on the
complex plane since this indicates the limits for each method, while the usual analysis of truncation error based
on Taylor series expansion does not provide this information. The results are shown in Fig. 20. Even a brief
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Fig. 19. Complex roots for the LF-Asselin Filter
time-stepping algorithm for e = 0, 0.05, 0.1, 0.15, 0.2,
and 0.25. The curves corresponding to € = 0, and 0.2
are highlighted. The presence of € terms in (A.7) moves
roots strictly along the real axis relative to unfiltered
LF roots. ¢ does not affect the imaginary part of Ay
as long as the expression under the radical is positive.
Because of this feature, an Asselin filter causes an addi-
tional phase-lead error to an already forward-dispersive
LF. The lower-left portion shows the dependency of the
07 w w stability limit aupyax On € (cf., (A.8)).

0.126 025 €

glance at this figure indicates the existence of a variety of algorithms potentially more attractive than the LF-
Asselin filter. It also shows that Runge-Kutta (RK) and predictor-corrector methods are generally more accurate
than single-step methods. They also require more computational effort because the right side is computed more
than once per time step. In fact, these types of algorithms can be viewed as combinations of simple single-stage
methods arranged so that the leading-order truncation errors of subsequent stages cancel each other (cf., Hyman
(1979).) In some cases it may be more efficient and more accurate to use a single-step method with a smaller time
step. To make the comparison fair, we introduce a modified amplification factor that accounts for the number of
right-side computations:

N(wAt) = (A(r-wAt) ) v (A.10)

r is the number of right-side computations (e.g., r=1 for single-step methods; r=2 for predictor-corrector meth-
ods; r=3,4 for RK3 and RK4, respectively). \’ is the composite amplification factor per right-side computation.

The results are shown in Fig. 21. This comparison shows that AB3 and LF-AM3 offer the best accuracy per
computational cost, leaving RK4 and LF-TR behind. RK4 is definitely the most accurate if wAt < {%, but it
rapidly departs from the unit circle when w At > £. AB3 and LF-AM3 are less dissipative than RK4 and LF-TR
in the vicinity of wAt = 7 /8, with LF~FAM3 having somewhat larger phase-lead errors than AB3. Finally, none
of these algorithms is accurate if used in a computational regime requiring less than 10 right-side computations
per period of physical oscillation. LF (not shown here) has a smaller phase error than LF-AM3 if both are used
in the computational regimes close to their limits of stability, but it lacks third-order accuracy, resulting in a
noticeable phase-lead error even for well resolved frequencies. As a rule of thumb, one may conclude that that
wAt ~ 0.8r sets a “speed limit” per computational cost for virtually all of the explicit algorithms considered

here.

For the advection problem the truncation error of spatial differencing always causes a phase delay for high
wavenumbers; therefore, a partly compensating phase-lead error of the time stepping algorithm can be tolerated.
In fact, if a second-order spatial discretization is used, there is no need for the use of an algorithm other than
LF since its phase-lead error is always less than the delay caused by spatial differencing, with compensation
occurring only at the limit of stability. In the case of fourth- or higher-order spatial differencing, as well as for
second-order differencing on a staggered grid (e.g., the shallow-water system on a C-grid), the use of a higher-
order algorithm (i.e., AB3 or LF-~AM3) is beneficial because the overall phase error may be dominated by the
time-integration error.

Another method worth consideration is the generalized Adams-Bashforth step,

¢ =q" + ia{ (; + B) q" — (; + 25) ¢+ 661"‘2} (A.1D)

where £ is an adjustable parameter. The choice 8 = 0 corresponds to AB2, while 5 = 5/12 yields a third-order
accurate AB3 that achieves the best possible order of accuracy on the given stencil. In the case where 3 < 1/6,
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AB2 0
%

AB2-AM3 0.60 AB3-AM3 | *0.58 AB3-AM4 0.59 AB4-AM4+mod *0.46
6/5 1.1642% 1.1784 0.9362

RK3 0.577 RK4 0.705 RK5
2.80847 1 3.3957%

LF-TR 0.707 ;LF+{(LF-TR) 0.75 LF-AM3 0.793 LF-y =0.0804 0.794
32 1.5874 1.5876

Fig. 20. Amplification factors for simple time-stepping methods plotted on the complex plane relatively to
the unit circle. Bold lines correspond to the physical mode and thin lines to the computational mode(s) if
any. Once the stability limit is exceeded, solid lines turn to dashed for all modes. The legend is as fol-
lows: LF — Leap Frog; TR — trapezoidal rule; AB — Adams-Bashforth; AM — Adams-Moulthon; RK -
Runge-Kutta; digits 2,3,4 denote the order of accuracy; mod means modification of Milne, in this context
[AB4—AM4+mod]:%[AB4—AM4]+%[AB4], which is formally fifth-order accurate; numbers below the la-
bel is the stability limit. An asterisk (*) indicates asymptotic instability; the physical mode of AB4-AM4+mod
is is weakly unstable, and 0.93627 is the threshold of strong instability of the computational mode. The num-
ber on the right is the efficiency factor (stability limit divided by the number of computations of the right
side). For each method, the roots of the computational mode corresponding to “ideal” amplification factors of
iy 3me

exp{—f—é, s — T } are connected by straight lines with their ideal locations. This line illustrates the

numerical error: shifts in azimuthal and radial directions correspond to phase and amplitude errors, respectively.
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Fig. 21. A fair comparison of time-stepping algorithms:
the amplification factor of the physical mode normal-
ized by the number of computations of the right side.
Each curve is shown within the limits of stability for its
method.

Fig. 22. Amplification factors for (-family of
Adams-Bashforth time-stepping algorithms. High-
lighted curves correspond to 5 = 0.281105 (where the
physical and one of the computational modes meet each
other at the saddle point; this choice approximately
coincides with the maximum possible stability limit of
a = 0.78616) and f = 5/12 (the usual, third-order
AB3 method).

B = 0.281105

the method has an asymptotic instability of the physical mode (similar to that of AB2). Setting 8 = 0.281105
corresponds to the case where the physical and one of the computational modes meet each other (Fig. 22).
Below this value the instability of the physical mode occurs first (as in the case of LF-AM3), while past it one
of the computational modes goes unstable first (as in the case of AB3). This latter value [ yields a stability limit
of @ = 0.78616 that approximately coincides with that for the § value corresponding to the largest possible
stability limit.
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List of known typos in the article published in Ocean Modelling, 2005 which are corrected in this version (page
numbers are given by the published article):

p. 361, half-way vertically, left edge: should be "damping” instead of "dumping”.

0
p. 377, bottom, Eq. (3.15), Lh.s. should be o

p- 378, Eq. (3.16), the second term in the r.h.s. should be

(D%) + ..., i.e., lowercase 7 instead of uppercase U.

Pk+1/2 = Pk—1/2 S
Hj,
p. 379, bottom, Eq. (3.27), the rightmost term in first line should be .. (p} — p}, ), i.e., with ” — 7 sign inside

, Le., with” —7 sign instead of ”+”.

the brackets instead of ”+”.
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